
A Method to extend Existing Document Clustering Procedures
in order to include Relational Information

Tijn Witsenburg tijn@liacs.nl

Leiden Institute of Advanced Computer Science, Universiteit Leiden, Niels Bohrweg 1, Leiden, The Netherlands

Hendrik Blockeel blockeel@liacs.nl

Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium
Leiden Institute of Advanced Computer Science, Universiteit Leiden, Niels Bohrweg 1, Leiden, The Netherlands

Abstract

We consider the problem of clustering nodes
in a graph, where each node has also internal
content (e.g., the Web, where nodes are web
pages). In this context we can distinguish
two kinds of information: content informa-
tion and structural information. Standard
clustering methods use content information
only, while graph clustering methods are usu-
ally based on the graph structure. Relatively
recently, researchers have proposed to com-
bine both types of information. In this paper
we propose a very simple, yet hitherto unex-
plored, method for doing this by extending
existing clustering procedures that use con-
tent information.

1. Introduction

Clustering is an important task in machine learning.
We can distinguish “standard clustering” algorithms
and “graph clustering” algorithms. In standard clus-
tering, items are clustered according to their similar-
ity whilst not taking into account any relational in-
formation. A distance or similarity function is given
which for any pair of items tells us how similar they
are. In this way a N×N matrix can be created with all
these values. In graph clustering, unlabeled graphs
are considered, where clustering (or partitioning) the
graph typically means finding subgraphs of the graph
such that the number of links connecting different sub-
graphs is as small as possible whilst not taking into ac-
count any information about the content of the node.
Any N × N matrix can be converted to a graph and
vice versa. This raises the question whether, in those
cases where both node content and graph structure are
available (such as the Web), one could find a clustering

method that combines both types of information.
Neville et al. (2003) discuss this problem, and discuss a
number of possible solutions. In the combined method
they propose, the structure of the graph remains the
same; the edges of the graph are given weights that
correspond to the similarity between the nodes they
connect, then a graph clustering algorithm is applied
to them. Neville et al. compare different graph clus-
tering algorithms.
In this work, we take an opposite direction: instead
of introducing the content information in the graph
(in the form of edge weights that indicate the simi-
larity between nodes), we will inject the structure in-
formation into the similarity function, after which a
standard clustering algorithm is used. One could say
that Neville et al. map the hybrid clustering task onto
graph clustering, whereas we will map it onto standard
clustering.

2. The Method

2.1. General Principle

A number of clustering procedures that work on inde-
pendent data sets do this by first creating a distance
or similarity matrix M and then use M to cluster the
items. To create this matrix it is needed to define a
distance or similarity measurement that works on the
features of the items in the data set. This measure-
ment is then used to calculate the value of all elements
in M where mij is the distance or similarity between
each pair of items i and j in the data set.
It could be that items in the data set are not entirely
independent and that there are also relations between
items. To incorporate this relational information, a
new matrix, the adjacency matrix A, is created besides
matrix M . These two matrices are combined with a
method that is based on matrix multiplication. This



results in a new matrix M ′ which then can be used
for clustering the items in the data set, assuming all
constraints on M for the clustering procedure are still
met in M ′. This puts some constraints on the proce-
dure to create M ′.
When the values of M ′ need to be in a certain range,
the correct constants need to be chosen. Another im-
portant constraint is the fact that a distance or similar-
ity matrix used for clustering needs to be symmetric.
Clustering will only go well when the distance from i
to j is the same as the distance from j to i. For both
constraints it will become clearer later on how they are
met. The last important constraint is more intuitive.
When two nodes i and j look alike, they have a small
distance or a high similarity. The values in matrix M ′

should follow the same principle, although their mean-
ing is not completely the same as the meaning of the
values in M .

2.2. Definitions

Consider a data set with N items. Matrix M is a
symmetric N × N matrix where each element mij is
the distance or similarity between nodes i and j. How
these elements are calculated depends on the clustering
procedure we would like to adapt and how this is done
in this experiment will be discussed in section 3.2. Ma-
trix A is an adjacency matrix created from the graph
describing the used relation. In order to ensure the
symmetry of matrix M ′, matrix A also needs to be
symmetric. Therefore an element aij in A is 1 when
there is a relation from i to j or from j to i.
Once M and A are created, any element in M ′ can
be created with equation 1. Notice that when M ′ is
constructed using equation 1 this can also be written
as M ′ = M × A + A × M .

m′
ij =

N∑
n=0

(min · anj) +
N∑

n=0

(ain · mnj) (1)

The practical meaning of the values in M ′ can easily
be understood when taking a closer look at equation 1.
Considering the first part (

∑N
n=0(min · anj)) for every

anj it holds that it is 0 when there is no relation be-
tween node n and node j and 1 otherwise. Thus, this
first part will sum all values min for which anj is equal
to 1. This can be described by saying that the first
part gives the sum of all distances from node i to all
neighbours of j in the graph describing the relations.
Analogously the second part is the sum of all distances
or similarities from node j to all neighbours of i.
In some cases the constraints in section 2.1 are not all
met yet. When examining this more closely, it is best
to keep in mind that whatever holds for the first part
of equation 1 also holds for the second part, but then

with i and j reversed. The first part of equation 1
gives the sum of the distances or similarities between
node i and the neighbours of node j. When j has a
lot of neighbours that look like i, intuitively, it would
be preferred that the value for m′

ij would be such that
the clustering procedure would consider i and j to look
alike.
When M is a distance matrix, nodes that look alike
have a small distance and thus, their value in M is low.
The more small distances are added in equation 1, the
higher its result in M ′. This is the opposite of what is
preferred. Therefore, instead of using the sum of the
distances between i and the neighbours of j it would
be better to use their average value. To ensure this,
equation 1 needs to be extended to equation 2.

m′
ij =

1
2
·

(∑N
n=0(min · anj)∑N

n=0 anj

+
∑N

n=0(ain · mnj)∑N
n=0 ain

)
(2)

The constant ‘1/2’ in equation 2 ensures that all values
in M ′ are in the same range as the values in M . That
was not possible in equation 1.

3. First Results

3.1. Cora Data Set

For our first experiments we used the Cora data set
(McCallum et al., 2000). This is a big data set with
scientific papers divided in 70 classifications. Of 37,000
of these papers the abstracts are available for keyword
extraction and the citations between papers are also
available. The disadvantage of this data set is that it
is created automatically. This has resulted in the fact
that several papers have more than one abstract and
some have more than one classification. Therefore er-
rors in the data set can be expected.

3.2. Setup

First, matrix M was created by creating for every pa-
per the list of words that are in that paper, the so-
called bag-of-words. When bi is defined as the bag-of-
words for paper i, every value in M can be calculated
with equation 3.

mij =
1
2
·
(
|bi ∩ bj |
|bi|

+
|bi ∩ bj |
|bj |

)
(3)

It can easily be seen that this is the average ratio of
words that are in common between two papers. Sec-
ond, matrix A was created by taking into account the
citation relation where aij is 1 when paper i cites pa-
per j or is cited by it and 0 otherwise.



Table 1. Best found F-score on several partitions of the
Cora data set for three clustering methods.

set papers classes M M ′
sum M ′

average

1 1104 8 0.531 0.545 0.584
2 2294 17 0.354 0.365 0.416
3 3209 24 0.332 0.364 0.382
4 5725 31 0.336 0.342 0.361
5 9055 45 0.310 0.343 0.350

Since we use a similarity measurement, both equa-
tion 1 (resulting in M ′

sum) and equation 2 (resulting in
M ′

average) can be used. They are compared with using
M for clustering which can be seen as clustering only
on content without any relational information.
These three matrices will be clustered using a simple
and greedy clustering procedure. It takes the matrix
used for clustering and considers every node to be in
one cluster. Then it finds the two clusters that are
closest according to this matrix. These two clusters
are joined together to form a new cluster and all dis-
tances to the other clusters will be the average of the
distances to the clusters that formed the new cluster.
This will be repeated until there is only one cluster left.
After every step the quality of the clustering is mea-
sured using the known labelling from the Cora data
set. The best clustering is chosen as the final score.
As a measurement for the clustering, F-score (Larsen
& Aone, 1999) was used. The F-score is calculated by
using equation 4 where P is the precision (number of
documents labelled of class C in that cluster, divided
by the number of documents in that cluster) and R is
the recall (number of documents labelled of class C in
that cluster, divided by the number of documents of
class C in the total database). The value of F-score is
between 0 and 1 where 1 is a perfect score.

F-score =
2PR

P + R
(4)

3.3. Results

Only papers with exactly one abstract and one clas-
sification were considered. Of this partition we used
first only 8 classes to create data set ‘1’ and extended
this data set by repeatedly adding more classes as can
be seen in Table 1. Any of these sets where clustered
in three ways, using M , M ′

sum and M ′
average. Table 1

shows the best found F-score for any of these matrices.
The first thing to notice is that the results are not

very good. This is probably caused by the fact that
the Cora data set might contain an error and the fact
that the clustering procedure used to incorporate our
method in, is not considered to be very good. Still,

since all circumstances are the same for any of the
three clustering methods, they can be compared to
each other. A first cautious conclusion can be that for
this case it seems to be that adding relational informa-
tion does enhance the performance of this clustering
procedure on these data sets. This is especially the
case when the average M -values are used. This set-
ting even seems to outperform the one where the sum
of the values is used. Despite these results, still a lot
more research needs to be done.

4. Conclusions and Future Work

In a relational context, one may want to cluster objects
based on both their content and the relationships be-
tween them, with the latter being indicated by a graph.
We have proposed a method for adapting the distance
or similarity matrix in such a way that relational infor-
mation is inserted. An experiment on the Cora data
set shows that this more informed distance measure
leads to better clustering results when it is plugged
into a standard clustering procedure.
This is work in progress and more needs to be done. Its
performance should be tested on other data sets and
while using different clustering procedures. Besides
that, it could be very interesting to explore different
variations of this method like, for instance, using only
incoming (or outgoing) neighbours and thus creating
an asymmetric matrix M ′.
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