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Abstract

The central issue in representing graph-
structured data instances in learning algo-
rithms is to design features that are invariant
to permuting the numbering of the vertices.
We present a new system of invariant graph
features, which we call the skew spectrum of
graphs. The skew spectrum is based on map-
ping the adjacency matrix to a function on
the symmetric group and computing bispec-
tral invariants. The reduced form of the skew
spectrum is computable in O(n?) time, and
experiments show that on several benchmark
datasets it can outperform state of the art
graph kernels.

1. Introduction

The central challenge in representing unlabeled graphs
in learning algorithms is to account for the permu-
tation (relabeling) symmetry of the vertices. Given
a graph G, the two main lines of research that have
emerged to address the above problem focus respec-
tively on (a) designing an explicit feature mapping
G ~ (q1,92,...,q); and (b) designing a kernel
k(G1,G2). Proponents of the first approach exploit
global invariant properties of G, such as the eigenvalues
of its graph Laplacian, or local invariant properties,
such as the number of occurrences in G of a library of
small subgraphs. One of the empirically most success-
ful methods counts the lengths of shortest paths be-
tween pairs of vertices (Borgwardt & Kriegel, 2005). In
constrast, proponents of the kernel approach use vari-
ous intituitions about simulatneous random walks and
diffusion on product graphs (Gértner, 2002; Gértner,
2003).

The new method that we present in this paper belongs
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in the first of the above two categories, but is distin-
guished from prior work (with the exception of (Shawe-
Taylor, 1993)) by its algebraic character. In this re-
gard, it is related to the recent line of papers (Kondor
et al., 2007; Huang et al., 2008; Kondor, 2007a) in-
troducing concepts from non-commutative harmonic
analysis to machine learning. The mathematical foun-
dations of our work are Kakarala’s seminal results on
the bispectra of functions on compact groups (Kakar-
ala, 1993; Kakarala, 1992), and the recent discovery
of a unitarily equivalent, but computationally more
attractive set of invariants called the skew spectrum
(Kondor, 2007b). We show how these general theories
can be harnessed to construct graph invariants, and
examine in detail their computational properties.

Experiments on standard datasets of chemical com-
pounds show that the skew spectrum of graphs is com-
petitive with the state of the art in graph features, and
in some cases outperforms all other methods. Another
major advantage of the skew spectrum is that since
it is an explicit feature mapping, it can be applied
as a preprocessing step, and hence its computation
time scales linearly with the number of examples. The
computational complexity of computing the (reduced)
skew spectrum of a single graph of n nodes scales with
n3. Uniquely amongst the graph invariants used in
machine learning, the skew spectrum has a fixed num-
ber of scalar components (85 for the complete skew
spectrum and 49 for its reduced version), resulting in
a very compact representation. This does not prevent
the skew spectrum form remaining competitive both
in speed and representational accuracy up to about
n = 300.

2. The skew spectrum

Given a finite group G and a subgroup H of G, the
skew spectrum of a function f: G/H — C is, as
defined in (Kondor, 2007b), the collection of matrices

3.(p) =71(p) - Flp), (1)
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where r,: G — C is the function

rv(0) = f(ov)f(0),

v extends over a complete set of H\G/H double coset
representatives, p extends over a complete set R of in-

equivalent irreducible representations of G, and the =

symbol stands for the non-commutative Fourier trans-

form
Fp) =" p(o) f(o)

ceG

It is shown in (Kondor, 2007b) that the skew spectrum
is unitarily equivalent to the bispectrum (Kakarala,
1992), and is hence invariant to the translation action
of G on functions given by

f=0r fr(o) = f(n~ o)

pER.

TmeG.  (2)

In this paper we take G = S,, (the symmetric group
of permutations over n objects), H = S,,_2, and show
that if we map the adjacency matrix A of a graph G
to the function

f(O') = AO’(TI)7O'(H—1)7 (3)

then the effect of permuting the vertices of G by w € S,
is exactly (2). Hence, the skew spectrum of f is a graph
invariant.

It is well known that the irreducible representations
of S, are indexed by integer partitions A F n, and
the individual rows/columns of the py(c) representa-
tion matrices are indexed by standard tableaux. We
show that in Young’s orthogonal representation if f is
defined as in (3), then f is identically zero except for

the single scalar component ]?(n);
the ® column of ﬁn—Ll);
the B column of f(n,m);

the sl column of fin—2,2);

AR Y

the m column of ]?(71_27171).

Here B stands for n, e stands for n — 1, and we draw
tableaux aassuming n = 8. Given an appropriate
choice of {v} coset representatives (of which there are
7 in total), the Fourier transform of 7, is similarly
column-sparse and in the end we have just 85 non-zero
scalar components in the (1) matrix products.

Computing 7, is too expensive for practical applica-
tions, so we instead compute its projection 7}, to the
space of functions on S, /S,,_o. This gives 7 the same
sparsity pattern as ]?has, and reduces the number of
scalar graph invariants in the corresponding reduced

skew spectrum to 49. Despite 49 being a small num-
ber (and independent of n), the reduced skew spec-
trum (computable in O(n3) operations) seems to be a
remarkably powerful tool for capturing the structure
of unlabeled graphs. Exhaustive enumeration shows
that it can distinguish between almost all pairs of non-
isomorphic simple graphs for n = 1,2,...,6 (beyond
n = 6 exhaustive enumeration becomes too expensive
to try).

3. Experiments

In our experiments we evaluate the performance of the
reduced skew spectrum features on four benchmark
datasets of chemical structures of molecules: MUTAG,
ENZYMES, NCI1, and NCI109. MUTAG (Debnath
et al., 1991) is a dataset of 188 mutagenic aromatic
and heteroaromatic nitro compounds. The classifi-
cation task is to predict for each molecule whether
it exerts a mutagenic effect on the Gram-negative
bacterium Salmonella typhimurium. ENZYMES is a
dataset which we obtained from (Borgwardt et al.,
2005), and which consists of 600 enzymes from the
BRENDA enzyme database (Schomburg et al., 2004).
In this case the task is to correctly assign each en-
zyme to one of the 6 EC top level classes. The av-
erage number of nodes of the graphs in this dataset
is 32.6 and the average number of edges is 124.3.
Finally, we also conducted experiments on two bal-
anced subsets of NCI1 and NCI109, which classify
compounds based on whether or not they are active
in an anti-cancer screen ((Wale & Karypis, 2006) and
http://pubchem.ncbi.nlm.nih.gov).

Since in these datasets the number of vertices varies
from graph to graph, we set n to be the maximum over
the entire dataset and augment each of the smaller
graphs with the appropriate number of unconnected
“phantom” nodes. The experiments consisted of run-
ning SVMs on the above data using the reduced skew
spectrum features (linear kernel on these features), the
random walk kernel (Gértner et al., 2003), (with A set
to 1072 on MUTAG/ENZYMES, and 10~ on the NCI
datasets for optimal performance), and an equal length
shortest-path kernel (Borgwardt & Kriegel, 2005).
Results are presented in Table 1. In three out of four
experiments the skew spectrum beats the other meth-
ods, including the shortest path kernel, which is con-
sidered state of the art for graphs of this type.

4. Conclusions

We have presented a new system of graph invariants,
called the skew spectrum of graphs, based on purely
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MUTAG ENZYME NCI1 NCI109
Number of instances/classes 188/2 600/6 4110/2 4127/2
Max. number of nodes 28 126 111 111
Reduced skew spectrum 88.61 (0.21) 25.83 (0.34) 62.72 (0.05) 62.62 (0.03)
Random walk kernel 71.89 (0.66)  14.97 (0.28)  51.30 (0.23)  53.11 (0.11)
Shortest path kernel 81.28 (0.45)  27.53 (0.29)  61.66 (0.10)  62.35 (0.13)

Table 1. Prediction accuracy in percent of the (reduced) skew spectrum features and state of the art graph kernels on
four classification benchmarks in 10 repetitions of 10-fold cross-validation. Standard errors are indicated in parentheses.

Best results for each datasets are in bold.

algebraic considerations. From a mathematical point
of view the skew spectrum is interesting because it
brings a fundamentally new technique to constructing
graph invariants. From a practical machine learning
point of view the skew spectrum is interesting because
it provides a powerful, yet efficiently computable rep-
resentation for graph structured data instances. The
skew spectrum also has natural extensions to hyper-
graphs and partially labeled graphs, where the invari-
ance group is not the full symmetric group, but only
a subgroup of the form S, X Sg, x ... x Sg,. A longer
version of this paper will appear in (Kondor & Borg-
wardt, 2008), and a compreshinse technical report will
appear in (Kondor, 2008).
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