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Abstract   

The EKOSS system has been developed to let 
knowledge experts create computer-interpretable 
semantic descriptions based on description logics 
ontologies to describe their knowledge resources. 
A method for using graph mining to find 
common semantic patterns in the set of semantic 
descriptions is introduced. Special characteristics 
of semantic descriptions that make them more 
complicated than the labeled graph are analyzed, 
and a semantic graph mining algorithm that uses 
a description logic reasoner to check the 
common semantic patterns is described. 
Application of the semantic graph mining 
approach to the set of 203 semantic descriptions 
of engineering failures is presented.   

1.  Introduction 

The Expert Knowledge Ontology-based Semantic Search 
(EKOSS – www.ekoss.org) system has been developed to 
support a form of computer-mediated sharing, discovery, 
and integration of expert knowledge not possible with 
simple key word indexing (Kraines et al., 2006). In 
EKOSS, each knowledge resource is represented by a 
computer-interpretable semantic description using a 
domain ontology grounded in a description logic (DL) 
(Baader et al., 2003). A semantic description is 
formulated as a DL assertion component or ABox 
populated by instances of the classes that are specified in 
the DL terminological component or TBox provided by 
the ontology. The DL ABox can be represented as a graph, 
where the instances form the graph vertices and the 
properties form the graph edges.  

Common knowledge, such as general or reoccurring ideas, 
can be elucidated from a set of knowledge resources, such 
as a knowledge base of case histories of engineering 

failures, by mining the corresponding set of semantic 
descriptions to find common semantic patterns meeting a 
prescribed minimum support of occurrence. One 
important problem is that a DL ABox is more 
complicated than the normal labeled graph. For example, 
properties connecting instances in DL ABoxes can be 
transitive, symmetric, and/or inverses or subproperties of 
other properties. Existing graph mining algorithms cannot 
address these characteristics (Section 2).  

————— 
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This paper presents a new approach using a DL reasoner 
to solve these issues. In section 2 we review the existing 
graph mining algorithms that are related to the task we 
have framed.  In section 3, we discuss the salient 
properties of semantic graph mining and give definitions 
of semantic descriptions and common semantic patterns 
in terms of graph mining. In section 4, we present an 
algorithm to mine a set of semantic descriptions. In 
section 5, we describe an application of this approach to 
semantic descriptions of engineering failures. Section 6 
concludes the paper. 

2.  Related Work 

Research in Knowledge Discovery and Data Mining has 
led to development of several algorithms that can find 
characteristic patterns and generalized knowledge from 
large sets of structured data, such as transaction data, 
sequences, vectors, time-series, geographical data, multi-
relational data, graphs, and trees, and even semi-
structured or unstructured data. Rajaraman describes a 
method for mining a kind of semantic networks for 
knowledge discovery from text that uses a concept frame 
graph (CFG) to represent a concept in the text (2003). 
First they construct CFG’s from a set of documents. Then, 
they mine the CFG’s to get frequent CFG’s. However, 
this method does not use the a priori semantic structure of 
concept labels, and each CFG is a simple semantic 
network with one center concept and some other related 
concepts. The mining process extracts frequent concepts, 
not frequent semantic subgraphs.  
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Inokuchi, Washio, and Motoda developed the AGM 
algorithm to mine frequent patterns from graphs (2000). 
This algorithm derives all frequent induced subgraphs 
from both directed and undirected graph structured data. 
The graphs can have loops (including self-loops) and 
labeled vertices and edges. An induced subgraph can be a 
connected or unconnected graph. Since in many 
applications, such as the one that we are studying, the 
patterns of interest are connected graphs, Inokuchi 
developed an extension of AGM called AcGM (2002). 
AcGM uses algebraic representations of graphs that make 
possible operations and well-organized constraints to limit 
the search space efficiently. AcGM can mine generalized 
patterns where vertices and/or edges have labels at any 
level of a taxonomy by extending the definition of 
“subgraph.” However, the extended method outputs a 
massive set of patterns, most of which are over-
generalized, which causes computation explosion.  

In further work, Inokuchi presented an efficient method to 
discover all frequent patterns which are not over-
generalized from labeled graphs when taxonomies on 
vertex and edge labels are available (2004). This method 
can mine the labeled graph data with taxonomies. 
However, there are important differences between a 
taxonomy and a DL ontology. To our knowledge, mining 
common semantic subgraphs from a given DL ontology 
and a set of semantic graphs representing ABoxes has not 
yet been addressed in the field of graph mining. 

Mooney et al. (2002) applied inductive logic 
programming (ILP) to relational data for link discovery. 
ILP is the study of learning methods for data and rules 
that are represented in a logic such as first-order predicate 
logic. Given background knowledge and a set of positive 
and negative examples, ILP can infer a hypothesis in the 
form of a rule such as daughter(X, Y) <= female(X), 
parent(Y, X). In our work, knowledge is represented in a 
set of semantic descriptions, and DL reasoning is used to 
determine what common semantic patterns appear in the 
set. Instead of background knowledge, we use a DL 
ontology, and instead of positive and negative examples, 
we use a set of semantic descriptions. While the goal of 
ILP is to define the target relation hypothesis, our goal is 
to find common semantic patterns that exist in the given 
set of semantic descriptions. 

3.  Semantic Graph Mining 

A semantic description describes a knowledge resource in 
a computer-interpretable way using a DL ontology. A 
semantic description can be represented as a graph whose 
vertices are instances of classes in the ontology, and 
whose edges are properties that indicate specific semantic 
relations between the instances. This graph is similar to a 
labeled graph; however, the pre-existing structure behind 
a semantic description is different from that of a labeled 
graph: one is an ontology and the other is a taxonomy. A 
taxonomy is a classification of kinds of things into a tree, 

with only one relation operator between entities, the 
subsumption relation. DL ontologies use several relation 
types in addition to subsumption, such as partitive, 
participatory, and locational relations. A labeled graph 
can have two taxonomies: one for vertex labels that 
corresponds to the classes of the ontology and another for 
edge labels that corresponds to the properties of the 
ontology. However, a DL ontology is more than just the 
sum of a taxonomy of classes and a taxonomy of 
properties because classes can be used to specify 
characteristics of properties and properties can be used to 
specify characteristics of classes as described next.  

Urban Region City 

Figure 1. Top: subsumption relationships between ten 
classes in an ontology. Middle: two semantic descriptions 
to be mined. At the left is a Building that has location 
City. The Building is location of an Energy System that is 
location of a SOFC. At the right is a Car that has location 
Freeway that has location Urban Region. The Car is 
location of a PEFC. Bottom: a common semantic pattern 
showing that a Fuel Cell has location some Urban Region. 
The edges in the middle and bottom parts are object 
properties from the ontology whose property names are 
given in italic font. The vertices are instances of classes 
from the ontology whose class names are given in plain 
font. In the ontology, the object property “location of” is 
defined to be the inverse of “has location.” 

In our work, we use OWL-DL, which supports the 
SHION (d) DL, to represent the domain ontology. In this 
DL, object properties, which are relations between 
instances of two classes, can be defined with domain and 
range restrictions that must be fulfilled by the classes of 
the domain and range instances, respectively. Object 
properties can also be specified as transitive, symmetric, 
functional, and inverse functional, and they can be related 
to other properties through subsumption or the inverseOf 
relation.  Properties can be used to specify classes through 
universal, existential, and cardinal restrictions on the 
usage of a particular property with the class.  

We define semantic graph mining to mean mining 
common semantic patterns that satisfy the specified 
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minimum support from a set of semantic descriptions by 
reasoning over a given ontology. A common semantic 
pattern is a semantic description that forms a subgraph 
matching with enough of the semantic descriptions in a 
given set to meet the given minimum support threshold. A 
semantic pattern matches a semantic description if the 
semantics specified in the pattern is included in the 
description. We can determine if a semantic pattern 
matches a specific semantic description by converting the 
semantic pattern to a semantic query and evaluating the 
query against the description using a reasoner, thereby 
elucidating embedded relations in addition to the explicit 
relations in the description graph. As a result, one differ- 
ence between a common semantic pattern and a structural 
subgraph is that a structural subgraph must appear in the 
supporting graph but a common semantic pattern may not. 
This is because semantic pattern matching makes use of 
implicit embedded relationships both in the query and the 
matching description. We use the RacerPro DL reasoner 
to infer if a semantic pattern matches a semantic 
description (http://www.racer-systems.com).  

Figure 1 shows a common semantic pattern found by 
semantic graph mining that does not appear in the two 
semantic descriptions at the structural level but matches 
with the two semantic descriptions in the semantic level. 

4.  Algorithm 

We present an algorithm to handle the added complexity 
in semantic graph mining. First we select a set of classes 
and a set of properties from the ontology that are 
sufficiently general for the goals of the mining task and 
that appear at least once in the set of semantic 
descriptions. Second, we create element semantic patterns 
containing two vertices and one edge using all allowable 
combinations of the candidate classes and properties, 
subject to the domain-range restrictions on properties and 
the universal restrictions on classes. Third, we match the 
element semantic patterns with all of the semantic 
descriptions using the reasoner to get the set of common 
element semantic patterns. Fourth, we use the common 
element semantic patterns to create new level candidate 
semantic patterns, which are then matched with the set of 
semantic descriptions using the reasoner to get the new 
level common semantic patterns. The last step is repeated 
until no more common semantic patterns are found.  

Each new level candidate semantic pattern is created 
based on the previous level common semantic patterns 
and the common element semantic patterns as follows. 
For each previous level common pattern, we try to add a 
new instance by finding a property that can connect that 
instance to one of the existing instances.  We then add all 
combinations of additional allowable properties between 
the new instance and all combinations of the existing 
instances. This step must be done in reference to the DL 
structure of the ontology because the effects of 
restrictions like cardinality are not immediately obvious 

from the individual characteristics of properties and 
classes. Each allowable combination is a candidate pattern 
that must be evaluated by the reasoning engine. However, 
there may be some isomorphic patterns in the candidate 
patterns generated for a level, so we filter the redundant 
candidate patterns before matching them. The overall 
algorithm is summarized in Algorithm 1. 

 

 Algorithm 1 semantic graph mining 
 
 Input: descriptions ds, ontology o, minimum support m 
    classes = set of selected upper classes from o in ds 
    properties = set of selected upper properties from o in 
ds 
    elements = set of all allowable triples (c1, p, c2) for c1 

and c2 in classes and p in properties 
    Initialize commons1 = empty. 
    Initialize count = 0. 
    for each e in elements 
        for each d in ds 
            if e matched d then 
                count = count+1 
        if count >= m * ds.size then 
            commons1 = commons1 + e 
    Initialize t = 2. 
    while commonst-1.size > 0 then 
        Initialize candidatest = empty. 
        Initialize commonst = empty. 
        for each ct-1 in commonst-1 
            ps = createNewPatterns (ct-1, common1, o) 
            if ps.size > 0 then 
                candidatest = candidatest + ps 
        candidatest = Filter(candidatest) 
        Initialize count = 0. 
        for each p in candidatest 
            for each d in ds 
                if p matched d then 
                    count = count + 1 
            if count >= m*ds.size then 
                commonst = commonst + p 
        t = t + 1 
 

5.  Application 

We have applied our algorithm to a set of semantic 
descriptions developed for cases in the Shippai-Chishiki 
Database Project (http://shippai.jst.go.jp/en/Search). The 
Shippai-Chishiki Database contains descriptions of major 
accidents and failures in the fields of mechanical 
engineering, material science, chemical engineering and 
civil engineering. Reusing common knowledge elucidated 
from the failure cases can help to prevent the failures 
from reoccurring (Kraines et al., submitted). In order to 
elucidate common knowledge from the failure cases, we 
applied the approach described in this paper. First, we 
created semantic descriptions for 203 cases in the 
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database using the SCINTENG ontology 
(http://157.82.238.34/ontologies/scinteng20060901.owl). 
There are 1264 classes, 236 properties and 567 
restrictions in the SCINTENG ontology. We then mined 
the semantic descriptions using a minimum support of 
15%. We found 38 candidate classes, 16 candidate 
properties, 96 common element semantic patterns, and 
common semantic patterns up to level 7 (8 instances).  
The number of common patterns for levels 2 to 7 were 
367, 851, 1289, 945, 337, and 59. Figure 2 shows a 5th 
level common semantic pattern that corresponds to the 
natural language statement “an artificial activity 
characterized by a human failure ends in an event 
marking the start of a subsequent natural activity that ends 
in an event involving a specific physical object.” This 
common pattern matches with 46 semantic descriptions in 
203 semantic descriptions (failure cases).  

6.  Conclusions 

Semantic descriptions created in the EKOSS system can 
be expressed as graphs, to which graph mining techniques 
can be applied as a method for knowledge discovery. 
However, an EKOSS semantic description has many 
characteristics that make it more complicated than a 
labeled graph. We have shown that common semantic 
patterns can be mined from a set of semantic descriptions 
through a graph mining approach using a description logic 
reasoner. The approach was applied to a set of 203 
semantic descriptions created for the Shippai-Chishiki 
Database Project, and 59 common semantic patterns 
having as many as 8 vertices were found.   Inspection of 
one of the common semantic patterns found demonstrates 
the potential of the approach for elucidating useful 
common knowledge from dissimilar case descriptions. 

Figure 2. An example of a 5th level common semantic pattern 
mined from the Shippai-Chishiki Database Project.  
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