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Abstract— We introduce a probabilistic version of the self- PCA has the advantage of returning the likelihoods of
organizing map (SOM) where we model the uncertainty of both ~ the estimates, indicating their reliability. The second step
the model vectors and the dat_a. Whlle_ uncertainty information involves using two SOMSs, one for the principal components
about the data is often not available, this property becomes very and the other for the wei ,ht matrix (transformation), in their
useful when the method is combined in a hierarchical manner . 9 . &
with probabilistic principal component analysis (PCA), where Standard form for possible improvement. An extension of the
we do estimate uncertainty of the principal components and SOM is also tested which uses likelihood information from
the weights. We apply the hierarchical model to the domain the probabilistic PCA. We call this new version Probabilistic
of collaborative filtering, where probabilistic PCA is a popular SOM, which has modified update rule for the weights of the

approach due to its robustness for tackling many missing values - - A
in the data. The main focus in this paper is for recommendation map that incorporates obtained likelihoods. There are also

systems about movies, where the movie rating data matrix of Many existing combinations of PCA and SOM. Typically
size people times movies is available, but contains lots of missing they work such (see e.g. [11], [12], [13]) that each map unit

values. The matrix is first decomposed into a matrix product of the SOM has a separate PCA model for the data vectors

of people times features and features times movies by PCA. ; ; " ;
Then we apply the probabilistic SOM to both of those matrices that are aSSOCIate.d o it. The combination proposed here is
) of course rather different.

separately. The uncertainty is large when a person (or a movie . )
has only a few ratings. The experiments with Movielens and ~ Modelling partially observed data often means that some

Netflix data show an improvement over traditional SOM. elements of the data are observed while the others are miss-
ing. We are studying the generalization to the case where we
know the uncertainty (e.g. variance) of each element in the
Collaborative filtering (CF) is the task of predicting pref-data. Pearl [14] suggested to use so called virtual evidence for
erences or producing personal recommendations by usitigs situation in Bayesian networks. Raiko [15] studied the
other people’s preferences. One such problem is the Netflsame issues in the context of variational Bayesian learning.
prize [1] problem which involves ratings for movies given byReal applications where the uncertainty of each observation
people. The task is to predict the rating for a certgieréon is explicity known are rare. llin and Kaplan [16] studied
movig pair for which the rating is unknown. All ratings are the reconstruction of historical sea surface temperatures from
integer numbers ranging from 1 to 5. The data is split intonostly ship data, where the uncertainty at each grid point is
training and validation sets for the same group of people ara$timated based on the number of measurements located in
a group of movies, with the training part having only 1.2% oft during each month.
observed or actual ratings, while the rest 98.8% are missing.A method with the same name — probabilistic Self-
The collaborative filtering has recently become popula®rganizing Map — was used in [17] for facial recognition,
with announcement of the Netflix prize and a lot of methodbut in a different setting. The SOM in its standard form
have already been tried in this domain, for a list of methods first used for testing image similarity, and a probabilistic
refer to websites [2], [3]. More recent methods in CF arenodel for the class distribution is associated with each map
employing large number of predictors and combining thernit. Thus, the uncertainty is modelled only for the class
into one big linear model which have proven to be the mostistribution and not for the model vectors or observations
effective. The earlier works are focused on improving o&s in our case. Another model with the same name was
boosting the accuracy of single models [4], [5], which igecently proposed in [18]. This model aims at preserving
the approach we adopt for this paper. topological structure of the data clusters by optimizing
For this work, we use a combination of two widely knownlikelihood based criterion on the map neurons. To facilitate
methods in machine learning: Principal Component Analysiikelihood optimization, neurons in SOM are modeled as
(PCA) [6] and Self-Organizing Maps (SOM) [7]. Severalmultivariate Gaussian distributions. In our method, the aim
researchers have used PCA to estimate the missing valuggjuite different. For the rest of the paper, we also use
in the data [8], [9], but none provide the reliability of thoseProbabilistic SOM as the name of our model to explicitly
estimates. For that purpose, we use PCA in its probabilistitate the connection to uncertainty modelling.
variant [10] as the first step of our approach. Probabilistic The Generative-Topographic Mapping (GTM) [19] can
also be considered to be a probabilistic version of the SOM.

Authors are from Aalto University School of Science and TechnologyThe GTM is a generative model with latent variables which
Department of Information and Computer Science, Konemiehentie 2, Es-

poo, Finland. Emails: dusans@cis.hut.fi (DuSan Sovilj), tapani.raiko@tkk.fffIre mapped nonlinearly to the Original space. Compared
(Tapani Raiko), erkki.oja@hut.fi (Erkki Oja). to the proposed method, the GTM can only model depen-
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dencies between the observation vectors, but not betweerin the case of missing values present in the dXta
the weights, whereas in the proposed method, the weightethods for PCA can be extended to cope with such situation
and the latent variables are treated symmetrically. Inrothésee e.g. [6]). MatriceA and S are computed using only
words, our approach includes one map for movies and ombserved values in the data. Missing values are estimated
for people, whereas the GTM has only one latent spaceimply through reconstruction, i.e. Equation (1). If data
Another difference is that in GTM, the nonlinear mappingnatrix has both large number of dimensions and lots of
is done directly to the high-dimensional observation spaceissing values, overfitting can easily arise in such situnati
whereas in the proposed method, the mapping between tBee way to overcome overfitting is to penalize the model
observation space and feature space is linear. This showlith a proper term which will restrict values iA andS to
make the proposed approach more robust against overfittirggnall numbers. Even stronger approach against overfitting
The paper is organized as follows. Section Il explains PC#s to use Variational Bayesian (VB) Learning framework for
and probabilistic variant, the standard SOM and discusses tPCA. VB version of the PCA proposed in [22] approximates
probabilistic version with necessary equations. Sectibn Ithe joint posterior of the unknown quantities using a simple
shows the results of experiments performed on Movielemaultivariate distribution. The rows oA and the columns
[20] and Netflix datasets. The first dataset has less ratingé S are describe@ posterioriusing independent Gaussian
than Netflix, and allows for easier investigation of newdistributions. The means of these distributions can be used
methods in the domain of CF. Final thoughts on the proposed point estimates of the parameters, while the covariances

method are given in Section IV. give at least a crude estimate of the reliability of these
points estimates. In [10], a version where all parameters
Il. METHOD are assumed to be independent, was applied to the case of

In this section, we briefly give the basics for two mainmissing values. In this paper, we calthie probabilistic PCA
methods to be merged: PCA and SOM (first two subsectiong, self-Organizing Map
and introduce the notation that is used in this work. Then,
the combination of these two methods is explained in the Ia%
two subsections.

Self-Organizing Maps (SOM) [7] are neural networks

r unsupervised learning schemes, in which output classes
or responses are unknown. The neurons have a specified

A. Principal Component Analysis neighborhood structure in lower-dimensional space, gedn

L . . , jn alattice consisting of 2 or 3 dimensions. In addition, all of
Principal Component Analysis (PCA) is a widely use he neurons have a corresponding weight vector in the input
technique for data analysis. It can be derived from differen P g 9 P

. . A o . data spacel) dimensions).
starting points and optimization criteria. The most impatt Main idea behind SOM is to move map neurons in patches
are: 1) minimization of sum-of-squares reconstructiort;cos,

2) finding mutually orthogonal directions in the data havin toward the current sampte,, under consideration and this
inding mutuaily 90 recti ! Vingg accomplished in two steps. First, for samglg we find
maximal variance. Assuming there afé data vectors in

: . . . . . the best-matching unit; among all map neurons. Secolbg,
input space withD) dimensions, i.e. & x N ".‘a”'x X = and its neighborsVe(b,,) in the lattice are moved towards
[x1,X2,...,xn], PCA decomposes the matrX into

the samplex,,. Best-matching unit (BMU) is the neuron
whose weight vector is closest to the samgle Finding

X ~ AS, (1) BMU involves a metric to measure the similarity between
where A is a D x ¢ matrix, S is ag x N matrix andg < points, and in SOM the Euclidean distance is widely used

D < N. Principal subspace methods [21] fiddandS such 28S & similarity measure. The neighborhood functiéa(b)

that reconstruction error considers a lattice in order to find neighbors, and possible
choices are a simple ball function or a Gaussian function.
After constructing the neighborhood, all the neurons are

IX — AS||%, ) g g

moved toward the sample,,. This update is repeated for
is minimized, with F' denoting Frobenius norm. Before all samples in the dataset, and all these updates constitute
PCA is applied, row-wise mean is removed fra¥h as a epoch. The algorithm then runs for certain number of epochs
preprocessing step. Without any further constraints,ethepr it can stop in case of convergence. The whole setting is
exist infinitely many ways to perform such a decompositiorset up in Robbins-Monro procedure with a parameter that
However, the subspace spanned by the column vectors asfntrols the degree of movement for neurons. This parameter
the matrix A is unique. This spanned subspace is calledenoteda € (0,1], is called a learning rate, and is a
principal subspace. In PCA, the column vectors are mutualijionotonically decreasing function of epochs. Assume that
orthogonal and have unit length and by taking any first map hasP neurons arranged in a lattice, then the update of
q columns ak—dimensional principal subspace is formedthe weight vectors of all neurons in epoth-1 is done in
There are many ways to determine the principal subspad@/0 steps:
also called components, and the most common ones arel) Find the BMUc¢ for a samplex,,
Singular Value Decomposition, EM Algorithm and Subspace
Learning Algorithm. c=arg min, [[x, —my|, p=1,...,P (3)
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Fig. 1. Graphical models for the PSOM: complete model (leftyl separated models (right).

2) Update the weights of each neurnam, with meanpu, given by Equation (6) and covariance matrix
Yo with diagonal elements given by Equation (5).

My (¢ +1) = My (8) + a(t)hep(t) [Xn — My ()] (4)

-1
In Equation (4),«(t) is the learning rate at time step o2 — 1 + 1 j=1 D (5)
. . . . . Oj 2 2 ) IR ]

hep(t) is neighboring kernel around winning neurenThis OBkj  95nj
kernel computes the influence of the winning neutam all
the neurons in the map and is a non-increasing function of
Hoj; = (

time ¢ and distance froma. Equations (3) and (4) constitute
one epoch or time step, which is repeated until stopping
criterion is fulfilled.

MUBEj HSnj .
% + 0203»7 j=1,...,D. (6)
OBkj  95nj

Thus, we can compute thgosterior probability of the

C. Probabilistic Self-Organizing Map (PSOM) weight vectors of neurons in SOM and we need parameter

l)/alues that characterize the distributioN§ w5, X 5x) and

N(uSn,an) For pg,, we take the sample,, itself, while
eo3,; are likelihoods taken from probabilistic PCA. For

(Mpk, XBK) We havepy, = m,(t), that is, the mean is
gt to the weights of the BMU in the input space domain. For

e covariance matriX g, we do not have any information,

d it has to be computed based on some heuristic. Instead
of having covariance matrix for all neurons in SOM, which
would increase number of parameters drastically, we résort
having only one covariance matr¥g, that is shared across
&II map neurons. In our case, we compute jh element
n the main diagonal of gy as

The update rule given by Equation (4) moves the BM
toward the sampleg,,, which we can think of as the center of
mass, and thus the center of attraction. The SOM framewo
can be extended to have a probabilistic approach, wher
the weights of neurons and samples are random variabl
The simplest way is to assume Gaussian distribution i
both cases, that is, the weights are random variables wi
N(ug, Ypr) for k=1,..., K, and each sampte, has its
own distribution\ (pg,,, Xsn) for n =1, ..., N where both
covariance matrices; andX,, are dlagonal The update rule
in Equation (4) requires a vector which acts as an attract
In the probabilistic framework this vector is computed b)P
applying Bayes rule on two mentioned Gaussian distribu-
tions. The distribution for the weight&/ (i ,., ¥5x) could , '
be considered asrior, while the distributions over samples %5oj = 77 Z 1Brj — poj)° + Uoj] ;o J=1...,D.
N(pg,, Xsn) are thelikelihood estimates (as suggested 7)

in [14], [15]), and through the Bayes rule we obtain the The initial value foraBO is computed from the values

posterior distribution for weights. obtained with probabilistic PCA, taking into account aléth
Since both of them have diagonal covariance matncesamples

the product is a Gaussian distributioxf(p,>0) where
each dimension is a product of one dimensional Gaussians

from N(ugs, Xpr) and N (pg,, Xsn). Let us denote di- N
(e ) ( ) )2 2 o2 -:—Z(,u2 402 ), j=1,...,D. (8)
agonal of ¥p, as a vector|o%.;, 059 Onkp|, and Boj — N Snj T 98nj
similarly for ¥gs, we have [0%,,,0%,5,...,0%,p|- The n=t
means of distributions ar@uz, = [wBk1,-.., uBKkDp] @nd With Equations (7) and (8), the algorithm for probabilistic

Bsn = [Sni, - snp]. The product of two distributions SOM first finds the BMU of a sample,,, then computes
N(pg, Xpi) for somek =1, ..., K and NV (ug,,, Xs,) for  new variance (5) and mean (6), and finally uses the modified
somen = 1,..., N is a Gaussian distributio' (1, X0) update rule for the weights using following equation:
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Note that the proposed method is not a generative model,
since the best matching unit is not found based on a
My (t +1) = mp(t) + a(t)hep(t) [o = mp(t)]. - (9) probabilistic model, and because the SOM learning is not
Comparing Equations (4) and (9), the sampig is re- Probabilistic. On the other hand, when the SOMs have been
placed with posterior mean of the weights (Equation (6)j¢arned and the best matching unit for eadnd; is fixed,
while the learning rate and neighboring function remain thi1€ rest becomes a generative model. In this sense, the SOMs
same. Thus, we are moving the BMu, of a sample toward €an be seen here as priors.
its most probable directiop,,, instead of moving it toward [1l. EXPERIMENTS

the sample. ) . ) The PSOM and standard SOM are first compared on the
The only parameter left to be updated is prior varianCgygyielens 100k dataset with 100 000 movie ratings for
for the weights given by Equation (7). This is done aftegs3 persons and 1682 movies. When considered as a full
completing one epoch and when all samples contributed [y the dataset has 93.7% of the values missing. The
updating weights of neurons. o _ task is to predict the missing value for a given (person,
When a samplex,, is processed, that is, it contributed 10 qyie) pair. The Movielens 100k dataset is first randomly
neurons’ weights, the BMU forngms sample is rememberedy)jit into training and validation parts, each having 95000
as well as the posterior mear},’. Denoting the BMU for anq 5000 ratings respectively. The dataset is formed to
samplex,, asup,, ", Equation (7) becomes have more columns than rows, that is, final dataset has 943
rows (persons) and 1682 columns (movies). The probabilisti
, 1N B s ST PCA is first_ applied tp .obtain the reconstructi_on matri.ces
TR0 = N Z [(uBkj —poj) to Oj} ,j=1,...,D. A andS using the training set .onlly. The PCA is run Wlth
n=1 10 components as the upper limit and for 1500 iterations,
) , ) B(n) (,10) where the number of components is decided by validating the
Thus, g is paired with the BMUpp, = at the time  ocqnstrycted values on the validation set. After trainthg

when samplex,, was used to update the weights. In othei, 5| training and validation root mean-square errors (RMSE
words, once the BMU is found it will remain fixed for the were 0.7678 and 0.8878, respectively.

current epoch, even if there is closer neuron to the sampleTne result of probabilistic PCA are two matricés .y 10

x, after completing the epoch. Algorithm 1 present theyhqg, ... with likelihood estimates for all elements of
idea of training the PSOM once we obtain information fromy,th matrices. The\ matrix contains feature vectors for each

probabilistic PCA. personin the new principal space. Similarl§’ represents
i — feature vectors for eachovie of the full matrix X. The

Algorithm 1 Probabilistic SOM advantage of probabilistic PCA is the information about the
Input: is,5,0%,,, SOM parameters reliability of the values inside these two matrices. For a
Output: trained map person: with few ratings (a row inX), the corresponding
main: feature vectora; in A has large uncertaintyr?. Same

1: initialize map reasoning applies for a movie with few ratings (a column in

2: initialize 0230j (Equation (8)) X), where the corresponding vector$i has large variance.

3: for each epochlo After this step, both standard SOM and PSOM are used to

4:  for each sample:;,, do visualize and quantifyA and S'. The parameters common

5 p2" — BMU of z, to both SOM types are initialized to the same values and

6: computes2y) (Equation (5)) mclulc_je: _ o — .55

(n) : - Learning ratex = 0.

! computeyio; (Equatl(c;? (6)) ) - Learning rate is decreasing linearly

8 updatep ;. toward -~ (Equation (9)) - Topology is a lattice represented as rectangular sheet

o: end for ) _ - Gaussian neighborhood function

10 updateoy,; (Equation (10)) - Initial radius set to half the map size

11: end for - Final radius set to 0.1

12: retun  map weightsu - Random initialization of the weights

- Map training done for 1500 epochs
o A set of different values for learning rate was tested, but

D. Combination of PCA and SOM experiments showed that the larger values produced better

The complete model is given in Figure 1. The PSOM actesults in terms of RMSE. Other important parameter is the
as a prior for a given datas&. In our case, datasets aresize of the map, and the tested values ranged from 100 to
reconstruction matriced andS" obtained with probabilistic 900 neurons arranged into a lattice with equal width and
PCA. In principle, the whole model can be learned togethengeight. After training the SOMs, each sampleAnand S™
but in this paper it is done separately as displayed on the replaced with the weight of its best matching unit giving
same Figure 1. A, andS], and the initial dataset is then reconstructed with
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Fig. 2. Quantization error for two SOM types ¢h matrix (left) andST matrix (right).
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Fig. 3. U matrices for the trained two SOM types on thematrix. In the top row, the map size i€ x 10, while in the bottom row, the map size is
30 x 30. Left column is standard SOM, and right column is ProbaigliSOM.

TABLE |
RMSEFORSOMAND PSOM

X~ A;S. +Moszx1lix1682 .
Map size| 10 x 10 15x15 20x20 25x25 30 x 30
VectorM in the above equation is the sample mean of data SOM 0.9302 09199  0.9123  0.9040  0.8995

matrix, which is obtained as maximum likelihood solution of _PSOM | 0.9216 09089  0.9013  0.8977  0.8992

log probability of the parameters [22], whilg 1652 iS just

a row vector of ones. The reconstructed matrix contains the

values for elements of the validation set, which is used to

measure the performance of all three methods: probabilis@ndS™ are given to a map of siz&) x 10.

PCA, SOM and PSOM. The RMSE for both SOM types As can be seen from Table |, the RMSE decreases when
is shown in Table I. Since SOM is used ¢xn and S the the number of neurons increases, as expected since more
experiments are done by using the same map size for bathurons allow for a more refined quantization. One final
matrices and then reconstructing the matrix. For examplexperiment involved using map sizes that have more neurons
the first column in Table | shows the RMSE when bath than samples. In this case, map sizes véére31 and51 x 51
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Fig. 4. Number of empty neurons when training SOMs Aomatrix (left) andST matrix (right).

for matricesA andST respectively. The RMSE on validation neurons with a considerable degree, and can also increase
data were 0.8918 for SOM and 0.8932 for PSOM. the convergence speed. This side effect remains to be furthe

Table | shows advantage of PSOM over SOM for smallegxplored.
sizes maps. In order to see the differences in the BMUs of The experiments using Netflix data are done in the same
two map types we compare quantization error (QE) and thanner, except that certain parameters have been altered
matrices. QE is the average distance between samples dadnore adequately represent the data. Probabilistic PCA is
their respective BMU, which is computed for all samplesfirst used to obtain the decomposition of the data into two
U matrix is another way of visualizing the arrangement ofatrices, with the number of principal components set to 50
neurons of the trained map. The U matrix has double thend the number of iterations set to 1500. The number of
number of elements as there are neurons in the map. Eagdmponents is chosen based on the probe RMSE, and the
element represents the average distance of a neugoto  final RMSE on the Netflix probe data is 0.9055. Then, both
its neighbors in the magVe(m,), computed in the input SOM and PSOM are used to cluster new datagndST).
D-dimensional space. For A andST, map sizes of’5 x 75 and 75 x 50 are used

Comparing quantization error in Figure 2, we see that ifeSpectively. The parameters for training the SOMs are same
PSOM it is always larger than in SOM, since the weight&S for the Movielens data, except that in the Netflix case, a
updates are no longer in direction toward the sample itseff@tch version of SOM algorithm is used that does not require
but towards ., which is likely not to be on the same @ learning rate parameter
direction between the BMU and the sample. The QE is in
some cases larger by a factor of 3, but this eventually
positive effect when reconstructing the data.

Examining U matrices for both SOM types and differ 25h i
map sizes in Figure 3, the distribution of neurons for PS
is more spread out, and neurons clearly form more clus 2t 1
On the other hand, neurons become more equidistant ¢
their number increases which is shown in the same fi
Also worth mentioning are the actual distances in U matti
In all the experiments with different map sizes the ave 1
distance between neurons in PSOM is always less thi
standard SOM. 05 1

Figure 4 shows the number of 'empty’ neurons, tha ‘ ‘
the neurons which are not the BMU for any of the samj 0 500 1000 1500
For all map sizes the number of empty neurons is large. v Epochs
PSOM th_an for SOM, which W_OU|d also explain the hlgheF:ig. 5. Evolution of the variance of one component, ) for PSOM on
guantization error for PSOM, since less neurons are used 0 matrix.
explain the samples.

Finally, Figure 5 shows the evolution of the posterior After the rows of both matrices have been replaced with
variance for only one component. The result is almost théheir respective BMUs, the RMSE for the probe data is
same for all other components (not shown), exhibiting th8.9754 for the standard SOM and 0.9665 for the PSOM.
same decreasing tendency towards very small values. Thése is the case for Movielens data, PSOM is able to give
small values actually prevent the PSOM from moving théetter reconstruction error than standard SOM. On the other

Variance
=
(53]
T
L
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hand, there is evident degradation in performance sinae dafs] K. Honda, N. Sugiura, H. Ichihashi, and S. Araki, “Coltahtive
is replaced with their nearest approximations. The in&éas

RMSE is quite higher for Netflix than for Movielens, as the
number of map units in the SOM is very small compared to

the actual number of data vectors (8} its 75 - 50 = 3750
map units compared to roughly 480000 data samples). The
guantization error of the two SOM types has the same trend
as in the Movielens case: for PSOM it is always highelt0l
than for SOM, since the change is not toward the samples

themselves.

In this paper, we presented an extended version of SOM
using the likelihoods from probabilistic PCA method. Com{12]

IV. CONCLUSION

paring results of both the PSOM and SOM, the extended

version with likelihood information finds better solution i

terms of neurons’ weight adjustments. The update rule of
standard SOM moves neurons towards samples themselﬁ
while probabilistic SOM uses additional information an

updates the center of attraction accordingly. New updat?]

equations try to fit a map which has evenly spread out

neurons in the input space. For maps of various sizes the)

probabilistic approach always gives slightly better resul

where the difference starts to diminish and eventuaIIySurrhﬂ

negative (combination o1 x 31 SOM for A and51 x 51

SOM for ST) as the number of neurons increases. Sinda8l

PSOM has more empty neurons it can be effectively used

for data compression, while retaining the good spread ¢f9]
neurons over SOM. The drawback of the proposed extension

are small values for the variances in the later stage of t
algorithm, preventing significant updates to the weights of

the map. One possible way of preventing this effect is to ude?l

validation data to determine this parameter.

Even though the proposed extension of the SOM has
negative impact on the final performance, it still can be used
in an ensemble with other models. This is the approach of
many top teams in the Netflix competition. With ensemble

approach, the performance of each separate method is not as

important as their wide variety for the performance of the
ensemble.
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