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Abstract

This work introduces a link-based covariance
measure between the nodes of a weighted, di-
rected, graph where a cost is associated to each
arc. To this end, a probability distribution on
the (usually infinite) set of paths through the
network is defined by minimizing the sum of the
expected costs between all pairs of nodes while
fixing the total relative entropy spread in the net-
work. This results in a probability distribution
on the set of paths such that long paths (with
a high cost) occur with a low probability while
short paths (with a low cost) occur with a high
probability. The sum-over-paths (SoP) covari-
ance measure is then computed according to this
probability distribution: two nodes will be highly
correlated if they often co-occur together on the
same — preferably short — paths. The resulting
covariance matrix between nodes (say n in total)
is a Gram matrix and therefore defines a valid
kernel matrix on the graph; it is obtained by in-
verting a n X n matrix. The proposed model
could be used for various graph mining tasks
such as computing betweenness centrality, semi-
supervised classification, visualization, etc.

1. Introduction

Network and link analysis is an important, growing,
field that has been the subject of much recent work
in various fields of science: applied mathematics, com-
puter science, social science, physics, pattern recogni-
tion. Within this context, one key issue is the proper
definition of a similarity measure between the nodes
of the network, taking both direct and indirect links
into account (some examples are [2, 3, 5, 7]). This
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paper precisely proposes such a similarity measure,
taking the form of a covariance matrix, by extend-
ing the framework developed in [6] in the context of
routing. This quantity will be called the sum-over-
paths (SoP) covariance and has a clear, intuitive,
interpretation: two nodes are correlated if they often
co-occur on the same — preferably short — paths (in-
cluding cycles). To this end, a probability distribution
on all possible paths through the network, inspired by
[1], is defined by adopting a sum-over-paths statistical
physics framework. This results in a probability distri-
bution on the (usually infinite) set of paths such that
long paths occur with a low probability while short
paths occur with a high probability. The covariance
measure between nodes is then computed according to
this probability distribution. It characterizes the rela-
tions between the nodes and depends on a parameter,
6, controlling the entropy (exploration) spread in the
network. Of course, the set of paths does not need to
be enumerated; the covariance matrix is obtained by
inverting a n X n matrix.

2. The SoP covariance measure

Basic notations and definitions. Consider a
weighted directed graph or network, G, with a set
of n nodes V (or vertices) and a set of arcs E (or
edges). The graph is supposed to be strongly con-
nected. To each arc linking node k& and node k', a
number cgrr > 0 is associated, representing the im-
mediate cost of following this arc. The cost matrix
C is the matrix containing the immediate costs cpp’.
In a first step, a random walk on this graph is de-
fined in the usual way. The choice to follow an arc
will be made according to transition probabilities rep-



The Sum-Over-Paths Covariance: A novel covariance measure between nodes of a graph

resenting the probability of jumping from a node k to a
node &’ belonging to the set S(k) of neighboring nodes
(successors S). The transition probabilities defined on
each node k will be denoted as pyr = P(k'|k) with
k' € S(k). Furthermore, P will be the matrix con-
taining the transition probabilities pyx as elements. If
there is no arc between k and k', we simply consider
that ¢ takes a large value, denoted by oo; in this
case, the corresponding transition probability will be
set to zero, prrr = 0. The natural random walk on the
graph will be defined by pi<f, = ¢,/ 37, ¢ and the
corresponding transition-probabilities matrix P*f. In
other words, in this natural random walk, the random
walker chooses to follow a link with a probability pro-
portional to the inverse of the immediate cost, there-
fore favouring locally links having a low cost. These
transition probabilities will be used as reference prob-
abilities later; hence the superscript ref.

Definition of the probability distribution on the
set of paths. Let us first consider two nodes, an
initial node ¢ and a destination node j. We define
the (possibly infinite) set of paths (including cycles)
connecting these two nodes as R;; = {g,is}. Thus,
@pi; is path number 7%, with path index r% ranging
from 1 to co. Let us further define the set of all paths
R = Uij Ri; and a probability distribution on this
set R representing the probability P(p,.;) of following
the path numbered 7. The main idea will be to use
the probability distribution P (g, ) minimizing the ex-
pected cost-to-go among all the probability distributions
having a fized relative entropy with respect to the nat-
ural random walk on the graph. This choice naturally
defines a probability distribution on the set of paths
such that long paths (with a high cost) occur with a
low probability while short paths (with a low cost) oc-
cur with a high probability. Let us also denote as F,.i;
the total cost associated to the path g,.;, referred to
as the energy associated to that path. We assume
that the total cost associated to a path is additive,
ie. B(pyis) = Y4 ¢k, k, where kg = i is the initial
node and k¢, = j is the destination node; ¢y is the time
(number of steps) needed to reach node j. Here, we
assume that @,:; is a valid path from the initial node
to the destination node, that is, every cg, ,x, # o0
along that path.

We now have to find the path probabilities mini-
mizing the sum of the expected energy for reaching
node j when starting from i. In other works, we
are seeking path probabilities, P(g,), minimizing
szzl i1 P(pri5 ) E(pyis) subject to the constraint
_ZZJ':1 2?1:11)(@#]‘)IH(P(@rif)/Pref(@r“)) = Jo
where P™f(,..;) represents the probability of following
the path p,:; when walking according to the natural

random walk, i.e. when using transition probabilities
pfkf, Here, Jj is provided a priori by the user, accord-
ing to the desired degree of randomness he is willing

to concede. By defining the Lagrange function

L = Z Z (973) E (i)
1,J= 17” 1
+ A Z Z pru erJo
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+ 1% Z Z pr” - 9 (1)
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we obtain the following Boltzmann probability distri-
bution

P(pp) = — Do) [0E (o)) o)
2, 2 Prien) e [-6E (o)

where § = 1/\. Thus, as expected, short paths (having
small E(gp,;)) are favoured in that they have a large
probability of being followed. When 6 — oo, only
shortest paths are considered in R while when 6 — 0
all paths corresponding to the natural random walk
are taken into account, weighted by the likelihood of
that path.

Definition of the covariance measure. We now
show that the sum-over-paths covariance measure
can be computed from a key quantity, defined as
Z =3 i P () exp [~0E(p,i;)] , which
corresponds to the partition function in statistical
physics. Indeed, by taking the second-order derivative
of 6721n Z, we obtain the expected number of times
the link k — k&’ and the link [ — [’ are traversed along
the same path

1 9%(InZ2)
nlk, k' L) = - ———~
77( ) » Y ) 92 acll’ackk’
Z Z pr” J,k,k’)d(?””,l,l/)
1,j=1rii=1
2
S S Rk k| @)
1,j=1rii=1

where 6(r%; k, k') indicates the number of times the
link k — k' is present in path number 7%, and thus
the number of times the link is traversed. This last
quantity clearly corresponds to the covariance be-
tween link k¥ — &’ and link [ — .

Now, the SoP covariance measure between node
k' and node !’ is simply defined as cov(k',l') =
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Son 1Tk, K';1,1") which corresponds to the main
quantity of interest.

Computation of the partition function Z. By
using a trick introduced in [1], we now show how the
partition function can be computed from the cost ma-
trix (see [6] for details). Indeed, let us first build a new
matrix, W = P™ o exp [-0C] = exp [-C + In P™] |
where P is the transition-probabilities matrix con-
taining the pgekf,, and the logarithm/exponential func-
tions are taken elementwise. Moreover, o is the ele-
mentwise (Hadamard) matrix product. Furthermore,
let Z = (I— W) " and the element i, j of Z be Zij. A
few calculus shows that the partition function Z can be
computed through Z = z4e — 1 Where z4¢ = EZ]’:I
(see [6] for a similar derivation in another context).
Computation of the covariance measure. Tak-
ing the second-order derivative of #~21n Z as in Equa-
tion (3) and rearranging the terms (the calculus is
quite similar to the one appearing in [6]) yields the
covariance between node k and node I:

1
cov(k,l) = E{(z.k — 1)2keOkt + 2ke(Zer — 1) (211 — O1)

Zij

ZkeZle(Zek — 1)(zer — 1)
ke 2l k > l }

where dy; is the Kronecker delta and zp, = Z?Zl 2k
The matrix made of the z;; is positive semi-definite
and therefore defines a valid kernel on the graph.
On the other hand, the correlation between nodes
can be computed in the usual way by cor(k,l) =
cov(k,l)/+/cov(k, k)cov(l,1)

+210 (2o — 1) (201 — Op1) —

3. Preliminary experiments

Preliminary experiments on semi-supervised classifi-
cation of unlabeled nodes have been perfomed on the
Texas Cocite dataset (described in [4]) and on other
data sets not reported here. We compared the pro-
posed SoP correlation kernel to (i) the normalized
commute-time (NCT) kernel [7], (ii) the commute-
time (CT) kernel [3], (iii) the diffusion map (DM)

kernel [5, 3], (iv) the regularized Laplacian (RL) ker-
nel [2, 3] and, as a baseline, (vi) the Netkit (Netkit)
framework described in [4] with the default parame-
ters present in the framework, which generally provide
good results. A kernel alignment procedure is used in
order to classify the unlabeled nodes, as described in
[7], for each of the five kernels.

The classification accuracy is reported for increasing
labeling rates, i.e. proportion of nodes for which the
label is known. The labels of remaining nodes are re-
moved and used as test. For each considered label-
ing rate, 100 random node label deletions (100 runs)
were performed, on which performances are averaged.
The hyper-parameters of each algorithm have been
tuned within each run by using a nested 5-fold cross-
validation. The classification rates for increasing pro-
portions of labeled nodes are reported in the figure
hereabove. By examining the results, we observe that
the sum-over-paths kernel provides competitive results
in comparison with the other standard kernels on a
graph. This has been confirmed on various other data
sets showing that the SoP and the NCT kernels are
showing the best performances.
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