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Abstract

Protein-protein interactions have essential
roles in nearly all biochemical processes.
While high-throughput methods exist for ex-
perimentally identifying interaction partners,
the task of determining binding site locations
remains arduous. We consider the prediction
of protein binding site location as an instance
of the label sequence problem and outline a
representation in the framework of structured
outputs. Moreover, we compare kernel struc-
tured output methods with sliding window
classifiers in the identification of calmodulin-
binding sites.

1. Introduction

Determining the locations of binding sites within pro-
teins can be viewed as a label sequence prediction
problem. Predicting labels for sequences involves
learning a mapping between input-space sequences
x = (x1, x2, . . . , xn) and output-space sequences y =
(y1, y2, . . . , yn) such that xi ∈ Σx, and yi ∈ Σy. For
binding site prediction, Σx is the 20 amino acid al-
phabet and Σy = {0, 1}, indicating whether the amino
acid is part of the binding site (1) or not (0).

Calmodulin is a ubiquitous, highly-conserved calcium-
binding protein found in eukaryotes (Vetter & Leclerc,
2003). Calmodulin binding sites share little sequence
similarity; however, they have 3 common attributes:
(1) each binding site consists of approximately 20
residues, (2) the binding sites are contiguous in se-
quence, (3) binding sites are slightly hydrophobic and
have tendencies to form α-helices.

The size and contiguous properties, (1) and (2), are
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important as they reduce the prediction of calmodulin-
binding site locations to a special case of the label
sequence prediction problem. Whereas a sequence of
length n can, in general, be associated with 2n possible
labellings, the contiguous sequence patterns of length
k reduce the search spaces to n− k+ 1 start positions
of the binding site, assuming a single binding site.

2. Sliding Window Approach

A strategy for solving the label sequence learning prob-
lem uses sliding window classifiers (Dietterich, 2002).
Each position in the sequence can be represented by
a window of length k centered at that position. This
reduces label sequence learning to a binary classifica-
tion problem, each component in the label sequence is
predicted by a binary classifier trained on fixed-length
windows. The label sequence created in this process
does not necessarily satisfy the constraints of the given
problem: in our case for example, we want to predict
a single binding site in the sequence. A step of post-
processing is therefore necessary to determine the pre-
dicted label sequence.

Since our objective is to predict a single binding site
that is contiguous in the protein sequence, the label
space, Y, for sequences of length n is composed of all
length n 0-1 sequences that have k contiguous nonzero
elements. In our application neighboring windows in
the sequence overlap, and therefore their correspond-
ing discriminant functions are likely to be correlated,
and isolated positively-predicted windows are likely to
be false-positives. Our strategy is therefore to average
the discriminant function of the binary classifier over
adjacent windows to form the window discriminant

Fr(x,y) =
1

2r + 1

c(y)+r∑
i=c(y)−r

f(wi), (1)

where y ∈ Y and c(y) is the position of the center of
the binding site implied by y, f(wi) is the discrimi-
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nant value for a window centered at position i, and
r is some positive integer indicating the half-width of
the neighborhood to be considered (a value r = 3 was
found to be optimal in our experiments). Label se-
quence inference is performed by

ŷ = argmax
y∈Y

Fr(x,y). (2)

3. Structured Outputs

Whereas sliding window methods first train a classifier
over substrings of input sequences then generate com-
pound labels, structured outputs combine these steps
into a single learning framework (Altun et al., 2003).
This is achieved by measuring the compatibility be-
tween input and possible output pairs.

Formally, let {(xi,yi)}Ni=1 be the set of annotated
input-output pairs. For a given input-output pair,
(xi,yi), we define

Fw(x,y) = 〈w, φ(x,y)〉 , (3)

where φ(x,y) embeds the pair into some input-output
feature space. Equation 3 can be viewed as assessing
the compatibility of a label y for an input sequence x.

Inference in this framework is performed by finding the
output ŷ that is most compatible with the input x:

ŷ = argmax
y∈Y

Fw(x,y). (4)

Since the number of elements in Y is linear in the
length of the sequence, the computation of the argmax
operation can be performed efficiently.

In order to employ kernels we use the dual form

Fα(x,y) =
∑
i

∑
y′

αi,y′ 〈Φ(xi,y′),Φ(x,y)〉 , (5)

which can be expressed using kernels as

Fα(x,y) =
∑
i

∑
y′

αi,y′k((xi,y′), (x,y)). (6)

For the purpose of predicting binding sites we define

k((x,y), (x′,y′)) = k(wy(x), wy′(x′)), (7)

where wy(x) refers to the window of x implied by the
label sequence y.

4. Experiments

We assembled a dataset from the Calmodulin Tar-
get Database (Yap et al., 2000) consisting of 194

binding sites from 174 proteins. The corresponding
protein sequences were acquired from the Swiss-Prot
database (Bairoch & Apweiler, 1996). To reduce bias
in classifier assessment, proteins with high sequence
similarity, 70% or higher, were grouped together such
that if one member was selected for training or testing,
the rest of the group would be included.

For both the sliding window and structured output
classifiers, two amino acid kernels were used for protein
windows. The first was the p-spectrum kernel, defined
as

kp(w,w′) =
∑
u∈

Pp

φpu(w)φpu(w′), (8)

where φpu(x) = |{u|u ∈ x, len(u) = p}|. This kernel
measures similarity between two strings by consider-
ing the number of substrings of length p that occur in
both sequences (Leslie et al., 2002).

The second kernel we used is based on the physical and
chemical properties of amino acids. We extracted 60
properties of amino acids from the Amino Acid Index
Database (Kawashima et al., 1999), and represented a
window was as a length-60 vector where each feature
is the average of that property over the window. The
physico-chemical kernel was then used as a Gaussian
kernel over this feature space.

For the sliding window classifier, support vector ma-
chines (SVMs) were trained using PyML, available at
http://pyml.sourceforge.net/. SVM training data
were assembled from windows where the positive sam-
ples were the actual binding sites and the negative
samples were obtained by selecting windows from the
proteins sequences that do not overlap the binding
sites. As binding sites account for only a small frac-
tion of amino acids within proteins, model selection
over margin penalties and kernel parameters was per-
formed by using stratified cross-validation to account
for the data imbalance. Finally, to infer a label se-
quence, ŷ, we selected the window with the largest de-
cision value among a sequence of consecutive windows
having the greatest average decision value.

A perceptron algorithm based on (Altun et al., 2003),
outlined in Algorithm 1, was used to learn the struc-
tured outputs discriminant function. As we are in-
ferring labels of a fixed length for proteins in which
the actual binding sites are of various lengths, we only
perform a weight update if the distance between the
center of the predicted window, c(ŷ), and the center
of the target c(y), is greater than some radius, ρ. To
ensure convergence, a learning rate η was used, where
for training epoch i, η = 1/i.
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Algorithm 1 Binding Site Perceptron Training

Input: {(xi,yi)}Ni=1 {input-output training data}
ρ {update radius}
η(epoch) {learning rate function}

epoch = 0
repeat

for i = 1 to N do
epoch+ = 1
ŷ = argmax

y
Fα(xi,y)

if |c(ŷ)− c(yi)| > ρ then
αxi,ŷ ← αxi,ŷ − η(epoch)
αxi,y ← αxi,ŷ + η(epoch)

end if
end for

until convergence

5. Results

The accuracy of our classifiers was assessed at the
binding site level. A predicted binding site that over-
laps the actual location was considered a correct pre-
diction. In the case where multiple binding sites occur
in a single protein, the binding site nearest to the pre-
dicted window was considered.

Results of sliding window and structured outputs clas-
sifiers that use windows of length 21 are summarized
in Table 1. Average accuracies and standard devia-
tions are reported for 20 training-testing splits where
for each split, a training dataset is constructed by sam-
pling the input-output pairs without replacement and
ensuring sequences with high similarity are included.
As a protein of length n has n−k−1 labellings, it is im-
portant to note that a random classifier has expected
accuracy of ≈ 0.05, considering an average binding site
length of 21 and an average protein length of 773.

Kernel Sliding Structured

Window Outputs

2-spectrum 0.49 (0.07) 0.56 (0.05)

Physico-chemical 0.52 (0.07) 0.58 (0.06)

Table 1. Accuracy of calmodulin-binding binding site pre-
diction results for the sliding window and structured
outputs classifiers using the p-spectrum kernel and the
physico-chemical properties kernel.

The results in Table 1 show that the structured out-
put perceptron outperforms the sliding window SVM.
Given the simplicity of the perceptron algorithm it is
very encouraging that it performed better than a large
margin classifier. This illustrates the advantage of for-
mulating the prediction problem in the structured out-

puts methodology. A further advantage is not having
to perform the usually ad hoc step of post-processing
the predictions at the amino acid level to infer a pre-
dicted label sequence. We expect improved results
when we apply the structured SVM to this problem
and explore the use of more sophisticated kernels. The
issue of multiple binding sites remains to be addressed
as well. This can be done either by expanding the out-
put space or iteratively predicting additional binding
sites. The methodology developed here can be also ap-
plied to other cases of this type of label sequence prob-
lem such as identifying disordered regions in proteins
and locating binding sites for other target proteins.
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