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Studying the patterns and properties of graph data is
important in many application areas. A crucial ques-
tion remains still largely ignored: how signi�cant are
the data mining results found on the graph data? Cur-
rently, the results are mostly justi�ed by the optimal
or near optimal value of the de�ned objective func-
tion. We study randomization techniques for testing
the statistical signi�cance of graph analysis results.

1. Preliminaries

We study unweighted undirected graphs G. We con-
sider the following statistics to describe a part of the
structure of a graph: degree distribution, average clus-

tering coe�cient and characteristic path length. The
clustering coe�cient of a node v ∈ V (G) is the fraction
of links the neighbors of the node have among them
with respect to all possible such links. The character-
istic path length of a graph is calculated as the mean of
all pairs shortest paths between the nodes of a graph.

We base our analysis on statistical hypothesis testing.
We denote a test statistic as S = S(A(G)) ∈ R, where
A is the used data mining algorithm and A(G) is the
result of the algorithm on graph G. The statistic could
be de�ned, for example, as the value of the objective
function: the value of the minimum cut in graph clus-
tering. However in principle, it can be any function
from the space of results to a real number. The null
hypothesis H0 is that for all graphs G that satisfy the
given constraints, the values of S(A(G)) follow the
same null distribution Π0. We �nd Π0 by random-
ization, where the basic idea is to perturb the original
data and carry out the experiments with the random-
ized version of the data. The randomized data can
be thought to be sampled from a distribution, de�ned
such that the chosen properties of the original data

are maintained with a su�cient precision. When the
randomization is performed several times, the experi-
ments with the random data yield a set of values for
the test statistic, which follow the null distribution Π0.
These are used to de�ne an empirical p-value, which
is the fraction of test statistic values that are more
extreme than the test statistic value for the original
data. The signi�cance test entails a de�nition of a
signi�cance level α, which is the maximum p-value al-
lowed to reject the null hypothesis. We use α = 0.05.

2. Graph Randomization

All our randomizations preserve exactly the number
of nodes and edges, as well as the degree distribu-
tion or individual node degrees, which are intuitive
descriptors of a graph. We also study cases where the
user may select additional graph statistics that are ap-
proximately preserved, such as the characteristic path
length or the average clustering coe�cient.

Let ρ0(Gs) be the distribution such that all graphs
with a given number of nodes and edges and a certain
degree distribution are equally likely. Our solution is
to allow the user to de�ne a distribution ρ(Gs) from
which the random samples will be drawn. In this pa-
per, we will use a Gaussian distribution centered at the
value of the preserved statistic of the original graph,

ρ(Gs) ∝ N(R(Gs)−R(G), σ2)ρ0(Gs), (1)

where N(·, ·) denotes a Gaussian probability density
function with a given mean and variance, and R(Gs) ∈
R and R(G) ∈ R describe the value of the graph statis-
tic in the sampled and original graphs, respectively.
We denote by Uniform the randomization that pre-
serves only the degree distribution, ρ(Gs) = ρ0(Gs).
The additional constraints that preserve the average
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clustering coe�cient and the characteristic path length
are denoted by AvgCC and CPL, respectively. In other
words, R(Gs) is de�ned as the average clustering co-
e�cient of Gs for AvgCC, and as characteristic path
length for CPL.

3. Markov Chain with Swaps

In this section, we describe three MCMC methods of
backward-forward sampling (Besag & Cli�ord, 1989)
for the randomization to obtain the samples from
ρ(Gs). This sampling method guarantees that the p-
values we obtain are conservative, that is, even if the
MCMC has not converged we should obtain p-values
that are no less than the true p-values.

Let a swap be a distortion in a graph consisting of
the exchange of an edge between two nodes. We pro-
pose to use Markov chains to construct the samples
of randomized graphs by means of swaps. The idea
of our solution is that we start the Markov chain from
the original graph, and make small random distortions
that will a�ect at most two edges. These swapping
distortions are designed to preserve the degree distri-
bution of the original graph at all times. By means of
applying these distortions as long as is needed for the
chain to mix, we will arrive to a randomized graph,
di�erent from the original one.

Since the swaps are small changes, we call two graphs
adjacent if they can be reach from one another by a
single swap. Using this de�nition of adjacency, each
graph corresponds to a state in the Markov chain. The
chain is reversible, in that for each single swap, we can
perform a corresponding reverse swap. However, the
chain is not regular, since the number of graphs one
can arrive to varies among di�erent graphs. We make
the chain regular by considering all illegal swaps as
being a self-loop to the current state (Gionis et al.,
2006). A swap is illegal, for instance, if it would result
in duplicate edges. If we de�ne all swaps equally likely
and each state has equal number of swaps, be it legal
or not, the degree of each state is constant because of
the self-loops, and hence the chain is regular.

We propose three di�erent edge swapping methods.
The �rst method, XSwap, follows the idea in (Gio-
nis et al., 2006) and is used in bioinformatics (Sha-
ran et al., 2005). XSwap selects two random edges
and swaps two endpoints together, as illustrated in
Figure 1a. The swap has the property that it main-
tains the individual node degrees as well as being very
general. XSwap does not maintain connected compo-
nents in the graph, and therefore, we propose another
swap, called LocalSwap, that does not mix edges be-

(a)
XSwap

(b) Lo-

calSwap

(c) Flip

Figure 1. Di�erent swaps for randomization. The Flip in
c) is further conditioned with |δ(n) − δ(l)| = 1, where δ is
the degree of the node.

tween connected components and respects the locality
of connections. Figure 1b illustrates the LocalSwap.
In some situations the individual node degrees do not
matter and preserving them could be excessively re-
strictive. Therefore, we propose a third swap called
Flip, which is illustrated in Figure 1c. A random edge
and a node are selected. Then either endpoint is se-
lected at random and the swap is done if the degree
of the endpoint di�ers by one of the degree of the sin-
gle selected node. This operation maintains the degree
distribution, but changes the individual node degrees.
Flip allows the graph to change more freely.

If ρ(Gs) is de�ned as Uniform, using one of these swaps
is all that is required for the Markov chain will con-
verge to that distribution. However, if ρ(Gs) is not
uniform, the swapping needs to be further controlled.
We use Metropolis-Hastings (Hastings, 1970) approach
to de�ne state transition probabilities to make the
Markov chain have the required steady state distri-
bution. The swap from a graph G to a graph G′

is performed with the Metropolis-Hastings probability

min(1, ρ(G′)
ρ(G) ), where ρ(G) is the user de�ned distribu-

tion. Because of this, the Markov chain will have the
steady state distribution ρ(G), which is the distribu-
tion we want to sample from.

Related Work: Statistical signi�cance testing on
graphs is not a new discovery. Bioinformaticians
use constructive graph models to de�ne p-values for
graphs (Koyutürk et al., 2007). Some use Monte Carlo
swapping methods to sample graphs, and to de�ne
some empirical probabilities (Sharan et al., 2005). Our
work extends these methods by di�erent swappings
that can preserve graph statistics.

4. Experiments

We use �ve di�erent real datasets: Zachary, Adjnoun,
Football, Power and Compound. Our experiments fo-
cus on the applications of graph clustering and graph
pattern mining, but the proposed methods are not lim-
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ited to these examples. For each setting, the conver-
gence of the Markov Chain was determined by carrying
out swaps long enough to see the Frobenius distance
between the current and original graph settle.

Using the Zachary, Adjnoun, Football and Power
datasets, 100 random graphs were generated for all
pairs of an algorithm and a statistic; except for Power
and CPL due to the dataset being too large to use
with CPL in a reasonable time. After all the ran-
dom samples were generated, the graphs were clus-
tered with Graclus, readily available from the authors'
site1 as well as a spectral graph clustering method (Yu
& Shi, 2003). The algorithms were used to cluster
individual graphs from two to 15, 30, and 50 clus-
ters, for Zachary, Adjnoun and Football, and Power
datasets, respectively. For each clustering, the min-
imum cut value, the value of the objective function
selected as the test statistic, was stored. Finally, the
p-value for each combination of algorithm, dataset and
graph statistic was calculated by taking the fraction of
minimum cut values for randomized graphs that were
less than the minimum cut value for the original graph.
Results for Zachary and Adjoun are depicted in Fig-
ures 2, 3. All results were signi�cant for the Power
dataset, whatever the setting.

Figure 2. Results for Zachary dataset, all randomization
algorithms and AvgCC as graph statistic. The continuous
horizontal line signi�es the α = 0.05 con�dence threshold.
The p-value rapidly increases to around one at 8 clusters
and stays there for several number of clusters. The reason
for this is that when the original data is clustered, there is a
limit to how many reasonable number of clusters the graph
can be divided to. When this value is exceeded, the algo-
rithm has to produce cluster borders within clusters, which
results in a high value for the objective function. Since the
random graphs do not have this structure, adding one clus-
ter more makes no big di�erence. Hence the rapid incline.
Additionally, p-values for spectral clustering did not ex-
ceed the α threshold around 5 clusters. Graclus seems to
have trouble clustering to around �ve clusters, which could
be caused by the approximate nature of the algorithm in
combination with this dataset.

For the pattern mining experiments, we �rst generated

1http://www.cs.utexas.edu/users/dml/Software/
graclus.html

Figure 3. Results for Adjnoun dataset, all randomization
algorithms and CPL as graph statistic. The continuous
horizontal line signi�es the α = 0.05 con�dence threshold.
The p-values vary greatly when the number of clusters is
changed, which is consistent with Adjnoun being sampled
from ρ(Gs): a p-value of a graph sampled from ρ(Gs) is
uniformly distributed in [0, 1].

an arti�cial dataset and ran the experiments with it.
We used the FSGalgorithm, which is a part of Pa�2,
to �nd the frequent subgraphs in this database. We
run the tests with di�erent minimum support values to
see if there is any di�erence. From the results with the
original graphs, frequent patterns were stored as well
as their support. The p-value of a pattern was taken to
be the fraction of randomized graphs with a support
higher than the original graph. The results showed
that, for both arti�cial and Compound datasets, all
the patterns found by the FSG were not signi�cant,
but still more than half of them always were. The
additional constraint of restricting the randomizations
to maintain AvgCC did not have much e�ect.
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