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Abstract

In many models, variances are assumed to be constant although this assumption
is often unrealistic in practice. Joint modelling of means and variances is difficult
in many learning approaches, because it can lead into infinite probability densities.
We show that a Bayesian variational technique which is sensitive to probability
mass instead of density is able to jointly model both variances and means. We
consider a model structure where a Gaussian variable, called variance node, con-
trols the variance of another Gaussian variable. Variance nodes make it possible
to build hierarchical models for both variances and means. We report experiments
with artificial data which demonstrate the ability of the learning algorithm to find
variance sources explaining and characterizing well the variances in the multidimen-
sional data. Experiments with biomedical MEG data show that variance sources are
present in real-world signals.

1 Introduction

Most unsupervised learning 2 techniques model only changes in the means of
different quantities while variances are assumed constant. This assumption is
often known to be invalid but suitable techniques for jointly estimating both
means and variances have been lacking. The basic problem is that if the mean
is modelled by a latent variable model such as independent component analysis
(ICA) (Hyvärinen et al., 2001), the modelling error of any single observation

? This work is an extended version of the paper by Valpola et al. (2003a).
1 This research has been funded by the European Commission project BLISS, and
the Finnish Center of Excellence Programme (2000–2005) under the project New
Information Processing Principles.
2 Throughout this paper, we use the terms learning and estimation interchangeably.
The former is used in neural networks literature.
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can be made zero. If the learning method is based on maximising likelihood or
posterior density, it runs into problems when trying to simultaneously estimate
the variance as the density will become infinite when the variance approaches
zero.

A simple example of the problem is given by factor analysis. Consider the
model

x(t) = As(t) + n(t) , (1)

where n(t) is Gaussian noise and the matrix A maps the factors s(t) to the
observation vectors x(t). The right-hand side of (1) consists of unknown quan-
tities which are to be estimated. It is reasonable to assume that n(t) has a
diagonal noise covariance since any correlation between the observed signals
can be assumed to have been generated by the underlying factors.

A problem arises if one tries to estimate the diagonal elements of the noise
covariance, that is the noise level of each individual observed signal, by a
method which is sensitive to probability density, such as maximum likelihood
or maximum a posteriori estimation. The likelihood of the data can be made
infinite by copying one of the signals to one of the factors. The model can
then explain that signal perfectly and the noise level of the signal can be set
to zero.

In the above case, only as many unknown variance parameters are estimated as
there are observed signals. This number is usually far smaller than the number
of observation vectors in the temporal dimension. This shows that estimation
of a very small number of unknown variances can compromise the estimation
of means 3 . In addition, the total number of estimated parameters can be very
small compared to the available data. In the factor analysis example, there
can be a very large number of observed signals but estimation of a single
factor signal combined with the estimation of the variances will still cause the
problem.

This paper is motivated by the need to estimate features which would describe
well both the means and variances of the observations. Good estimates of
variances improve the estimates of the features which describe the means of
the observations. The variance of a signal or a set of signals can also carry
useful information.

In this paper we show how the problem can be solved by variational Bayesian
learning. We are able to jointly estimate both the means and the variances
by a hierarchical model because the learning criterion is based on posterior

3 The converse is also true: the estimation of a small number of unknown means
can interfere with the estimation of variances. The problem arises when the model
can effectively use one mean and one variance parameter for a single observation.

2



probability mass 4 rather than on the problematic probability density. The
cases mentioned above no longer pose problems because when the variance
approaches zero, the posterior probability density will have an increasingly
higher but at the same time narrower peak. The narrower peak compensates
the higher density, resulting in a well behaving posterior probability mass.

The basic method used here was introduced in the preliminary conference
paper by Valpola et al. (2001). The method relies on a set of building blocks
that can be used to construct various latent variable models. In this paper
we deal with building variance models using Gaussian variables and linear
mappings. The new method is computationally of the same order as the well-
known maximum likelihood and maximum a posteriori methods, which are
based on simpler density estimation approaches.

In Section 2, we introduce the variance node, a Gaussian variable which con-
verts predictions of mean into predictions of variance, and discuss various
models which utilise it. Section 3 shows how these models are learned. Ex-
periments where such models are applied to artificial and natural data are
reported in Section 4.

2 Variance node

A variance node (Valpola et al., 2001) is a time-dependent Gaussian variable
u(t) which specifies the variance of another time-dependent Gaussian variable
ξ(t):

ξ(t) ∼ N(µξ(t), exp[−u(t)]) , (2)

where N(µ, σ2) is the Gaussian distribution and µξ(t) is the prediction for
the mean of ξ(t) given by other parts of the model. As can be seen from (2),
u(t) = − log σ2. This parametrisation is justified in Section 3.3.

Variance nodes are useful as such for modelling super-Gaussian distributions
because a Gaussian variable ξ whose variance has fluctuations over time gener-
ates a super-Gaussian distribution (see e.g. Parra et al., 2001). Variance nodes
alone cannot generate sub-Gaussian distributions 5 , but in many cases sub-
Gaussian models are not needed. This is particularly true in connection with
dynamics. Real signals such as oscillations have sub-Gaussian distributions
but their innovation processes are almost invariably super-Gaussian. Fig. 1(a)
shows a schematic diagram of a linear ICA model which has super-Gaussian

4 In this case, the probability mass is the integrated probability density over a
volume of the parameter space.
5 Mixture-of-Gaussian distributions can be used for sub-Gaussian distributions. See
e.g. Attias (1999).

3



PSfrag replacements

A

B
ux(t)
ur(t)us(t)

r(t)

s(t)

x(t)
(a)PSfrag replacements

AB

ux(t)

ur(t)
us(t)

r(t)

s(t)

x(t)

(b)

PSfrag replacements

A

B

ux(t)

ur(t)

us(t)

r(t)

s(t)

x(t)

(c)

Fig. 1. Various model structures utilising variance nodes. Observations are denoted
by x, linear mappings by A and B, sources by s and r and variance nodes by u.

source distributions. These distributions are generated by Gaussian sources s

which have variance nodes us attached to each source.

From the point of view of other parts of the model which predict the value of
the variance node, the variance node is as any other Gaussian variable. This
means that it enables to translate a conventional model of mean into a model
of variance. A simple extension of ICA which utilises variance nodes in this
way is shown in Fig. 1(b). The sources can model concurrent changes in both
the observations x and the modelling errors of the observations through the
variance nodes ux. Such a structure would be useful for instance in a case where
a source characterises the rotation speed of a machine. It is plausible that the
rotation speed affects the mean of a set of variables and the modelling error
of another, possibly overlapping set of variables. Note that a model depicted
in Fig. 1(b) always has more coefficients to be estimated than there are data.
The estimation is nevertheless feasible with variational Bayesian learning.

Linear ICA tries to find a representation where the sources are as independent
as possible. In practice the estimated sources will be linearly uncorrelated but
some other dependences remain. In particular, the variances of the sources
have been found to often correlate in practice. This has motivated the devel-
opment of models such as subspace ICA (De Lathauwer et al., 1995; Cardoso,
1998; Hyvärinen and Hoyer, 2000; Hyvärinen et al., 2001), where each subset
of sources is assumed to have dependences while remaining independent of
other subsets. Often the dependence within a subset is modelled in terms of
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a common time-dependent latent variable governing the variance among the
sources in the subset.

In this paper we present experiments with a hierarchical extension of the linear
ICA model, shown in Fig. 1(c). The correlations and concurrent changes in
the variances us(t) of conventional sources s(t) are modelled by higher-order
variance sources r(t). As a special case, this model structure is able to perform
subspace ICA. In that case, the variance of each conventional source would
be modelled by only one of the variance sources, i.e. the mapping B would
have only one non-zero entry on each row. Moreover, usually each subspace
in subspace ICA has an equal dimension, i.e. each column of B has an equal
number of non-zero entries. We are not going to impose such restrictions. The
effects of variance sources can thus be overlapping.

Just as conventional sources of time-series data have temporal structure
(Hyvärinen et al., 2001), variance sources of such data can be expected to
change slowly, in fact, more slowly than the conventional sources. This is be-
cause the variance sources have similarity to the invariant features extracted
by adaptive subspace SOM (Kohonen et al., 1997) and other related models,
(e.g. Hyvärinen and Hoyer, 2000; Hyvärinen and Hurri, 2003). This is demon-
strated in the experiment with magnetoencephalographic data in Section 4.

3 Variational Bayesian learning

Variational Bayesian learning techniques are based on approximating the true
posterior probability density of the unknown variables of the model by a func-
tion with a restricted form. Currently the most common technique is ensemble
learning which uses Kullback-Leibler divergence to measure the misfit between
the approximation and the true posterior. It has been applied to ICA and a
wide variety of other models (see e.g. Hinton and van Camp, 1993; Barber
and Bishop, 1998; Attias, 1999; Miskin and MacKay, 2000; Ghahramani and
Hinton, 2000; Choudrey et al., 2000; Chan et al., 2001; Valpola and Karhunen,
2002). An example of applying a variational technique other than ensemble
learning to linear ICA has been given by Girolami (2001).

3.1 Cost function

In ensemble learning, the posterior approximation q(θ) of the unknown vari-
ables θ is required to have a suitably factorial form

q(θ) =
∏

i

qi(θi) , (3)
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where θi denotes a subset of the unknown variables. The misfit between
the true posterior p(θ | X) and its approximation q(θ) is measured by the
Kullback-Leibler divergence. An additional term − log p(X), the negative log-
arithmic probability of the observations X, is included to avoid calculation of
the model evidence term p(X) =

∫

p(X,θ)dθ. The cost function then has the
form (e.g. Barber and Bishop, 1998; Lappalainen and Miskin, 2000; Valpola
and Karhunen, 2002)

C = D(q(θ) ‖ p(θ|X))− log p(X) =

〈

log
q(θ)

p(X,θ)

〉

, (4)

where 〈·〉 denotes expectation over the distribution q(θ). This shows that
ensemble learning can be applied if the joint density p(X,θ) of all the variables
of the model and the posterior approximation q(θ) of the unknown variables
can be defined.

Note that since D(q ‖ p) ≥ 0, the cost function provides a lower bound
p(X) ≥ exp(−C) for the model evidence p(X). This has two important im-
plications. First, the probability density p(X) of the observations is usually
finite resulting in a well-behaved cost function. This implies that the model
can have any amount of unknown variances and means, but these quantities
are marginalised over and the cost function is well behaved if the probability
density of the data is finite. Infinite density can result for instance if there are
several observations with exactly the same values. This has a probability of
zero if the observations are assumed to have continuous values and nonzero
variances. In practice numerical rounding or conventions such as replacement
of missing values by zeros may have produced identical entries in the observa-
tions. This may result in ill-behaved cost function whose value can be infinite.
Such cases can normally be avoided by adding small amounts of noise to the
data and they are not caused by the underlying model.

The second implication is that cost function can be reliably used for optimising
the model structure (see e.g. Valpola et al., 2003b). Since p(X) is a short-hand
notation for the probability of the data given a particular model structure, i.e.
the likelihood of the model structure, the cost function relates to the likelihood
of the model structure.

3.2 Learning

During learning, the factors qi(θi) are typically updated one at a time while
keeping others fixed. The main reason is that it is often possible to find an
analytical solution for qi(θi) which minimises (4) if qj(θj) with j 6= i are
constant. For each update of the posterior approximation qi(θi), the variables
θi require the prior distribution p(θi | parents) given by their parents and
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the likelihood p(children | θi, co-parents) obtained from their children 6 . The
relevant parts of the cost function (4) to be minimised are

C(qi(θi)) =

〈

ln
qi(θi)

p(θi | parents)p(children | θi, co-parents)

〉

q

+ const , (5)

where the expectation is taken over the posterior approximation q(θ) of all
unknown variables.

In ensemble learning, conjugate priors are commonly used because they make
it very easy to find the optimal qi(θi) which minimises (5). As an example,
consider linear mappings with Gaussian variables. First, note that in (5), the
negative logarithm of the prior and likelihood is needed. We shall call this
quantity the potential. Gaussian prior has a quadratic potential. The likeli-
hood arising from a linear mapping to Gaussian variables also has a quadratic
potential. The sum of the potential is quadratic and the optimal posterior
approximation can be shown to be the Gaussian distribution whose potential
has the same second and first order terms. The minimisation thus boils down
to adding the coefficients of second and first order terms of the prior and
likelihood.

Minimising each of the factors qi(θi) separately is mathematically convenient,
but it is often useful to consider alternatives which modify a large number
of parameters simultaneously. We apply the optimisation method proposed
by Honkela et al. (2003), which speeds up convergence significantly. The idea
is to perform line searches in the directions obtained by combining changes
resulting from separate minimisation. It is also often useful to design heuristics
for proposing changes in the model structure.

3.3 Application to variance nodes

Here we use the method proposed by Valpola et al. (2001). For the sake of
efficiency, the posterior approximation has a maximally factorial form, i.e.
each unknown variable is approximated to be independent a posteriori of the
rest of the variables:

q(θ) =
∏

i

qi(θi) . (6)

As we noted earlier, using conjugate priors has the benefit that the separate
minimisations can be solved analytically. For inverse variance parameters the

6 In a graphical model representation, each variable is conditionally dependent on
its parents (see e.g. Jordan, 1999). In Fig. 1(a), for instance, the parent of source
si(t) is the variance node usi(t), the children are the observations x(t) and co-parents
are other sources sj(t) as well as some other parameters of x(t).

7



PSfrag replacements

A

B
ux(t)
ur(t)
us(t)
r(t)
s(t)
x(t)

σ2
u

µu µξ

u ξ

Fig. 2. Variance node u controls the variance of another Gaussian node ξ.

conjugate prior would be the Gamma distribution. However, it would be dif-
ficult to build a hierarchical model with Gamma-distributed variables and
therefore we chose to have a Gaussian prior and parametrised the variance on
logarithmic scale in Section 2.

Consider the likelihood potential which the variance node u receives from
the Gaussian variable ξ whose variance it models. Due to the logarithmic
scale, it is relatively well approximated by a quadratic function. This makes
it feasible to approximate the posterior probability q(u) of the variance node
u by a Gaussian distribution: q(u) ∼ N(mu, vu). It also turns out that the
cost function has an analytic form. The drawback is that the optimal q(u)
which minimises (5) can not be expressed analytically. However, numerical
minimisation is fairly straightforward as shown in Appendix A.

Let us now have a closer look at the terms of the cost function (5) which corre-
spond to q(u). First, assume the following prior model (depicted in Figure 2)
and posterior approximation:

p(ξ | µξ, u) = N(ξ;µξ, exp(−u)) (7)

p(u | µu, σ
2
u) = N(u;µu, σ

2
u) (8)

q(ξ) = N(ξ;mξ, vξ) (9)

q(u) = N(u;mu, vu) . (10)

In other words, the prior means and variances (possibly provided by other
parts of the model) are denoted by µ and σ2 and the posterior means and
variances are denoted by m and v, respectively.

The term 〈log q(u)〉 in (5) equals

〈log q(u)〉 = −
1

2
−

1

2
log 2πvu (11)

which is the negative entropy of a Gaussian variable with mean mu and vari-

8



ance vu. The term 〈− log p(u | parents)〉 equals

〈

− log p(u | µu, σ
2
u)
〉

=
1

2

〈

log 2πσu + (u− µu)
2/σ2

u

〉

=

1

2

[

log 2π + 〈log σu〉+ (m2
u + vu − 2mu 〈µu〉+

〈

µ2
u

〉

)
〈

1/σ2
u

〉]

(12)

since 〈u〉 = m, 〈u2〉 = m2
u+vu and according to (6), u is independent of µu and

σ2
u and we further assume that µu and σ2

u are independent in q(θ). A similar
derivation for the term 〈− log p(children | u)〉 yields

〈− log p(ξ | µξ, u)〉 =
1

2

〈

log 2π exp(−u) + (ξ − µξ)
2/ exp(−u)

〉

=

1

2

[

−mu + log 2π + (m2
ξ + vξ − 2mξ 〈µξ〉+

〈

µ2
ξ

〉

) 〈exp(u)〉
]

. (13)

It can be shown by simple integration that 〈exp(u)〉 = exp(mu + vu/2).

Collecting the terms related to mu and vu from (11)–(13), we obtain

C(mu, vu) = Mmu + V (m2
u + vu) +E exp(mu + vu/2)−

1

2
ln vu +const , (14)

where the coefficients M , V and E are constants with respect to mu and vu.
A numerical optimisation method for this function is derived in Appendix A.

Note that in the derivations of (12) and (13), the mean µ was assumed to
be independent of the variance σ2. Consider for instance a model with the
structure depicted in Fig. 1(b). The sources s(t) model both the means and
variances of the observations x(t). However, since the variance is modelled
through the variance nodes ux(t) which are approximated to be a posteriori
independent of s(t) according to (6), the assumption is fulfilled. If s(t) would
model both the means and variances of x(t) without the variance nodes, the
terms resulting from 〈− log p(xi(t) | s(t))〉 would be far more complicated.

3.4 Computational complexity

Due to the approximation (6), the computational complexity of updating the
posterior approximation qi(θi) of variable θi is proportional to the number of
connections it has with other variables. With model structures discussed in
Section 2, most connections in the model arise in the linear mappings between
Gaussian variables. The number of connections is typically far greater than
the number of variance node variables. Hence the computational complexity
of minimising the functions (14) is usually negligible compared to other com-
putations. We shall therefore concentrate here on the computations related to
linear mappings between Gaussian variables.

9



In (13), we have already computed the significant term which results from a
Gaussian variable. For the moment, assume ξ to be any Gaussian variable in
the model whose mean is modelled by a set of other Gaussian variables si and
ai (a subset of aij, the entries of A) through a linear model

µξ =
∑

i

aisi . (15)

We assumed a sum of products of two terms, but in general the analysis
extends to an arbitrary combination of sums and products (Valpola et al.,
2001). Note that for the moment, ξ can also be a variance node.

In (13), the following quantities are needed: 〈µξ〉 and
〈

µ2
ξ

〉

. Due to (6), the
former quantity is simply

〈µξ〉 =
∑

i

〈ai〉 〈si〉 (16)

where 〈ai〉 and 〈si〉 are readily obtained from the mean parameters of q(ai)
and q(si). The latter quantity can be obtained by defining Var {·} to be the
variance over the probability q(θ) and noting that 〈x2〉 = 〈x〉2 +Var {x}:

〈

µ2
ξ

〉

= 〈µξ〉
2 +Var {µξ} = 〈µξ〉

2 +
∑

i

Var {aisi} (17)

Var {aisi} =
〈

a2
i

〉 〈

s2
i

〉

− 〈ai〉
2 〈si〉

2

= 〈ai〉
2 Var {si}+Var {ai} 〈si〉

2 +Var {ai}Var {si} (18)

where 〈ai〉, Var {ai}, 〈si〉 and Var {si} are obtained from the mean and variance
of q(ai) and q(si).

We can now compare the required computations to the case where all quanti-
ties would have point estimates. For each multiplication in (15) we have one
multiplication from (16) and four multiplications from (18) (〈si〉

2and Var {si}
can be added before multiplying with Var {ai}). For each addition in (15) we
need four additions (two from (18) and two from the summations over i). In
general the forward computations thus have the same order of computational
complexity as methods using point estimates (based on posterior densities),
and require four to five times more computation.

Typical methods for optimising probability density would have backward com-
putations for gradients which in our case are related to the computation of the
likelihoods. The computational complexities are comparable to forward com-
putations. However, the likelihood provides richer information which allows
to optimise a variable in one step assuming other variables fixed. In methods
with point estimates this would correspond to using second order informa-
tion (diagonal elements of the Hessian matrix) to optimise each parameter
separately.

10



We can conclude that the computational complexity of the proposed method,
which is sensitive to posterior probability mass, is of the same order as it would
be with methods based on point estimates, which are sensitive to probability
density. There are alternative methods such as sampling techniques which are
sensitive to probability mass and could be applied to the present problem,
joint estimation of means and variances, but they are computationally more
complex.

3.5 Consequenses of the posterior approximation

In ensemble learning, the trade-off between efficiency and accuracy can be con-
trolled by the restrictions imposed on the functional form of the approximation
of the posterior probability. In general, using more factorised approximations
decreases the computational load.

As we have seen, it is also possible to limit the functional form of the factors.
In this work we have restricted the approximation of the posterior density of
the variance nodes to be Gaussian. In fact, all posterior densities we use here
are Gaussian, but for the rest of the variables, this is the minimum of the cost
function and not an imposed restriction.

The Gaussian approximation of the posterior probability of variance nodes
is mostly very accurate. The worst case occurs when the variance node u
has only very vague prior information about the variance of its corresponding
Gaussian node ξ. Then the posterior is very wide (with variance 2) and furthest
away from Gaussian. Even then the Kullback-Leibler divergence between the
Gaussian approximation and the unrestricted approximation can be shown to
be no larger than ln Γ(1/2) + 1/2− 1/2 ln 2 ≈ 0.15. When the Gaussian prior
of the variance node is informative, the posterior will be closer to Gaussian
than in the worst case.

Complete factorisation is a strong approximation which can affect the quality
of the estimated solution. For instance Ilin and Valpola (2003) have shown that
it can compromise the quality of separation in ICA. This finding is relevant
since we are using similar types of latent variable models with linear mappings.
In practice this means that the proposed method may not be sufficient to find
independent components. For this reason Valpola et al. (2003b) used a simple
linear ICA algorithm for post-processing the results of an ensemble learning
based algorithm for nonlinear ICA. It would also be possible to improve the
posterior approximation but this would increase the computational complexity
and have only little advantage over the simple post-processing approach.
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4 Experiments

In this section, we report experiments with artificial data and real magnetoen-
cephalographic (MEG) signals. The first experiment with artificial data uses
the model structure depicted in Fig. 1(b) and its main goal is to demonstrate
the feasibility and accuracy of joint estimation of means and variances.

In the second experiment with MEG signals, the model structure shown in
Fig. 1(c) is used. The goal of this experiment is to give an example of variance
sources found in real data and to motivate the claim that these type of sources
can act as invariant features.

The experiments were realised using the library of building blocks proposed
by Valpola et al. (2001). The code for running the simulations can be obtained
at http://www.cis.hut.fi/projects/bayes/.

4.1 Learning scheme

The learning scheme is designed to minimise the cost function (4). The basic
operation during learning is an iteration where all the terms qi(θi) of q(θ) are
updated one at a time by minimising (5). In addition, several other operations
are performed:

• addition of weights;
• pruning of weights; and
• line search.

For line searches, we used the method proposed by Honkela et al. (2003).
The idea is to monitor the individual updates during one iteration and then
perform a line search simultaneously for all qi(θi). We applied the line search
after every tenth iteration.

The addition and pruning operations aim at optimising the model structure.
The cost function (4) relates to the model evidence p(X | model) which can
be used to find the most likely model structure.

In general, addition takes place randomly and pruning is based on estimat-
ing whether the cost function can be decreased by removing a weight. The
motivation for this is that ensemble learning can effectively prune out parts
of the model which are not needed. The weights of the linear mappings can
for instance approach zero. The cost function can usually be decreased by re-
moving such weights. If all outgoing weights of a source have been removed,
the source becomes useless and can be removed from the model. Ensemble
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learning cannot, however, actively make room for a part of the model which
may be added in the future. It usually takes some time for the rest of the
model to accommodate to additions.

During learning, it is necessary to initialise some variables and keep them fixed
for a while until other parts of the model have accommodated appropriately.
We use evidence nodes, as we call them. They are attached to a variable θi,
whose value we want to set, and provide an extra term for the likelihood
p(children | θi). When qi(θi) is updated, θi will be close to the value set by
evidence node if the likelihood term has a narrow peak but θi can accommodate
to other parts of the model if the likelihood term is wide. After each iteration,
the extra term for the likelihood is decayed a little on the logarithmic scale, and
the evidence node is removed when the extra term vanishes. The persistance
of the initialisation can be controlled by the life-span of the evidence node.

4.2 Artificial data

In order to test the ability of the proposed method to jointly estimate the
means and variances, we performed experiments with the model structure
presented in Fig. 1(b). We tried to keep the experiment as simple as possible
and generated a small data set which matches the assumed model. The model
is summarised by the following set of equation:

x(t) = As(t) + nx(t) (19)

nxi(t) ∼ N(0, exp−uxi(t)) (20)

ux(t) = Bs(t) + nu(t) (21)

nui(t) ∼ N(µuxi, σ
2
uxi) (22)

si(t) ∼ N(0, exp−usi(t)) (23)

usi(t) ∼ N(µusi, σ
2
usi) . (24)

The observations x(t) are generated by a linear mapping A from source vec-
tors s(t). The observations are corrupted by additive Gaussian noise whose
log-variance is obtained by a linear mapping B from the source vectors. Ac-
cording to the model, the log-variance of sources is modulated by the Gaussian
variables usi(t).

In order to be able to better visualise the results, the log-variances of the
sources were actually taken to be sinusoids with different frequencies. There
were only three sources: only one of them affected both the means and vari-
ances of the observations while the two other were specialised to mean or
variance. The data set consisting of 1000 observations vectors, whose dimen-
sion was ten, is shown in Fig. 3.
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The learning proceeded in phases. First, only the variance nodes uxi(t) were
connected to the observations. The model was iterated 10 times to find reason-
able initial values for the variance nodes, depicted in Fig. 4. In order to obtain
reasonable initial values for the sources s(t), we normalised each time series
xi(t) and uxi(t) to unit variance, and extracted a three dimensional subspace.
It was then rotated using the FastICA algorithm (FastICA, 1998; Hyvärinen
et al., 2001) to obtain the initial values presented in Fig. 5. The initialisation
was done with evidence nodes connected to the sources. The evidence nodes
decayed in 10 iterations.

Learning was then continued until a total of 1000 were completed. The weights
were pruned every 100 iterations startig from 500 iterations and addition of
weights was tried every 100 iterations starting from 550 iterations. The prun-
ing was able to find a nearly correct structure of the model: one source was
connected to all observations and variance nodes of the observations while
the two other sources had lost all but four weights to either observations or
variance nodes. None of the additions of the weights were accepted.

The final estimated sources together with the true underlying sources are
shown in Fig. 6. The signal-to-noise ratio of the estimated sources were 22.4
dB for the source which was connected to both x(t) and ux(t), 24.3 db for the
source connected to x(t) and 9.5 dB for the source connected to ux(t). This
reflects the fact that more samples are needed to obtain an accurate estimate
of variance than mean.

Initially the corresponding SNRs were 9.6 dB, 10.1 dB and -2.9 dB. The drastic
improvement in the signal-to-noise ratios verifies that the model has been able
to factor out the contributions of the sources to the means and variances of
the observations. The proposed method is able to estimate the model even
when the number of unknown variables is more than 1.6 times the number of
observations.
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Fig. 6. The estimated posterior means for the three sources s(t) at the end of the
learning and the true underlying sources comparison (the corresponding true source
is above each estimated source).
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Fig. 7. MEG recordings (12 out of 122 time series).

4.3 Biomedical data

In these experiments, we used part of the MEG data set used by Vigário et al.
(2000). The data consists of signals originating from brain activity. The signals
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Fig. 8. The initialisation for the posterior means of the variance sources r(t).

are contaminated by external artefacts such as a digital watch, heart beat as
well as eye movements and blinks. We used 2,500 samples of the original data
set. The most prominent feature in this area is the biting artefact where muscle
activity contaminates many of the channels starting after 1,600 samples as can
be seen in Fig. 7.

According to the model used for this experiment, the observations are gener-
ated by conventional source vectors s(t) mapped linearly to the observation
vectors x(t) which are corrupted by additive Gaussian noise n(t). For each
source si(t) there is a variance node usi(t) which represents the negative loga-
rithm of the variance. The values of the variance nodes us(t) are further mod-
elled by higher-level variance sources r(t) which map linearly to the variance
nodes. Variance sources, too, have variance nodes ur(t) attached to them.

x(t) = As(t) + n(t) (25)

si(t) ∼ N(si(t− 1), exp−usi(t)) (26)

us(t) = Br(t) + m(t) (27)

ri(t) ∼ N(ri(t− 1), exp−uri(t)) (28)

The additive Gaussian noise terms n(t) and m(t) are allowed to have non-zero
bias. The model structure is shown in Fig. 1(c). Note that it makes sense to
have two layers although the model is linear and all variables are Gaussian
since the variance nodes us translate the higher-order source model into a
prediction of variance. The variance sources are also responsible for generating
super-Gaussian distributions for s(t) and r(t).

Both the sources and variance sources have a dynamic model. The predicted
mean is taken to be the value at the previous time instant. This is reasonable
since the MEG signals have strong temporal dependences.
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Fig. 9. Sources s(t) estimated from the MEG data (nine out of 50 sources).

Initially the model had 50 sources s(t) which were initialised using the indepen-
dent components estimated from the observations by the FastICA algorithm
(FastICA, 1998; Hyvärinen et al., 2001). The second layer with five variance
sources r(t) was added after the first 20 iterations. It was initialised by taking
the posterior means of the variance nodes us(t) of the sources, normalising
the time series to unit variance, low-pass filtering and then computing the
initialisations by principal component analysis. The initialisations of the vari-
ance sources r(t) are shown in Fig. 8. The evidence nodes for the initialisation
of the sources decayed in 10 iterations while those for the variance sources
decayed in 200 iterations.

Learning was continued until a total of 2,000 iterations had been accomplished.
Weights were pruned every 200 iterations starting after the first 500 iterations
and added every 200 iterations starting after the first 600 iterations. None of
the sources lost all their weights during the structural optimisation.

Some of the sources and their variance nodes are depicted in Figs. 9 and 10,
respectively. The conventional sources are comparable to those reported in the
literature for this data set (Vigário et al., 2000).

The first variance source in Fig. 11 clearly models the biting artefact. This
variance source integrates information from several conventional sources and
its activity varies very little over time. This is partly due to the dynamics but
experiments with a static model confirm that the variance source acts as an
invariant feature which reliably detects the biting artefact.
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Fig. 10. Variance nodes us(t) corresponding to the sources shown in Fig. 9.
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Fig. 11. Variance sources r(t) which model the regularities found in the variance
nodes shown in Fig. 10.
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Fig. 12. Variance nodes us(t) corresponding to the sources shown in Fig. 9 in a
control experiment which lacked the second layer with variance sources r(t).

The second variance source appears to represent increased activity during the
onset of the biting. The third variance node seems to be related to the amount
of rhythmic activity on the sources. Two such sources can be found in Fig. 9
(sixth and seventh source). Interestingly, we also found a source where the
amount of rhythmic activity was negatively correlated with the ones shown
in the figure. The two remaining variance sources appear to have features
describing both the cardiac signal and the digital watch. These observations
are supported by the estimated weights connecting the variance sources r(t)
to the variance nodes us(t).

In order to demonstrate the merits of joint estimation of means and variances,
we performed an experiment which was otherwise similar but lacked the sec-
ond layer with variance sources. Figure 12 depicts the estimated variance
nodes us(t) in this case. Compared to Fig. 10 the results are clearly noisier.
In addition, one can see that the two signals corresponding to rhythmic ac-
tivity have been estimated to have no significant variations in their variance.
The differences are due to the variance sources r(t) which can integrate the
variance information temporally and from several source signals and feed the
information back to the variance nodes us(t). This information is then used in
estimating the sources s(t). For instance the estimates of the sources related
to the biting artefact have less activity prior to the onset of the biting.
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5 Discussion

In statistics, a distribution characterised by changing variance is called het-
eroskedastic. Heteroskedasticity is known to be commonplace and there are
various techniques for modelling the variance (see e.g. Bollerslev, 1986; Ghy-
sels et al., 1996; Kim et al., 1998). However, previously mean has either been
estimated separately from variance in order to avoid problems related to in-
finite probability densities or computationally expensive sampling techniques
have been used. We have shown that it is possible to estimate both means and
variances together efficiently. This has the benefit that the estimation of the
mean can use the information about the variance and vice versa.

We reported experiments with two simple model structures which utilise vari-
ance nodes but we have only touched the tip of an iceberg. Since the variance
nodes allow to translate models of mean into models of variance, we can go
through a large number of models discussed in the literature and consider
whether they are useful for modelling variance.

The goal of the experiments reported here was to demonstrate the basic prin-
ciples of the method, but the learning scheme, for instance, can still be im-
proved. It is likely to be useful to design model-specific heuristics for proposing
structural changes and initialisations of sources.

The cost function used in ensemble learning has been crucial in solving the
problem discussed in this paper. It correlates well with the quality of the
model and does not suffer from overfitting or overlearning (see e.g. Valpola
and Karhunen, 2002; Valpola et al., 2003b). It readily allows model comparison
and measures how well various heuristics can improve learning.

References

Attias, H., 1999. Independent factor analysis. Neural Computation 11 (4),
803–851.

Barber, D., Bishop, C., 1998. Ensemble learning in Bayesian neural networks.
In: Bishop, C. (Ed.), Neural Networks and Machine Learning. Springer,
Berlin, pp. 215–237.

Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity.
Journal of Econometrics 31, 307–327.

Cardoso, J.-F., 1998. Multidimensional independent component analysis.
In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP’98). Seattle, Washington, USA, May 12–15, pp. 1941–1944.

Chan, K., Lee, T.-W., Sejnowski, T., 2001. Variational learning of clusters of
undercomplete nonsymmetric independent components. In: Proc. Int. Conf.

21



on Independent Component Analysis and Signal Separation (ICA2001). San
Diego, USA, pp. 492–497.

Choudrey, R., Penny, W., Roberts, S., 2000. An ensemble learning approach
to independent component analysis. In: Proc. of the IEEE Workshop on
Neural Networks for Signal Processing, Sydney, Australia, December 2000.
IEEE Press, pp. 435–444.

De Lathauwer, L., De Moor, B., Vandewalle, J., 1995. Fetal electrocardio-
gram extraction by source subspace separation. In: Proc. IEEE Sig. Proc.
/ ATHOS Workshop on Higher-Order Statistics. pp. 134–138.

FastICA, 1998. The FastICA MATLAB package. Available at
http://www.cis.hut.fi/projects/ica/fastica/.

Ghahramani, Z., Hinton, G. E., 2000. Variational learning for switching state-
space models. Neural Computation 12 (4), 963–996.

Ghysels, E., Harvey, A. C., Renault, E., 1996. Stochastic volatility. In: Rao,
C. R., Maddala, G. S. (Eds.), Statistical Methods in Finance. North-
Holland, Amsterdam, pp. 119–191.

Girolami, M., 2001. Variational method for learning sparse and overcomplete
representations. Neural Computation 13 (11), 2517–2532.

Hinton, G. E., van Camp, D., 1993. Keeping neural networks simple by mini-
mizing the description length of the weights. In: Proc. of the 6th Ann. ACM
Conf. on Computational Learning Theory. Santa Cruz, CA, USA, pp. 5–13.

Honkela, A., Valpola, H., Karhunen, J., 2003. Accelerating cyclic update al-
gorithms for parameter estimation by pattern searches. Neural Processing
Letters 17 (2), 191–203.

Hyvärinen, A., Hoyer, P., 2000. Emergence of phase and shift invariant features
by decomposition of natural images into independent feature subspaces.
Neural Computation 12 (7), 1705–1720.

Hyvärinen, A., Karhunen, J., Oja, E., 2001. Independent Component Analysis.
J. Wiley.

Hyvärinen, A., Hurri, J., 2003. Blind separation of sources that have spa-
tiotemporal dependencies. Signal Processing Submitted.

Ilin, A., Valpola, H., 2003. On the effect of the form of the posterior approx-
imation in variational learning of ICA models. In: Proc. of the 4th Int.
Symp. on Independent Component Analysis and Blind Signal Separation
(ICA2003). Nara, Japan, pp. 915–920.

Jordan, M. (Ed.), 1999. Learning in Graphical Models. The MIT Press, Cam-
bridge, MA, USA.

Kim, S., Shepard, N., Chib, S., July 1998. Stochastic volatility: likelihood
inference and comparison with ARCH models. The Review of Economic
Studies 65 (3), 361–393.

Kohonen, T., Kaski, S., Lappalainen, H., 1997. Self-organized formation of var-
ious invariant-feature filters in the Adaptive-Subspace SOM. Neural Com-
putation 9 (6), 1321–1344.

Lappalainen, H., Miskin, J., 2000. Ensemble learning. In: Girolami, M. (Ed.),
Advances in Independent Component Analysis. Springer-Verlag, Berlin, pp.

22



75–92.
Miskin, J., MacKay, D. J. C., 2000. Ensemble learning for blind image sepa-

ration and deconvolution. In: Girolami, M. (Ed.), Advances in Independent
Component Analysis. Springer-Verlag, pp. 123–141.

Parra, L., Spence, C., Sajda, P., 2001. Higher-order statistical properties aris-
ing from the non-stationarity of natural signals. In: Leen, T., Dietterich, T.,
Tresp, V. (Eds.), Advances in Neural Information Processing Systems 13.
The MIT Press, Cambridge, MA, USA, pp. 786–792.

Valpola, H., Harva, M., Karhunen, J., 2003a. Hierarchical models of variance
sources. In: Proc. 4th Int. Symp. on Independent Component Analysis and
Blind Signal Separation (ICA2003). Nara, Japan, pp. 83–88.

Valpola, H., Karhunen, J., 2002. An unsupervised ensemble learning method
for nonlinear dynamic state-space models. Neural Computation 14 (11),
2647–2692.
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pendent component approach to the analysis of EEG and MEG recordings.
IEEE transactions on biomedical engineering 47 (5), 589–593.

A Minimisation for variance nodes

Here we show how to minimise a function

C(m, v) = Mm+ V [m2 + v] + E exp(m+ v/2)−
1

2
ln v .

A unique solution exists when V > 0 and E > 0. This problem occurs when
a Gaussian posterior with mean m and variance v is fitted to a probabil-
ity distribution whose logarithm has both a quadratic and exponential part
resulting from Gaussian prior and log-Gamma likelihoods, respectively, and
Kullback-Leibler divergence is used as the measure of the misfit.

The minimisation is iterative. At each iteration, one Newton-iteration step for
m and one fixed-point iteration step for v is performed. The steps are taken
until they become smaller than a predefined threshold.
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A.1 Newton iteration for m

Newton iteration for m is obtained by

mi+1 = mi −
∂C(mi, vi)/∂mi

∂2C(mi, vi)/∂m2
i

=

mi −
M + 2V mi + E exp(mi + vi/2)

2V + E exp(mi + vi/2)
(A.1)

Newton iteration converges in one step if the second derivative remains con-
stant. The step is too short if the second derivative decreases and too long
if the second derivative increases. For stability, it is better to take too short
than too long steps.

In this case, the second derivative always decreases if m decreases and vice
versa. For stability it is therefore useful to restrict the increases in m because
the increases are consistently over-estimated. We have found that restricting
the increase to be at most four yields robust convergence.

A.2 Fixed-point iteration for v

A simple fixed-point iteration rule is obtained for v by solving the zero of the
derivative:

0 =
∂C(m, v)

∂v
= V +

E

2
exp(m+ v/2)−

1

2v
⇔

v =
1

2V + E exp(m+ v/2)

def
= g(v) (A.2)

vi+1 = g(vi) (A.3)

In general, fixed-point iterations are stable around the solution vopt if
|g′(vopt)| < 1 and converge the best when the derivative g′(vopt) is near zero.
In our case g′(vi) is always negative and can be less than −1, i.e. the solution
can be an unstable fixed-point. This can be remedied by taking a weighted
average of (A.3) and a trivial iteration vi+1 = vi:

vi+1 =
ξ(vi)vi + g(vi)

ξ(vi) + 1

def
= f(vi) (A.4)

The weight ξ should be such that the derivative of f is close to zero at the
optimal solution vopt which is achieved exactly if ξ(vopt) = −g

′(vopt).
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It holds

g′(v) = −
E/2 exp(m+ v/2)

[2V + E exp(m+ v/2)]2
=

g2(v)

[

V −
1

2g(v)

]

= g(v)
[

V g(v)−
1

2

]

⇒

g′(vopt) = vopt

[

V vopt −
1

2

]

⇒ ξ(vopt) = vopt

[

1

2
− V vopt

]

. (A.5)

The last steps follow from the fact that vopt = g(vopt) and the requirement
that f ′(vopt) = 0. We can assume that v is close to vopt and use

ξ(v) = v
[

1

2
− V v

]

. (A.6)

Note that the iteration (A.3) can only yield estimates with 0 < vi+1 < 1/2V
which means that ξ(vi+1) > 0. Therefore the step defined by (A.4) is always
shorter than the step defined by (A.3).

Since we know that the solution lies between 0 and 1/2V , we can set v0 = 1/2V
if the current estimate is greater than 1/2V .

In order to improve stability, step sizes need to be restricted. Increases in v
are more problematic than decreases since the exp(m + v/2) term behaves
more nonlinearly when v increases. Again, we have found experimentally that
restricting the increase to be at most four yields robust convergence.

A.3 Summary of the iteration

(1) Set v0 ← min(v0, 1/2V ).
(2) Iterate

(a) Solve new m by (A.1) under the restriction that the maximum step
is 4

(b) Solve new v by (A.6) and (A.4) under the restriction that the maxi-
mum step is 4

until both steps are smaller than 10−4.
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