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ABSTRACT 

The cognitive assembler is an analogy to the computer 
assembly language. It is a model to describe an elemen-
tary level of instructions in a brain. It analyzes the behav-
ior of a brain but in a higher level than neuronal, it wraps 
details of neuronal computations into symbolic instruc-
tions. 

We will try to use this cognitive assembler to more 
closely and finely describe the behavior of a brain ob-
served in experiments. We formulate hypotheses about 
how the execution of basic instructions in a brain should 
be driven. 

1. INTRODUCTION  

The assembly language or sometimes known as an as-
sembler is a low-level programming language describing 
instructions for the processor. Using symbolic abbrevia-
tions it expresses elementary operations that the proces-
sor is able to execute. During normal work we do not ob-
serve this level of operation. The executed instructions 
give rise to a high level user friendly interface. 

Although the level of the assembler is low it is possi-
ble to go lower: we can observe the stream of bits in the 
memory, or even watch the electric signal measured on 
the given pin outs. 

We use many methods to investigate cognition. On 
the one end of the pole we observe EEG, i.e. voltage 
outputs of real neuron cells, or we use neural networks to 
simulate these potentials. On the second end of the pole 
we observe behavior of animals or people, we investigate 
their reactions or we try to model them. Surely there exist 
many methods between those poles, but we think the part 
analogical to the computer assembler is not covered by 
the current research. 

The task of the cognitive assembler is to describe the 
function of neural networks on a higher level, to cover 
details of neuronal computations into symbolic instruc-
tions and so provide a possibility to break the behavior 
description into smaller components. 
  

2. MOTIVATION AND INSPIRATION 

The knowledge of the processes of the brain can help and 
inspire us in artificial intelligence research. Our goal is to 
better describe these processes. Simultaneously the 

model will provide questions, which will be an inspira-
tion for new cognitive experiments. Eventually when the 
cognitive assembler will be sufficiently described we can 
simulate its instructions and create an artificial mind up 
to the richness as that of the description of the instruc-
tions. 

This article freely follows the ideas drawn in [2]. 

3. PRINCIPLES, RESOURCES AND 

ASSUMPTIONS 

3.1. Biological plausibility  

The brain and the nervous system work on the basis of 
neurons. The assembler instructions must be executable 
by a neural network or have to correspond to a chemical 
effect of hormones. An expert on neural networks has to 
declare that he is able to construct a neural network 
which could execute a given instruction, or there should 
be a neuroscientist who can declare that there is a part of 
brain which carries out what the instruction does. 

3.2. Minimality of instructions and structures 

It is desired that only a small number of instructions is 
used. If we would need a new instruction or change the 
structure of the data with which we work for each new 
type of behavior we want to describe, we cannot expect 
that our system would be complete and general. We 
would probably have to change it again for a new re-
quirement. 

However if we can cover many types of behavior by a 
small number of instructions, we are on the right truck.  

The brain thinks in many ways but we are seeking 
relatively simple principles. We cannot afford to encode 
new incoming meanings by new ways. The representa-
tion of meanings has to be free: must not be explicitly 
provided by the programmer but has to be created in the 
model. 

3.3. Autonomous control 

Our model of the cognitive assembler has to describe the 
way of control of the execution, and input of instructions. 
We cannot expect that an external teacher will provide 
patters to learn from. An animal or a human brain finds 
these patterns by itself, so must our model. We will pro-
pose some general rules which our model will use. 



3.4. The brain as a happiness machine 

We will hold that the brain follows its own satisfaction, 
its own happiness. This principle might seem too egoistic 
or too biased, because a human does not follow only his 
own interests. But we can argue that a good man feels an 
adequate satisfaction when he acts right, does what he 
considers fair. And this satisfaction can be higher than an 
ephemeral or a bodily pleasure. 

In this sense is this machine to be understood. It tries 
to reach the most satisfactory state in a given situation. 
The attractiveness of the state does not have to be stable. 
It can change during life as a result of nurture or experi-
ence. 

3.5. Recognition 

  
We assume that the brain can recognize a situation which 
has already occurred. We will recall the semantics of 
discrimination criteria, proposed in [4] and developed in 
[3]. 

The input for the discrimination is the sensory per-
ception and the internal state. Let the inputs from sensors 
come as a vector and the internal state as a set of pairs 
(state, activation ratio). 

The discrimination criteria is a function from the in-
put into the interval <0,1> determining how the situation 
corresponds to the given state. 

It is possible to use a large number of functions from 
a linear classifier (e.g. perceptron) to a complex qualita-
tive criterion, e.g. a formal language, deciding whether 
the input word belongs to the specified language. 

  
  

4. MODEL 

  
The basis for the model is a varying valuated graph 

with vertices and two types of edges between them. We 
will describe the graph using the following language. 

  

4.1. Graph of meanings, associations and actions 

4.1.1. The states -- vertices of the graph 

They represent meanings, which the brain has found and 
has assigned them a discriminating criterion.  

Example: a, b, c 

4.1.2. The emotional value of the state 

For each state there is one real number, it is a preference 
of the state - how “good” is the state, how happy the 
brain feels when this state is activated.  

Example: motivation(a) = 0.8 

4.1.3. Valuated non-oriented association edges 

The value represents the measure of the association bind-
ing between those two meanings and it is a real number. 

Example: assoc(a ,b) = 0.75 

4.1.4. Valuated oriented action edges 

The orientation represents the starting point and the 
goal of the action. The action itself is defined as an out-
put vector sent on effectors, e.g. muscles. The value 
represents the probability perceived by the model that the 
given action will result in the goal state.  

Example: act(catch_mouse , has_mouse) = 0.5 

4.2. Model  functionality 

We can imagine the behavior of the model approxi-
mately as a finite-state automaton. Our model resides in 
many states simultaneously, and simultaneously moves 
between them. When the model moves, it executes cho-
sen actions between the states. The structure of the graph 
can evolve by the time. 

The selection of states and actions depends on which 
states is the model in, on their valuation and their exis-
tence and the valuation of edges. 

The states which the model resides in express the 
scope of its thoughts and attention. We will use the fol-
lowing notation. 
  

4.3. Focus and control of the attention, recognition of 

the situation  

The focus to the current states we denote by a set of pairs 
(state, real number) 
 
Example:  

focus = {(a,0.9),(b,0.5),(c,0.1)}  
 
This means that three states are activated, first of 

them strongly, the situation experienced is very likely a, 
second expresses that the situation can be described as 
"partly holds b" and the third is a non-important, but ex-
isting association with c. 
  

4.4. Selection of goal and action 

  
Our model selects goal states according to their motiva-
tion. It uses two simple searches. First, it finds adjacent 
vertices via associative edges and tests their discrimina-
tion criteria. It resembles thinking about the current 
situation. 

Then we search action edges. We examine each pos-
sible action from the current set of states. The action we 
can execute will be evaluated according to which states it 
results. The resulting set of states is expanded by the first 
type of search. Finally, the action is evaluated according 
to the motivation of the set states. 

The best action will be executed. 
  

4.5. Changes in the graph structure 

  
Our model can change the structure of graph ("learn") 
during the movement between states and experiencing 
external stimuli. These are possible operations: 
  



− create a new state 
− create or increase an association 
− delete a state 
− decrease or delete an association 

  
The modification of association bindings will be 

automatic according to the Hebb's rule. Each time when 
two states are excited (focused) concurrently, their asso-
ciation increases, and vice versa.  

It is practical to have a threshold here. If the associa-
tion value exceeds this threshold, we will consider the 
edge as created; in the case that the value is less than the 
threshold we will consider the edge as deleted. 

  
A new state will be created when the model registers 

something new, which is different from previously rec-
ognized meanings. The newly created state is empty, 
only a discrimination criterion is set according to the new 
fact in the current situation.  

Let's imagine a familiar room. We see and recognize 
a table, which has a state assigned to it. The room itself 
also has an assigned state. This state is associated with 
the state representing the table and states representing 
other pieces of furniture which we see in the room. 

Suddenly somebody puts a new vase on the table. 
Other objects are not changed; the only thing which is 
new here is the vase. The visual system can compare the 
image of the room without the vase and with the vase. It 
separates a new object and its discrimination criterion 
will be a mask created from the difference between those 
images. 

At this time we do not deal with the risk of too many 
new states. 

  

4.5.1. Creation of abstractions  

By the term abstraction we mean a mechanism which 
extracts common properties and ignores non-important 
differences. It groups many observed events into one and 
so it enables adaptation and the advantage of prediction 
of the future. It can also serve as a novelty detector when 
creating new states. 

 
1. There are states a1, a2,..., ai.. 
2. We try to generalize them into a new state a'. 
3. The new state is valuated according to the states 

a1, a2,..., ai so that it represents an abstraction of 
these states. 

 
The simplest example of this abstraction mechanism 

is a simple comparison. If there is a complete equiva-
lence, the states will be grouped together. We can im-
prove it so it ignores a given number of differences. 

Another well-known mechanism is a neural network. 
Another example can be a compression algorithm. It 

can distinguish static and dynamic properties. Static 
properties have to be written only once, and dynamic 
properties are generated according to the formula found. 
Again we see an ability to predict: if the data do not con-

tain unpredicted events it does not have to code the 
change and the resulting compressed file will be smaller 
in size. 

We see that in a different situation a different mecha-
nism can be used. We will not prescribe now which is to 
be used. We plan to test our model with the increasing 
complexity of these abstraction mechanisms. 
  

5. TESTING OF THE MODEL 

  
Our model, even in the case that it satisfies our intuition 
about biological processes in the brain is still only a 
theoretical construction. It is desirable to compare it to 
the reality. We can do this in two steps: 
  

1. Try to use the model to explain real experi-
ments, where the mapping from a real behavior 
to the model is done by hand. 

2. Simulate the model and compare its behavior 
to reality. 

  
The first step is appropriate in the beginning. It en-

ables us to bridge over doubts and to find out whether 
the model is in principle viable for following research. 
Here we test, if the model has a sufficient expression 
power to express the behavior. We observe the holes in 
the model and we try to help it, here we have to improve 
the model. 

This brings a risk of making the model vague, the 
help being too intelligent and not being able to reproduce 
it later in a program. 

If we are done with the first phase, we can proceed to 
the second step. All help is here prohibited: the algorithm 
has to run automatically. 

We are now in the first phase. We present an exam-
ple, how the experiment description could look like. 

  

5.1. Description of an real experiment: Monkeys and 

dogs 

  
Experimenters [1] were investigating cognition of 

chimpanzee and dogs. After a hint from the experi-
menter, the animal should choose from two offered con-
tainers. One of the container contained hidden food. 

The dogs were more successful when the hint was in 
a social form, e.g. pointing.  

The monkeys were better when the hint was causal, 
e.g. a shaking container.  

5.2. Our description of the experiment 

 
1. motivation(food)=1 

motivation(no_food)=0 
The food is a stable motivation for an animal. 
 
2. act(bucket_with_food,open, food)  
If a bucket contains food, we gain food. 
 



 
3. act(bucket_without_food,open,no_food) 
If a bucket does not contain food, we do not gain 
food. 

 
4. motivation(bucket_with_food)=1 

motivation(bucket_without_food)=0 
The valuation of the container is similar to what it 
contains. The valuation is transferred from the 
food to the container. 

 
5. focus = {(pointed_bucket, 1), 

(bucket_contains_food, 1)} occurs often →  

assoc(pointed_bucket, 

bucket_contains_food) will increase 
We learn that the container which has been 
pointed to is the container with food. 
 
6. focus={(not_pointed_bucket, 1), 

(bucket_does_not_contain_food, 1)} occurs 
often → assoc(not_pointed_bucket, 

bucket_does_not_contain_food) will increase 
We learn that the container which has not been 
pointed to is not the container with food. 
 
7. motivation(pointed_bucket) = 1 

motivation(not_pointed_bucket) = 0  
We learn that the container which has been 
pointed to is the good one. 

 
8. focus = {(pointed_bucket, 0.5), 

(not_pointed_bucket, 0.5)}  
We see both containers, one is pointed to. 

 
9. That leads to focus={(pointed_bucket, 1)} 
We transfer attention to the good one. 

 
10. This leads to "open" action. 

 
11. Food is a reward. 

  
We can draw a similar scheme not only for a con-

tainer which has been pointed to, but also for the con-
tainer which was shaken. The difference between dogs 
and monkeys can we assign to the motivation to observe 
the gesticulation, which is important for association in 
the fifth and the sixth step. 
  

6. CONCLUSION 

  

6.1. General questions 

  
What is the minimal starting knowledge to begin a rea-
sonable simulation? What do we need to boot the cogni-
tive process? Which meanings have to be given − innate? 
Which meanings is the model able to learn and which 
not? And what are the conditions for it? 

  

6.2. Implementation questions 

  
How to implement the abstraction − generalization? 
What differences in learning do we gain for a different 
abstraction mechanism? How to set the constants for 
states and operations with them? What results do we ob-
tain for different constants? 
 

6.3. Related work 

There exist a handful of cognitive architectures, which 
we have not thoroughly analyzed up to this time. We of-
fer a short comparison with one of them. 

CLARION [5] distinguishes between implicit and ex-
plicit processes. This distinction is not present in our 
model. Its action decision making algorithm can be com-
pared to ours. CLARION incorporates action-centered 
and non-action centered subsystems, contrary to our 
model, where general knowledge inference and decision 
making is integrated in one structure. A more detailed 
comparison with this architecture could be a source of 
inspiration for us. 
  

6.4. Summary 

  
We presented a model inspired by our belief that neural 
structures in a biological brain are able to create associa-
tions between meanings, enable the model to create an 
abstract generalization and can recognize learned facts. 
We tried to capture their work in a propositional sym-
bolic form. We ignored the details of neurons and the de-
tails of an implementation of concrete neural networks 
which would be capable to realize these operations. 

Instead of that we proposed a dynamic data structure 
which enables a parallel run of cognitive threads. It also 
enables a fuzzy evaluation. We were motivated by a de-
sire to create a simple but general structure, able to cre-
ate states representing new meanings. We thus avoided 
the need to define them explicitly. Planning of the next 
action is based on a motivational component of mean-
ings. The structure - graph with parallel states valuated 
by a motivation enables short term and long term plan-
ning and can abandon the original plan. We illustrated 
the model in a short example. 

Our model provides a lot of questions and opens pos-
sibilities for a future work, the clarification of the model 
and its testing. This is the subject of a future research.  
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