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Abstract

Statistical machine learning techniques for
data classification usually assume that all en-
tities are i.i.d. (independent and identically
distributed). However, real-world entities of-
ten interconnect with each other through ex-
plicit or implicit relationships to form a com-
plex network. Although some graph-based
classification methods have emerged in recent
years, they are not really suitable for com-
plex networks as they do not take the degree
distribution of network into consideration. In
this paper, we propose a new technique, Mod-
ularity Kernel, that can effectively exploit
the latent community structure of networked
entities for their classification. A number
of experiments on hypertext datasets show
that our proposed approach leads to excel-
lent classification performance in comparison
with the state-of-the-art methods.

1. Problem

We are in a connected age: real-world entities often
interconnect with each other through explicit or im-
plicit relationships to form a complex network (New-
man, 2003), such as social networks, information net-
works, technological networks and biological networks.

Given a complex network (graph) G that consists of n
entities (nodes) and m links (edges), we can describe
the network structure using its n×n adjacency matrix
A with elements Aij ≥ 0 representing the number or
weight of edges between node xi and node xj . Since
real-world complex networks are usually sparse, most
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elements in A should be 0. In this paper we focus on
undirected networks, so A is symmetric. The degree
of a node xi, i.e., the number of edges connected to a
node xi, is given by ki =

∑
j Aij .

Without Loss of generality, suppose that there are
two classes of entities in the network: the entities in
one class are labelled with +1 and the entities in the
other class are labelled with −1. In the given set of
networked entities X = {xi}ni=1, there are l entities
Xl := {xi}li=1 for which the labels Yl := {yi}li=1 are
provided, and u entities Xu := {xj}l+uj=l+1 for which
the labels are absent. Obviously X = Xl

⋃
Xu and

n = l+u. Our goal is to learn a classification function
f so that the class of any networked entity x can be
accurately predicted by the sign of f(x). This is actu-
ally semi-supervised learning, i.e., learning from both
labelled and unlabelled data (Chapelle et al., 2005).

2. Approach

Let us consider the problem of classifying networked
entities in the framework of kernel methods (Scholkopf
& Smola, 2002). A prominent advantage of kernel
methods is that they typically lead to a convex op-
timization problem so the global optimal solution can
be computed efficiently.

For a Mercer kernel K : X × X → R, there is an
associated Reproducing Kernel Hilbert Space (RKHS)
HK of functions X → R with the corresponding norm
‖ ‖K . Given a set of labelled examples Xl as well as a
set of unlabelled examples Xu, typical kernel methods
for semi-supervised learning estimate the classification
function to be

f∗ = arg min
f∈HK

1
l

l∑
i=1

V (xi, yi, f) + C‖f‖2K ,

where the first term V is a loss function defined on
Xl, the second term ‖f‖2K is a regularizer defined
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on Xl

⋃
Xu and the parameter C controls its rela-

tive weight. The regularizer ‖f‖2K imposes smoothness
conditions on f to avoid overfitting.

Different choices of the loss function V in the above
optimization problem lead to different learning al-
gorithms. For example, substituting the hinge loss
(1 − yif(xi))+ = max(0, 1 − yif(xi)) for V we get
Support Vector Machine (SVM).

In real-world complex networks, entities (nodes) tend
to group into communities, with a high density of links
(edges) within communities and a low density of links
(edges) between them. The latent community struc-
ture of a complex network must contain valuable clues
about the right classification of entities (nodes) in the
network, because entities are likely to connect to other
members of their own class. A “good” classification
function f for networked entities should align well not
only with the labelled data but also with the com-
munity structure — entities in the same community
should have a high probability to be classified into the
same class.

In the ideal situation, each class of entities in the com-
plex network would group into a separate community.
So if the value of f is restricted to be either +1 or −1,
then f = (f(x1), . . . , f(xn))T can be regarded as the
binary indication vector for a division of the network
into communities, and fT f = n. Furthermore, let gi
denote the group to which vertex xi belongs. The func-
tion δ(gi, gj) = 1 if gi = gj and δ(gi, gj) = 0 otherwise.
It is easy to see that δ(gi, gj) = 1

2 (1 + f(xi)f(xj)).

Most existing graph-based classification methods such
as (Herbster et al., 2005) are rooted in graph parti-
tioning (Chung, 1997) that divides the network into
groups by minimizing the cut-size, i.e., the number
of edges running between different groups of nodes:
S = 1

2

∑
i,j Aij(1− δ(gi, gj)). We can rewrite the cut-

size for the division of network f in matrix form as
S = 1

4 f
TLf , where L is the Laplacian matrix (Chung,

1997) defined as L = D−A with D = diag(k1, . . . , kn).

Despite its success on simple graphs (such as k-nearest-
neighbours graphs), Laplacian based graph partition-
ing is poor in detecting natural communities in real-
world complex networks, because the degree distribu-
tion of network has been totally ignored. The funda-
mental problem of using this technique for community
detection is that cut sizes are not really the right thing
to optimize since they don’t accurately reflect our in-
tuitive concept of network communities. A good divi-
sion of a network into communities is not merely one
in which the number of edges running across commu-
nities is small. Rather, it is one in which the number

of edges across communities is smaller than expected.
It has been reported that Laplacian based graph par-
titioning often fails to find the right division of a com-
plex network (Newman, 2006). Consequently the ef-
fectiveness of semi-supervised learning methods based
on graph partitioning for classifying networked entities
would be limited.

One proven-effective approach to community detection
is maximizing the quality function known as modu-
larity (Newman, 2006) over the possible divisions of
a network: Q = 1

2m

∑
ij [Aij − Pij ]δ(gi, gj), where

Pij = (kikj)/(2m), δ(gi, gj) = 1 if gi = gj and
δ(gi, gj) = 0 otherwise. In fact, Pij is the expected
number of edges between node xi and node xj in the
‘null model’ — a random graph with the same degree
distribution as the given network. Optimizing modu-
larity reflects our intuition that the number of edges
within communities should be higher than expected by
chance. Only if the number of within-community edges
1
2

∑
ij Aijδ(gi, gj) is significantly higher than it would

be expected purely by chance 1
2

∑
ij Pijδ(gi, gj) can we

justifiably claim to have found significant community
structure. Maximizing modularity has been shown to
produce excellent community detection results in prac-
tice. We can rewrite the modularitye for the division
of network f in matrix form as Q = 1

4m fTMf , where
M is the modularity matrix defined as M = A−P.

If we allow the the elements of f to take any real value
but just keep the constraint fT f = n, the optimal di-
vision of network that maximizes the modularity Q is
given by f = u1, the eigenvector of M corresponding
to the largest eigenvalue (Newman, 2006). The sign of
u1’s i-th elements indicates the class to which xi be-
longs to and the value of of u1’s i-th elements indicates
the strength of membership.

Motivated by modularity based community detection,
we propose to use the following matrix as the kernel
matrix: M̂ =

∑p
k=1 λkuku

T
k , where λ1 ≥ . . . ≥ λp > 0

are the p positive eigenvalues of the modularity matrix
M and u1, . . . ,up are the p corresponding eigenvec-
tors. Since M is not guaranteed to be positive def-
inite, it could not be used straightforwardly as the
kernel matrix otherwise the generated kernel function
would be invalid and the resulted optimization prob-
lem would no longer be convex. According to linear
algebra, M̂ is the positive definite matrix that best ap-
proximates the modularity matrix M therefore we use
it instead and name this technique Modularity Kernel
(ModKer).

The Modularity Kernel could be justified as follows.
Let H(G) be the linear space of real-valued func-
tions defined on the graph, i.e., an n-dimensional vec-



A New Kernel for Classification of Networked Entities

tor space whose elements are the real-valued vector
g = (g1, . . . , gn)T . On H(G) we introduce the inner-
product 〈f ,g〉 = fTM̂−1g. This inner-product func-
tion is well-defined since M̂−1 =

∑p
k=1

1
λk

ukuTk is
symmetric and positive definite. Moreover, the func-
tion ‖g‖ =

√
〈g,g〉, g ∈ H(G) is a norm that measures

the function smoothness or complexity. With a little
derivation, it is easy to see that minimizing the above
defined norm of function f leads to f = u1 which gives
the optimal division of network into communities ac-
cording to the analysis in the above section. Therefore
it is reasonable to use ‖f‖2 = 〈f , f〉 = fTM̂−1f as the
regularizer in the kernel methods learning framework.
The reproducing kernel K of H(G) should be an n×n
matrix such that for every g ∈ H(G) the reproducing
kernel property gi = 〈Ki,g〉 holds, where Ki is the i-
th column of K. In fact, K = M̂, because if g ∈ H(G)
then M̂−1M̂g = g, which implies that gi = eiM̂M̂−1g
= KiM̂−1g = 〈Ki,g〉 where ei is the i-th coordinate
vector.

It should be beneficial to exploit both entity content
information and entity link information for classifying
networked entities. We can construct a hybrid network
which is the linear combination of two networks (with
equal weights in our experiments) — one the original
network induced by the links among entities, the other
derived from entity content information — and then
use Modularity Kernel computed on the hybrid net-
work. When deriving the content-based network, we
simply connect each pair of entities with an edge that
is weighted by their content similarity. To distinguish
the usage of Modularity Kernel on the pure link-based
network and that on the combined hybrid network, we
denote the former ModKer (link) and the latter Mod-
Ker (content+link).

3. Experiments

We conduct our experiments on two collections of real-
world datasets: WebKB1 and Cora2.

The WebKB datasets consist of about 6,000 web pages
from the computer science departments of four uni-
versities: Cornell, Texas, Washington and Wisconsin.
The web pages are classified into categories such as
‘course’, ‘faculty’ and ‘student’. For each dataset, we
use the co-citation graph derived from the original di-
rected hyperlinks (citations) as the link-based entity
network for our algorithms, i.e., two pages (nodes) are
connected by an edge if there is a third page linking to
or being linked to both of them, and multiple edges are

1http://www.cs.cmu.edu/∼webkb/
2http://www.cs.umass.edu/∼mccallum/code-data.html

Figure 1. The comparison of classification accuracy on the
WebKB datasets (upper) and the Cora datasets (lower).

allowed between one pair of nodes. This is because for
Web data co-citations are usually more reliable than
hyperlinks which has been reported in past research
studies (Zhang et al., 2006) and also confirmed by our
experiments.

The Cora datasets consist of the abstracts and refer-
ences of about 34,000 computer science papers. In our
experiments, we use only the papers in four research
areas, Data Structure (DS), Hardware and Architec-
ture (HA), Machine Learning (ML) and Programming
Language (PL), and we discard the papers without
reference to other papers in the same area. The pa-
pers are classified according to their subfields in the
research area. For each dataset, we use the undirected
graph derived from the original directed references as
the link-based entity network for our algorithms, i.e.,
two papers (nodes) are connected by an edge if one of
them cites the other or vice versa, and multiple edges
are allowed between one pair of nodes.

The employed learning algorithm for our Modularity
Kernel technique is SVM as implemented in LIBSVM3

(with default parameter values). The classification
performance is measured by the 5-fold cross-validation
accuracy.

We compare our proposed approach Modularity Ker-
nel (ModKer) with some state-of-the-arts methods
for hypertext classification, among which Directed
Graph Regularization (DGR) (Zhou et al., 2005) and
Laplacian Kernel (LapKer) (Herbster et al., 2005)
use only entity link information while PLSI+PHITS

3http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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(Cohn & Hofmann, 2000), Matrix Factorization (MF)
and Supervised Matrix Factorization (SupMF) (Zhu
et al., 2007) use both entity content and entity link
information. On all datasets, using only entity link
information ModKer works better than LapKer and
DGR, while using both entity content and entity link
information ModKer works better than PLSI+PHITS,
MF and SupMF, as shown in Figure 1.
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