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Abstract. Frequently, the number of input variables (features) involved
in a problem becomes too large to be easily handled by conventional
machine-learning models. This paper introduces a combined strategy
that uses a real-coded genetic algorithm to find the optimal scaling
(RCGA-S) or scaling + projection (RCGA-SP) factors that minimize
the Delta Test criterion for variable selection when being applied to the
input variables. These two methods are evaluated on five different re-
gression datasets and their results are compared. The results confirm
the goodness of both methods although RCGA-SP performs clearly bet-
ter than RCGA-S because it adds the possibility of projecting the input
variables onto a lower dimensional space.
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1 Introduction

The size of datasets often compromises the models that can employ them for
a determined regression or classification task. A linear increase in the number
of variables results in an exponential increase in the necessary number of sam-
ples to successfully represent the solution space. This burden is called curse of
dimensionality [1] and affects many real-life problems usually characterized by
a high number of features. In these cases, it is highly convenient to reduce the
number of involved features in order to reduce the complexity of the required
models and to improve the interpretability.

In the recent years, many studies have intended to address variable selection
for regression using a variety of search strategies and convergence criteria. One of
the most successful criteria to determine the optimal set of variables in regression
applications is a nonparametric noise estimator called Delta Test (DT) (]2], [3]).

With regard to the search strategy, some authors propose local search strate-
gies for DT minimization (e.g. forward search [4], backward search, forward-
backward search ([5], [6])), because of their high speed, but they suffer from se-
vere sensitivity to local minima. Global search strategies (e.g. exhaustive search,
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tabu search [7], genetic algorithms (GA) [8]) explore more efficiently the solution
space but are much slower too. A tabu based approach to DT minimization has
been reported in [6] and [9]. Parallel schemes that combine tabu and GAs have
also been implemented to ease the slow convergence drawback [6].

This paper aims to optimize the choice of relevant inputs in an automated
manner, by introducing a combination of a GA-based global search strategy with
two different fitness approaches: scaling and scaling enhanced with projection.
The use of real-valued scaling factors is already a great improvement that min-
imizes the DT beyond the limit imposed by pure selection, because a variable
can not only be selected or not, but also be given a weight according to its rela-
tive importance. Projection takes a further step as it includes the possibility of
projecting the input vectors into a lower dimensional space. Both methods have
been compared in [4] using a forward search method but their integration in a
global search framework remains unexplored so far.

This paper is organized as follows: Section 2 introduces the DT and its theo-
retical background. Section 3 describes the developed genetic algorithm and its
main parameters, paying special attention to the two custom fitness functions
created. Section 4 presents a performance study of both methods on a variety of
datasets and discusses the results. Finally, Section 5 summarizes the conclusions.

2 The Delta Test

The DT, firstly introduced by Pi and Peterson for time series [2] and proposed
for variable selection in [10], is a technique to estimate the variance of the noise,
or the mean squared error (MSE), that can be achieved without overfitting.
Given N input-output pairs (z;,7;) € R? x R, the relationship between x; and
y; can be expressed as

yi:f(azi)—i—ri, i=1,....N, (1)

where f is the unknown function and r is the noise. The DT estimates the
variance of the noise 7.

The DT is useful for evaluating the nonlinear correlation between input and
output variables. It can also be applied to input variable selection: the set of
input variables that minimizes the DT is the selected one. The DT is based on
hypotheses coming from the continuity of the regression function. If two points @
and x’ are close in the input variable space, the continuity of regression function
implies the outputs f(x) and f(x’) will be close enough in the output space. If
this is not accomplished, it is due to the influence of the noise.

The DT can be interpreted as a particularization of the Gamma Test (GT)
[11] considering only the first nearest neighbor. This yields a fully nonparametric
method as it removes the only hyperparameter (number of neighbors) that had
to be chosen for the GT. Let us denote the nearest neighbor of a point x; € R?
as Ty (;)- The nearest neighbor formulation of the DT estimates Var[r] by

Var|r] =N Z — YNNG (2)
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where yyn(;) is the output of @y ;). For a proof of convergence the reader
should refer to [11].

3 Real-coded genetic algorithms for global search

The use of GAs for variable selection has been widely reported in the literature
([12], [13], [14], [15], [16]). The purpose of the GA in this work is the global
optimization of the scaling weights and projection matrix that minimize the DT
when applied to the input vectors. This study intends to find the optimal DT
value in a fixed number of generations. Pure selection would clearly outperform
scaling in terms of speed but the best DT found is often sub-optimal. Scaling
or projection are necessary to get closer to the optimal set of solutions. For
that reason, a real-coded GA (RCGA) is proposed to optimize a population
of chromosomes that encode arrays of potential solutions. The two following
Subsections describe the fitness functions that were built and applied to the
RCGA: one for scaling and another combining scaling and projection.

3.1 Real-coded genetic algorithm with scaling: RCGA-S

The target of performing scaling is to optimize the value of the DT beyond
the minimum value that can be obtained with pure selection. When performing
scaling, the selected variables are weighted according to their influence on the
output variable. Let us consider f as the unknown function that determines
the relationship between the N input-output pairs of a regression problem, y =
f(x)+r, with £ € R? y € R and r € R is a random variable that represents the
noise. Thus, the estimate of the output, § € R, can be expressed as § = g(xs)+r,
with 2, = s -2 € R? and g is the model that best approximates the function f.
The objective is to find a scaling vector s € R? such that

g =g(si1x1, S2%2, ..., 84%q) + T (3)

minimizes Var[r] for the given problem.

In the existing variable selection literature there are several applications of
scaling to minimize the DT, but often keeping a discrete number of weights ([4],
[5], [6]) instead of using unconstrained real values like in this study. In each
generation, each individual (array of scaling factors) is multiplied element by
element by the i-th input sample from the dataset:

X&axa) = X(ixa) X Saxay, i=1,...,N, (4)

where X is the N X d input matrix, Xg is the scaled version of X and S is the
scaling vector.

The DT is calculated by obtaining the Euclidean distances among the weighted
input samples Xg. Once done this, the first nearest neighbor of each point is se-
lected and the DT is obtained from their corresponding outputs, according to
Eq. 2. When a predefined number of generations has been evaluated, the GA
returns the fittest individual and its corresponding DT.
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3.2 Real-coded genetic algorithm with scaling 4+ projection:
RCGA-SP

A projection can be used to reduce the number of variables by applying a linear
(idempotent) transformation, represented by a matrix Plgxk), to the matrix of
input samples X xq), resulting in a lower dimensional matrix Xpnyxx), k < d:

Xp(Nxk) = X(Nxd) X Plaxk) - (5)

Although it might seem counterproductive, the idea if the developed method
that combines scaling and projection is to add a new variable to the input space
(the projection of the input vectors on one dimension, i.e. with k = 1). Equations
6 and 7 describe this approach:

Xpvx1) = X(nxd) X Paxi) (6)

Xsp(nx(d+1) = [Xsvxa) Xp(vx1) (7)

where Xg is the scaled version of X as calculated in equation 4, Xp is the
projected version of X and Xgp is the new scaled/projected input matrix. In
this case, the length of the chromosome will be twice the length of the ones used
for the scaling approach, i.e. 2d, as a global optimization of the projection vector
P must be carried out along with the optimization of the scaling vector S.

4 Experiments

The experiments were carried out using MATLAB 7.5 (R2007b, The Mathworks
Inc., Natick, MA, USA), partly using the Genetic Algorithm and Direct Search
Toolbox v2.2, and several custom functions. The parts of the code that are
critical for speed, like the computation of pairwise distances among points, were
coded in C++ and compiled as MATLAB executables (MEX).

The populations are initially created using a custom function that assigns
a uniform initialization to a percentage of the population and the rest can be
customized by the user, specifying how many of the remaining individuals are
initialized randomly and how many of them are left as zeros. The function is
flexible in the sense that the custom percentage of the initial population can
be further split into more subsets, each one with a customizable percentage of
randomly initialized individuals.

The crossover and mutation operators have also been implemented as custom
functions. The mutation operator is a pure random uniform function whereas the
crossover operator was BLX-a [17] because of its better performance compared
to the one-point, two-point and uniform crossover operators [8]. Regarding the
selection operator, the binary tournament was chosen because of its better per-
formance and speed than the roulette wheel. Three population size values were
tested: 50, 100 and 150. Values higher than 150 were discarded in order to keep
reasonable run times. To sum up, the GA parameters were set as follows:
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— Number of averaged runs: 10

— Number of generations evaluated: 50

— Population sizes: 50, 100, 150

— Population initialization: 20% uniform / 80% custom (with 90% zeros and
10% random genes)

— Crossover operator: BLX-a (a=0.5)

— Selection function: Binary tournament

— Crossover rate: 0.85

— Mutation rate: 0.1

— Elitism: 10%

— Mutation function: Random uniform

— Fitness function: S/SP

4.1 Datasets

The described methods (RCGA-S and RCGA-SP) have been evaluated on five
regression datasets with different sample/variable ratios to assess their perfor-
mance in different types of scenarios. The dimensionality and number of samples
of each dataset are listed in Table 1. Santa Fe and ESTSP 2007 are time series,
so regressors of 12 and 55 variables, respectively, were built.

Table 1. Datasets used in the experiments.

Dataset Instances Input variables
Boston Housing! 506 13
Tecator? 215 100
Anthrokids 3 1019 53
Santa Fe? 987 12
ESTSP 2007° 819 55

L http://archive.ics.uci.edu/ml/datasets/Housing

2 http://lib.stat.cmu.edu/datasets/tecator

3 http://www.cis.hut.fi/projects/tsp/index.php?page=timeseries

4 http:/ /www-psych.stanford.edu/~andreas/Time-
Series/SantaFe.html

All datasets were normalized to zero mean and unit variance, to prevent vari-
ables with high variance from dominating over those with low variance. There-
fore, all DT values shown in this paper are normalized by the variance of the
output. The normalization was done variable-wise for all datasets except for
Tecator, in which variable selection works better with sample-wise normaliza-
tion.

4.2 Results

The results of the experiments appear listed in Table 2. In all tests, the popula-
tion size of 50 chromosomes gave worse results than 100 or 150. The population
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Table 2. Performance of RCGA-S and RCGA-SP after 50 generations.

Method |Pop. size|Measurement Housing| Tecator |Anthrokids|Santa Fe| ESTSP
Mean+StDev DT (x107%)[570414 | 108+11 7543 107+£12 (127.5+1.3
50 Min DT (x10~%) 544.54 | 92.60 71.91 89.99 125.01
Max DT (x107%) 583.09 | 132.75 79.37 119.73 128.74
Mean+StDev DT (x10~%)| 55947 | 98413 | 72.0+1.9 | 92+12 [123.8+2.1
RCGA-S 100 |Min DT (x10~%) 544.78 | 75.74 69.13 77.33 120.65
Max DT (><1()74) 569.82 | 109.52 74.83 111.41 126.78
Mean+StDev DT (x107%)|5534+16| 98412 | 71.84+1.2 | 8548 [123.7+2.1
150 |Min DT (x10~%) 528.47 | 83.60 69.81 75.46 121.43
Max DT (x107%) 578.18 | 113.47 72.98 98.54 128.93
Mean#StDev DT (x107%)[570460| 39+3 71+5 83+15 125+5
50 Min DT (><1()74) 523.56 35.02 66.08 69.96 119.02
Max DT (x10~%) 692.22 | 43.53 77.49 111.66 | 132.3
Mean+StDev DT (x10~%)[537+22(38.1£2.4] 69+4 7248 | 123+4
RCGA-SP 100 Min DT (><1074) 512.47 35.14 62.54 62.15 116.71
Max DT (x10~%) 583.14 | 43.36 75.33 82.85 128.97
Mean+StDev DT (x10~%)[530417(36.8+2.1 69+4 68+5 12244
150 Min DT (><1()74) 514.15 33.12 61.82 62.83 115.62
Max DT (x10~%) 557.88 | 40.74 73.71 77.86 | 129.18

size of 150 minimized the DT for most datasets, either with RCGA-S or RCGA-
SP. Nonetheless, the values of DT obtained with 100 individuals are often very
similar to the ones obtained with 150, and the high increase in computational
time might not always be worthwhile.

The average, minimum and maximum DT values are improved in all cases by
using RCGA-SP instead of RCGA-S. The rate of improvement depends on each
particular dataset, and is specially noticeable for Tecator (>64%) or Santa Fe
(>20%). Another important result is that the RCGA-S method is more precise
than RCGA-SP as the standard deviation is generally lower. Predictably, the
fact of doubling the chromosome size increases runtimes too.

An analysis of the initialization function was carried out using the GAs with
the best specifications among the tested (Population size = 150). The results,
for several custom/uniform initialization ratios, are listed in Tables 3 and 4.
The best mean DT for each dataset is marked in bold. As before, 90% of the
custom part was composed of zeros while the remaining 10% was randomized.
The results confirm the goodness of the custom initialization with respect to
the pure uniform, as the mean DT is reduced in most cases when a high rate
of custom-initialized genes is used. Again, the best improvement is found for
Tecator dataset (>68% in some cases).

5 Conclusions

The methodology presented is a combination of a real-coded GA with custom fit-
ness functions that perform scaling (RCGA-S) and scaling + projection (RCGA-
SP), which has proved to accurately minimize the DT in a variety of scenarios.
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Table 3. Mean and standard deviation of DT values (x10~*) calculated by RCGA-S
for several initialization ratios (Population size = 150).

Custom/Uniform Housing Tecator Anthrokids Santa Fe ESTSP
0%/100% 554+5 135.2+1.2 83+3 10047 123.0£0.9
10%/90% 551+4 133.3+2.0 79+3 9949 121.7+1.9
20%/80% 55318 12749 T7TE3 96+10 123.44+1.0
30%/70% 554+11 124.5+7 76+£3 99+11 123.0+1.3
40%/60% 550+9 118410 75+3 9149 123.0£1.6
50%/50% 55248 109412 72.7£2.0 9149 122.8+1.3
60%/40% 549+11 11047 72.7£2.0 9149 122.4+1.8
70%/30% 548+11 105+9 73.3+2.1 8746 123.5+1.0
80%/20% 553+16 98+12 71.84+1.2 8548 123.74+2.1
90%/10% 549+10 92411 70.940.9 80+5 123.0+1.2
100%/0% 605+40 87+10 72.60+0.10 80+6 125.6£2.1

Table 4. Mean and standard deviation of DT values (x10™*) calculated by RCGA-SP
for several initialization ratios (Population size = 150).

Custom/Uniform Housing Tecator Anthrokids Santa Fe ESTSP
0%/100% 543419 42.2+1.4 7243 TTE£12 11943
10%/90% 537+18 40.8+1.6 78+8 83+13 120+3
20%/80% 535+16 41.3+1.9 82+11 76£10 119.8+1.7
30%/70% 539+18 40.0£2.5 86+14 85+21 12043
40%/60% 531+£15 40+4 80+8 76£10 119.2+1.8
50%/50% 541422 38.7+1.9 807 67+4 120+3
60%/40% 536+13 38.9+2.1 768 71+8 122+3
70%/30% 540421 4043 e= 68+5 11943
80%/20% 53017 36.8+£2.1 69+4 68+5 12244
90%/10% 539+23 36.2£2.0 66+6 68+5 12343
100%/0% 555+21 34.8+1.6 6516 66+3 124+4

In particular, the RCGA-SP method has proved to find lower values of DT than
RCGA-S in all tests. Furthermore, the custom initialization proposed enables a
refinement of the final value of DT obtained and performs better than the uni-
form initialization in most cases. The minimum DT values found are lower than
the lowest values attained in previous works, either using local or global search
strategies ([4], [6]) for the tested datasets. The main drawback of RCGA-SP is
the computational time involved, but this issue could be alleviated in the fu-
ture using parallel implementations. Scaling + projection to higher dimensional
spaces (k > 1) is also to be further examined.
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