
Researcher’s guide to Bayes Blocks library

Markus Harva, Antti Honkela, Alexander Ilin,

Tapani Raiko, Harri Valpola and Tomas Östman

December 4, 2006

Contents

1 Introduction 3

2 Restrictions on the structure 3

3 Description of the nodes 3
3.1 Constant nodes . 4
3.2 Evidence nodes . 4
3.3 Computational nodes . 4

3.3.1 Prod . 4
3.3.2 Sum2 . 4
3.3.3 SumN . 4
3.3.4 Rectification . 4
3.3.5 DelayV . 4
3.3.6 Relay . 5
3.3.7 ProdV, Sum2V, SumNV, RectificationV 5

3.4 Variable nodes . 5
3.4.1 Gaussian . 5
3.4.2 RecfifiedGaussian . 5
3.4.3 MoG . 5
3.4.4 GaussNonlin . 6
3.4.5 GaussRect . 6
3.4.6 Discrete . 6
3.4.7 DiscreteDirichlet . 6
3.4.8 Dirichlet . 6
3.4.9 GaussianV, RectifiedGaussianV, MoGV, GaussNonlinV,

GaussRectV, DiscreteV and DiscreteDirichletV 6
3.4.10 DelayGaussV . 6

3.5 Special nodes for on-line learning 7
3.5.1 Memory nodes . 7
3.5.2 OLDelayS, OLDelayD . 7

3.6 Proxy node . 7

4 C++ library 7
4.1 Class Net . 8

4.1.1 Connecting the proxies . 8
4.1.2 Updates . 8
4.1.3 Decay hooks . 8
4.1.4 Evaluation of the cost function 8
4.1.5 Finding nodes and variables 8
4.1.6 Saving and loading . 9
4.1.7 Pruning . 9
4.1.8 Miscellaneous . 9

4.2 Class NodeFactory . 9
4.3 Class Node . 10

4.3.1 Creation . 10
4.3.2 Clamping and unclamping 10
4.3.3 Expectations . 10
4.3.4 Gradients . 11

1

4.3.5 Removing nodes . 11
4.3.6 Updates . 11
4.3.7 Miscellaneous . 12

4.4 On-line learning . 12
4.4.1 Time type . 12
4.4.2 Updates . 12
4.4.3 Controlling time type . 13
4.4.4 Decay . 13
4.4.5 Usual operation . 13

4.5 Data structures . 13
4.5.1 Class DSSet . 14
4.5.2 Class DV . 14
4.5.3 Class DVSet . 14
4.5.4 Class DD . 14
4.5.5 Class VDD . 14
4.5.6 Class DVH . 14
4.5.7 Class VDDH . 14
4.5.8 Class DFlags . 15

5 Python interface 15
5.1 class PyNet . 15

5.1.1 Sum trees . 15
5.1.2 Pruning . 15
5.1.3 Accessing nodes . 15
5.1.4 Advanced updates . 15
5.1.5 Miscellaneous . 16

5.2 Helpers.py . 16
5.2.1 Sum trees . 16
5.2.2 Pruning . 16
5.2.3 Adding a weighted connection 16
5.2.4 Loading data . 16
5.2.5 Accessing nodes . 17

5.3 Data types . 17

6 Examples 17

7 Technicalities 17
7.1 Delayed variable check using Proxy nodes 17
7.2 Persist . 17
7.3 Evidence node . 18
7.4 Memory node . 18
7.5 SWIG . 18

8 Error messages 19

2

1 Introduction

This package is supposed to be a flexible tool for building a wide variety of latent
variable models by combining simple building blocks. After the connections have
been defined, the computations are automatic. The theory is explained in [1].

At the moment, Gaussian, rectified Gaussian, and mixture-of-Gaussian vari-
ables, summation, addition, two types of nonlinearity and discrete variables
have been implemented.

For computational efficiency there are vectorised nodes in addition to scalar
nodes. There is a delay to support connections of different time instances of
vectorised nodes. There is also support for on-line learning.

2 Restrictions on the structure

In general, the network has to be a directed acyclic graph (DAG). The delay
nodes are an exception because the past values of any node can be the parents
of any other nodes. The violation is not real in the sense that if the vectors
were split into scalar nodes, the resulting network would be a DAG.

For computational efficiency each node assumes its inputs to be independent.
This means that a latent variable cannot propagate its value to another variable
(observed or latent) through more than one path. If there were multiple paths,
the values through these paths would be dependent. This restriction can be
overcome by adding intermediary variable nodes.

Self-delays for vectorised latent variable nodes are forbidden for computational
efficiency. There are special nodes with built-in self-delays for overcoming this
restriction.

3 Description of the nodes

Currently all nodes except Discrete and DiscreteDirichlet have continuous val-
ues.

The following nodes are in use:

• Constant, ConstantV,

• Evidence, EvidenceV,

• Prod, ProdV, Sum2, Sum2V, SumN, SumNV, Rectification, Rectifica-
tionV, DelayV, Relay(computational nodes)

• Gaussian, GaussianV, DelayGaussV, RectifiedGaussian, RectifiedGaus-
sianV, MoG, MoGV, GaussNonlin, GaussNonlinV, GaussRect, Gauss-
RectV, Discrete and DiscreteV, DiscreteDirichlet, DiscreteDirichletV, Di-
richlet(variable nodes)

• Memory, OLDelayS, OLDelayD (for on-line learning)

3

• Proxy (building temporal structures that would seemingly violate the
DAG property)

3.1 Constant nodes

Constant has no parents. The output value is a scalar. Posterior variance is
zero. The value is a double given for the constructor. ConstantV is similar but
the value is a vector.

3.2 Evidence nodes

Evidence has one parent and no children. It is meant for providing fading clamps
for initialising the parameters of the model. The node must be clamped with
two values, one for mean and one for “variance” of the observation. The clamp
is decayed by increasing the variance parameter after subsequent iterations.
EvidenceV is similar but the value is a vector.

3.3 Computational nodes

3.3.1 Prod

Prod has two scalar parents which are given for the constructor. The output
value is scalar and is the product of the parents.

3.3.2 Sum2

Sum2 has two scalar parents which are given for the constructor. The output
value is scalar and is the sum of the parents.

3.3.3 SumN

SumN is like Sum2 but has N scalar parents which are given one by one by
calling the AddParent method of the node.

3.3.4 Rectification

This node is used in conjunction with GaussRect, which is its only parent given
in the constructor. See section 3.4.5.

3.3.5 DelayV

DelayV delays a vector. The first value is a special case and is given separately
as the first parent of the node. It is a scalar value. The other parent is the
vector to be delayed. To give it as a parameter to the constructor, you will
probably want to use a Proxy node to create a structure that would seemingly
create a cycle in the network.

4

3.3.6 Relay

Relay passes the value as it is. The purpose of this node is to make the role of
a parent identifiable when a node is used for more than one purpose.

Example: node X has mean Y and variance Y. Node Y is now used for two
purposes and computation of gradient does not work because the role of Y
cannot be identified. Y calls X twice and X should first assume the mean is
calling and second assume the variance is calling. Instead X assumes mean is
calling both times. This can be fixed by adding a relay node Z = Y and then
telling X its mean is Y and variance Z. This could be automated later on: a
relay is needed if a node has identical parents for different roles.

Currently Relay can be used for scalar nodes only, but extension to vectors
would be straight-forward. To be added as soon as needed.

3.3.7 ProdV, Sum2V, SumNV, RectificationV

These nodes are like their counterparts without V but the output value is a
vector. Parents can be either scalars or vectors.

3.4 Variable nodes

Any variable node can be latent (hidden, unknown). Some variable nodes can
be observed in which case the observations can be set by clamping.1 When
direct clamping is not supported (it doesn’t make sense in some cases) similar
effect can be achieved using evidence nodes.

3.4.1 Gaussian

Gaussian is a variable with a Gaussian prior distribution. The mean and vari-
ance parents are given for the constructor (mean is first, variance second). Vari-
ance is parametrised by Var = exp(−v), where v is the value of the second
parent. Output is a scalar.

3.4.2 RecfifiedGaussian

RectifiedGaussian is a Gaussian with zero probability mass on the negative axis
and with the positive axis scaled appropriately.

3.4.3 MoG

MoG is a variable consisting of a mixture of K Gaussians. It has 2K+1 parents:
one discrete variable, given in the constructor and K mean and variance parents.
The component means and variances are given to the node after construction
using the AddComponent method.

1The term clamping is used in biological neurosciences: clamping a potential of a cell
means keeping the potential fixed by injecting a suitable current.

5

3.4.4 GaussNonlin

GaussNonlin is like Gaussian, but the output is a nonlinear function exp(−s2)
of the variables internal value s. Warning: if the prior mean is zero, there is a
local minimum at the internal mean zero.

3.4.5 GaussRect

GaussRect is like Gaussian but it can be followed by a rectification nonlinearity
f(s) = max(s, 0). The node should have at least one children, the Rectification
node, which is followed by the children that receive the values of the Gaussian
variable rectified. GaussRect can also have children that receive the values of
the Gaussian variable without rectification. In that case the GaussRect node
is directly used as the parent of the children. This is especially useful when
building dynamical models.

3.4.6 Discrete

Discrete is a variable with discrete distribution over small integers. Its prior is
given by soft-max distribution of Gaussians ci: p(d = i) = exp(ci)/

∑
j exp(cj).

3.4.7 DiscreteDirichlet

DiscreteDirichlet is a discrete variable like Discrete, but with Dirichlet prior for
its weights. It has the Dirichlet variable as its only parent. When possible, this
node should be favoured against the Discrete, since the posterior approximations
are more accurate.

3.4.8 Dirichlet

Dirichlet variable is used as the parent for DiscreteDirichlet. It takes a Con-
stantV as its parent which specifies the prior observation counts.

3.4.9 GaussianV, RectifiedGaussianV, MoGV, GaussNonlinV, Gauss-
RectV, DiscreteV and DiscreteDirichletV

These nodes are like their counterparts without V but their values are vectors.
All parents can be scalars or vectors.

3.4.10 DelayGaussV

DelayGaussV is like GaussianV but the node includes a self-delay. The parents
are (m, v, a, m0, v0). If the value of the node is s(t), the mean is m(t)+a(t)s(t−
1) and variance is exp(−v(t)) for t > 1. The prior for the first value (t = 1) is
given by m0 and v0.

6

3.5 Special nodes for on-line learning

3.5.1 Memory nodes

In on-line learning, some of the nodes are time-dependent while others are time-
independent. Memory node acts as an adapter between these two. It stores the
gradients from time-dependent nodes.

Note that time-dependent and time-independent nodes must not be connec-
ted together without the memory node between them: the time-independent
node will be silently converted into a time-dependent node and the conversion
propagates to neighbours of the newly converted node.

3.5.2 OLDelayS, OLDelayD

The delay nodes are used to implement temporal models with on-line learning.
They act as normal unit-delays, OLDelayS for scalars and OLDelayD for discrete
values.

The delay nodes have two parents. The first tells the “initial” value of the
delayed value and it is only used when the node is initially constructed. The
second parent is the normal delayed value. The two parents of the delay node
may also both be the same node. You will probably want to use a Proxy node
as the second parent of a delay node.

3.6 Proxy node

Proxy is a special node that is allowed to seemingly violate the DAG structure
of the network. Naturally these violations must not be real, but rather have a
delay node somewhere in the loop. The proxy works as a placeholder parent for
other (mainly delay) nodes and only connects to the true parent after the whole
structure has been created.

When a Proxy is created, in addition to its own label, it only takes the label of
its future parent as a parameter.

Before a proxy is connected to the true parent it blindly accepts all requests
for different values but keeps a record of what it has promised. Once the proxy
connects to the parent, usually as a result of a call to ConnectProxies in the
Net, it checks whether the true parent can provide all the values it has promised
and complains if this is not the case. After this, the proxy simply forwards all
the requests to its true parent.

4 C++ library

The library provides the basic operations such as the creation of nodes, updates,
(un)clamps, evaluations of the cost function, queries of the values of nodes,
saving (and loading in the future), pruning etc.

Each node belongs to a network (class Net) which maintains the nodes. Each
node has a string label which can be used to get the pointer to the node.

7

4.1 Class Net

This is the class which contains the nodes and provides functions for updating
the net, evaluating the cost functions etc. The constructor is given the dimension
of the vector nodes used in the network. Note that all vectors in one network
need to be of equal length.

Net takes care of deleting the nodes. When net is deleted it deletes all nodes it
contains. See 4.3.5 for information about removing nodes.

4.1.1 Connecting the proxies

The method ConnectProxies connects all the proxies to their true parents.
It can safely be called several times as it does not affect previously connected
proxies.

4.1.2 Updates

The method UpdateAll updates all variables of the net. A single variable node
can be updated by the method Update (see 4.3.6).

For memory nodes the method Update propagates time. Therefore UpdateAll
should not be used in on-line learning. See 4.4 for more details.

4.1.3 Decay hooks

The network supports so called decay hooks which allow fine control of decay of
variance of the Evidence nodes. The hooks are called by name which is a string.
Decayers, which means so far just Evidence and EvidenceV, can be hooked to
the desired hook with method RegisterDecay.

There are standard hooks for UpdateAll, UpdateTimeDep, UpdateTimeInd and
StepTime which are processed at the end of corresponding functions. Addition-
ally the user can specify his or her own hooks simply by giving a new string as
a name of the hook. In this case, the hook must be activated by hand by call-
ing ProcessDecayHook with the name of the hook as an argument. Items can
be removed from the hooks by methods UnregisterDecayFromHook for single
hook and UnregisterDecay for removing an item from all the hooks, but this
is handled automatically when the evidence nodes die.

4.1.4 Evaluation of the cost function

The method Cost evaluates the cost function. Each node has a method which
gives the cost for that node only.

4.1.5 Finding nodes and variables

The methods GetNode and GetVariable take a label as an argument and return
the pointer to the node or variable with the matching label.

8

The methods GetNodeByIndex and GetVariableByIndex take an index as an
argument and return the pointer to the corresponding node or variable. The
number of nodes and variables can be obtained by the methods NodeCount and
VariableCount.

4.1.6 Saving and loading

The method SaveToXMLFile saves the network in XML text format while SaveToMatFile
uses Matlab format (the second argument is the name of the variable to be
saved in the file). A single node can be saved using SaveNodeToXMLFile.
This can be useful for debugging purposes. In addition to these, the func-
tion SaveToPyObject saves the network to a Python object. This can later be
saved to a file using Pickle.

void SaveToXMLFile(string fname);
void SaveToMatFile(string, string);
void SaveNodeToXMLFile(string fname, Node *node);
PyObject *SaveToPyObject();

The library supports loading the network from a Matlab file or a Python ob-
ject. The function LoadFromMatFile loads the network from given Matlab file
(second string argument giving the name of the network) while CreateNetFromPyObject
“loads” the network from given Python object.

The functions using Python objects can also be used for cloning the network:

temp = orignet.SaveToPyObject()
copynet = CreateNetFromPyObject(temp)

4.1.7 Pruning

When nodes are killed they need to be explicitly removed using the method
CleanUp. See 4.3.5.

4.1.8 Miscellaneous

The method Time returns the length of the vectors (usually time is the vectorised
dimension). The methods NotifyDeath, Save, AddNode and AddVariable are
mainly for internal use. Methods SetDebugLevel and GetDebugLevel can be
used to set the level of debugging messages required. Higher levels mean more
messages. The default level is 0.

4.2 Class NodeFactory

The NodeFactory is used to create new nodes for the network. The constructors
of different node classes can only be invoked by a NodeFactory that makes sure
that the ownership of the nodes belongs to the network the nodes are part
of. The NodeFactory has methods of type GetXXX for creating a node of type

9

XXX. They generally take the label of the node and references to its parents
as arguments and return a pointer to a newly created node. The constructor of
NodeFactory takes the Net it will create nodes to as a parameter.

4.3 Class Node

4.3.1 Creation

A node is created by calling the appropriate GetNode method of a NodeFactory.
The arguments are usually the label and the parents of the node. Constant and
ConstantV nodes do not have parents and instead the value is given. The Proxy
node is given only the label of its future parent that is connected later by calling
the method ConnectProxies from Net.

4.3.2 Clamping and unclamping

The value of a Gaussian or Discrete node can be set by the method Clamp.
This tells the network that the node is observed. The node can again be made
unobserved (latent, hidden, unknown variable) by the method Unclamp.

In a factor analysis type latent variable models, for instance, it is useful to
initialise the linear mapping with random values in order to make the learning
start. This can be done using Clamp. Once the factors have some nonzero values
the linear mapping can be Unclamped. Alternatively the initialisation can be
done using evidence nodes. If learning would be started without initialisations,
the factors and linear mapping would all be zero and none of them would ad-
apt because the whole system would be trapped in the local minimum where
everything is zero.

4.3.3 Expectations

Each continuous node can be asked for its value using the method GetReal
for scalars and GetRealV for vectors. The value is returned in the first argu-
ment which is DSSet for GetReal and DVH for GetRealV (see 4.5.1 and 4.5.6).
The second argument is of class DFlags and indicates which expectations are
requested (see 4.5.8).

These two methods are typically used by the children of a node to inquire the
expectations required by the computation of gradients and cost function.

NOTA BENE: the expectations which are not specifically requested (no flags
set in DFlags) may be left to their original values.

The corresponding methods for discrete nodes are GetDiscrete and GetDiscreteV.
They take only one argument as there are no parameters to the request. The
value is returned in the first argument which is a pointer to DD for GetDiscrete
and VDDH for GetDiscreteV (see 4.5.4 and 4.5.7).

NOTA BENE: the structure returned by GetDiscrete must not be modified or
destroyed by the caller as it is shared with the node returning it.

10

All the Get* methods return a boolean value indicating whether the requested
expectation could be returned.

4.3.4 Gradients

A parent of a node asks the gradient w.r.t. the continuous expectations using the
methods GradReal or GradRealV depending whether the parent is a scalar or
vector. Both methods take two arguments. The first one is DSSet for GradReal
and DVSet for GradRealV (see 4.5.1 and 4.5.3). The second argument is the
pointer of the parent which is asking the gradient. It is used for identifying the
role of the parent.

The gradients of the children of a node can be asked by the methods ChildGradReal
and ChildGradRealV. They lack the second argument but are otherwise similar
to the above methods.

NOTA BENE: the methods which give gradients do not initialise the first argu-
ment which is used for returning the value. Instead the gradient is added to the
previous value. If the vector valued gradient requests do not touch a particular
gradient w.r.t. an expectation, the vector for this gradient will be uninitialised.

The corresponding functions for the components of a discrete distribution are
GradDiscrete and GradDiscreteV. Its first argument is a DD for GradDiscrete
and VDDH for GradDiscreteV and the second argument is the pointer of the
parent asking the gradient.

If a Node cannot provide a gradient of some sort, it should just silently re-
turn. This applies, for instance, to continuous nodes when they are asked for
GradDiscrete.

4.3.5 Removing nodes

The method Die kills a node. This may cause a chain reaction where other
nodes will be killed if they are left orphan or without children. This behaviour
is controlled by the persist variable which can be accessed by the methods
GetPersist and SetPersist (see 7.2).

The nodes are not actually removed from the network before calling CleanUp
(see 4.1.7).

Do not try to delete a node: net has to know which nodes exist and it takes
care of the deletion also.

4.3.6 Updates

A (variable) node can be updated by Update. A node can be outdated by
Outdate. This propagates to children in computational nodes and outdates the
cost function in variable nodes.

Another way to update a node is to use the set of functions SaveState, SaveStep
and RepeatStep. These are used by UpdateAllHookeJeeves method in PyNet
(see Sec. 5.1.4). SaveState saves the current value of the variable to be used
as a base point for future changes. SaveStep saves the current change from the

11

state saved by SaveState. RepeatStep can then later be used to repeat the
same step multiplied by a constant, starting from the original state saved by
SaveState. These operations are at the moment only supported by Gaussian
and GaussianV nodes.

4.3.7 Miscellaneous

The label and type of node can be queried by the methods GetLabel and
GetType. The parents and children can be obtained by the methods GetParent
and GetChild. They take an index as an argument and return null pointer if
the index is out of range.

4.4 On-line learning

On-line learning works but is still experimental.

4.4.1 Time type

Each node is either

0: time independent,

1: time dependent or

2: memory node

3: delay node

The type of a node can be queried by TimeType method.

Time dependent nodes are assumed to have different values at each time instant
while time independent nodes have only one value which does not depend on
time. Memory nodes connect type 0 and type 1 nodes and gather the gradients
when time is stepped.

4.4.2 Updates

Type 0 nodes are updated by the UpdateTimeInd method of Net class. Type
1 nodes are updated by the UpdateTimeDep method and memory nodes are
instructed to save the gradients by StepTime method. This also instructs the
net to memorise the cost function from type 1 nodes. The memorised cost is
automatically added to the cost when queried by the Cost method. It can be
directly accessed by GetOldCost and SetOldCost methods.

Do not use the UpdateAll method in on-line learning: it updates all nodes
regardless of their type.

12

4.4.3 Controlling time type

Do not forget to use memory nodes. If two nodes are connected and one of them
has type 1, then the other node is also converted to type 1. The conversion
propagates so that the nodes connected to the newly converted node are also
converted. Memory node blocks the conversion.

It is not necessary to give an explicit command about time type although the
method NotifyTimeType could be used in principle. Children of memory nodes
will be automatically set to type 1 and any node they are connected to will be
set to type 1 as explained above.

4.4.4 Decay

In on-line learning, it is impossible to change the inferences made about past
data. This means that the network could get stuck in false interpretations made
in the early learning. To prevent this, old data is gradually forgotten. The decay
rate is governed by a ratio parameter which is by default 0.5. This means that
effectively the model uses only half of the data it has been given. Currently the
decay rate is common to every memory node, but this may change in the future.
The decay is controlled by a DecayCounter object maintained by the Net class.
The latest decay factor can be queried by the Decay method of Net. Currently
the the ratio parameter (and other relevant parameters) of DecayCounter need
to be set by directly accessing the field Net.dc.ratio.

4.4.5 Usual operation

Connect the network
Iterate

Clamp time dependent nodes
Iterate

UpdateTimeDep
Sometimes

UpdateTimeInd
StepTime

4.5 Data structures

The network passes distributions from parents to children. For real values the
distributions are summarised by a set of expectations (currently mean, variance
and expectations of exponential are possible). The distributions of discrete vari-
ables are passed as lists of probabilities for each possible value, that is there are
no summaries. The gradients of the quantities passed from parents to children
are passed in the opposite direction from children to parents. Usually the user
does not need to worry about the gradients.

The basic data structures needed by the user are DSSet (double scalar set),
DV (double vector), DD (discrete distribution), VDD (vectorised discrete distribu-
tion), DVH (double vector handle), VDDH (vectorised discrete density handle) and
DFlags (double flags).

13

4.5.1 Class DSSet

This is a set of scalar expectations. Currently there are members DSSet.mean,
DSSet.var and DSSet.ex which stand for mean, variance and exponential.
DSSet is used for asking the scalar values of nodes. It is also the structure
used for the gradient of scalar values.

4.5.2 Class DV

This is the basic data structure for double vectors. The user mainly needs it for
clamping the values of vectorised continuous valued variables.

4.5.3 Class DVSet

This is the vectorised equivalent of DSSet. It is used for the gradients of scalar
vectors and is usually not needed by the user.

4.5.4 Class DD

The user needs this class for clamping discrete nodes. For now, DD is just
a wrapper for a DV of suitable size. There are plans for adding support for
sparse distributions, but the exact way of doing this is still unclear. The most
important operation provided by DD is indexing provided by the operator “[]”.

4.5.5 Class VDD

This is the vectorised equivalent of DD. It is needed for clamping vectorised
discrete nodes.

4.5.6 Class DVH

This is a structure which can hold either DSSet or DVSet. It is used for asking
the value of vector nodes. This data structure makes it possible for vector nodes
to have either vector or scalar parents since scalar nodes can also be requested
a vector. DVH can keep track whether the value it contains is a vector or scalar.
The value can be accessed by indexing methods DVH.Mean(i), DVH.Var(i) and
DVH.Exp(i). If the value of DVH is scalar, these methods return the scalar,
otherwise they return the appropriate element of the vector. This way the child
does not need to know whether the parent was vector or scalar.

4.5.7 Class VDDH

The relation between VDDH and VDD is mostly the same as that between DVH and
DV. In VDDH also the scalar value is a pointer to DD. Neither of these structures
must be deallocated as they are internal to the node whose values they represent.

14

4.5.8 Class DFlags

This is a set of boolean attributes, currently DFlags.mean, DFlags.var and
DFlags.ex. It is used for indicating which expectations are requested when
asking the value of a continuous valued node.

5 Python interface

The Python interface is generated directly from the C++ header files by SWIG
(Simple Wrapper and Interface Generator)2. The basic idea is that all (or rather
most) of the C++ classes have been wrapped so that they appear standard
Python classes and can be accessed as such.

5.1 class PyNet

This class is derived from the C++ class Net. Useful functions have been added.

5.1.1 Sum trees

The methods BuildSum2Tree and BuildSum2VTree build a sum tree from the
list of nodes given as argument. The other arguments form the base for label.
The labeling works so that the root node gets exactly the label given to the
function and other nodes get labels of the form base leaf(i0, i1, ..., in).

5.1.2 Pruning

The method TryPruning tests whether pruning a variable is beneficial and re-
moves it if the cost function is predicted to decrease. The function can handle
a list of nodes to test.

5.1.3 Accessing nodes

The methods GetNodes and GetVariables return lists of nodes or variables
which match the regular expression given as the second argument. The first
argument is the net.

5.1.4 Advanced updates

The method UpdateAllDebug does the updates as standard UpdateAll but also
checks that none of the node updates increases the value of the cost function.
This is useful for debugging the update methods of the nodes.

The method UpdateAllHookeJeeves does one round of optimisation accord-
ing to the Hooke-Jeeves algorithm. It first does the standard updates for all

2For more information, see http://www.swig.org

15

variables, but then takes another step in the same direction defined by the in-
dividual updates. The length of this additional step is defined by performing a
line search on the cost function values in that direction. The method also uses
helper functions RepeatAllSteps and FindOptimalStep.

5.1.5 Miscellaneous

The method GetConst0 returns a constant node with value zero. Its label is
const0 and it is created if it does not already exist.

5.2 Helpers.py

This file contains useful functions.

5.2.1 Sum trees

The functions AddSum2 and AddSum2V add a new entry to an existing sum tree
or create a new tree. The argument list is net, rootnode, parind, newpar, label.
The sum tree is in node rootnode in parent number parind. Newpar is the
new node in the sum tree and label is the label for the Sum2 of Sum2V node to
be created. The function FindLeaf is used for finding the correct entry point.
Caution: there are currently no checks for the DAG property.

5.2.2 Pruning

The function CostDifference returns a prediction of the change in cost function
if a given variable node is removed from the network. Negative value means the
cost function will decrease and thus removal of the variable is beneficial.

5.2.3 Adding a weighted connection

The function AddWeight creates a new weighted connection from one node and
adds it to the sum tree of another vector node. It then tests whether the newly
created connection is useful using TryPruning and returns the new weight if it
was found useful. The arguments are: net, input node, output node, label of
the weight, mean of the weight, variance of the weight and optionally additional
cost. It is often useful to use negative cost because the importance of a new
weight is easily under-estimated.

5.2.4 Loading data

The function LoadAsciiData returns a list of lists of the numbers in the given
data file.

16

5.2.5 Accessing nodes

List of parents and children of a node can be obtained by the functions ParentList
and ChildList. The values can be queried using the functions GetMean, GetVar
and GetExp. They can handle lists of nodes.

5.3 Data types

SWIG does not understand operator overloading and therefore some of the
indexing methods in the data types of C++ library do not always work. The
indexing methods have been added to classes DV and DD. Indexing of a VDD is
not yet supported due to difficulties in multidimensional indexing.

6 Examples

There are two small examples of the usage of the library in the main directory:

main.C: Factor analysis with dynamic model for factors

main.py: Factor analysis with pruning

7 Technicalities

7.1 Delayed variable check using Proxy nodes

In principle all nodes check that their parents are of the required type when
they are created. This means that the parents must be created before their
children. As the network is a DAG, this should in theory always be possible.
Unfortunately the situation is not as simple in practice as vectorised nodes
can cause problems in temporal models. In such cases one element of a vector
somehow affects the model of the next element and the vector needs a delayed
version of itself as a parent.

Such cases can be handled with the Proxy node. A proxy can be created without
explicit reference to its parent, only a label of the future parent. When the proxy
is further used as a parent to other nodes, it stores information of what it has
been asked for. When the construction of the network is complete, all the proxies
can be connected to their actual parents by calling the method ConnectProxies
in the corresponding network. As part of this process, the proxies now check
that their parents really can return the values they are required to.

Using a proxy creates a loop in the otherwise acyclic network graph. The method
SortNodes in Net handles this by ignoring the parents of proxies.

7.2 Persist

The variable persist has flags which indicate the cases in which the node should
die. Setting a flag allows dying. The dying can occur only when the node gets a

17

notification of the death of another node and it turns out to be either a parent
or child.

The flags have the following meanings:

1 Die if a parent died

2 Die if there are no parents (all died or otherwise)

4 Die if there are no children (all died or otherwise)

8 Die if there is only one parent. Replace yourself with the parent in children.

By default the constant has persist = 0 which means it never dies. Functions
have the value 5 (= 1 + 4) which means that they need at least one child and
all parents which they initially had. Variables have the value 1 which means
that none of their parents must die. It may be useful to set the value to 5 for
latent variables.

Exceptions are the Switch function nodes which never die (value 0) and Sum2
and Sum2V function nodes which have the value 12 (= 4 + 8). They need at
least one child and cut off if one of the parents dies. Cutting off means that
before dying the node replaces the pointers to itself from its children by the
pointers of its remaining parent. In other words, A + B → C will be replaced
by A → C if B is killed.

7.3 Evidence node

The evidence node creates the virtual clamp by adding an artificial extra term
to the cost function and providing gradients to its parent according to that.
The extra term is essentially the same as that resulting from a observed Gaus-
sian with single observation for the clamped value, mean given by the parent
and variance given by the other value clamped to the node. As the network
is updated and the decay increases the clamped variance, the clamp becomes
weaker and gives smaller gradients. After the clamp has decayed completely,
the evidence node kills itself. The time when the variance is decayed can be
controlled by hooking the node to the appropriate decay hook as described in
Sec. 4.1.3.

7.4 Memory node

7.5 SWIG

SWIG operates by taking an interface file (e.g. Net.i) which resembles standard
C or C++ header file but with some additional directives. The “compiler”
turns this file into a C/C++ source file (e.g. Net wrap.C) and a corresponding
Python source file (e.g. Net.py) containing the definitions of the wrappers and
the shadow classes.

18

8 Error messages

Most messages should be self explanatory, such as “Double clamp not allowed”,
“Expected a vector parent in DelayGaussV” although sometimes the nodes just
complain “Wrong type of parents in GaussNonlinV”.

When PyNet.UpdateAllDebug is used, it will complain if the updates of some
of the nodes result in increase of the cost function.

Sometimes there can be a cryptic error message as follows: (assume we are
updating a Gaussian node s(29))

s(29) var: M=2.43445; V=0.02442; GEX=3.43523; GVA=34.24; GME=-43: diff = 3.424

It means that for some reason the minimisation of cost function failed in Gaus-
sian node, but the node knows that. The reason is an ill behaved gradient which
is typically caused by

1. degenerate solution (e.g. variances have gone very small)

2. invalid connections (e.g. multiple paths from a latent variable to another
variable)

3. bug in gradient computation

If options 1 and 2 can be ruled out, please send a bug report.

The optimisation in Gaussian nodes is not fool-proof so it is possible that in
some rare cases the computations genuinely fail, but so far there has always been
some other reason for the error message. If you encounter one of these rare cases,
we may improve the minimisation. The reason why it has not been improved
so far is that this error message is often a useful indication of something else
being suspicious.

References

[1] H. Valpola, T. Raiko, and J. Karhunen, “Building blocks for hierarchical
latent variable models,” in Proc. Int. Conf. on Independent Component
Analysis and Signal Separation (ICA2001), (San Diego, USA), pp. 710–
715, 2001.

19

