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ABSTRACT

This paper addresses the blind source separation problethefo
case where more sensors than source signals are available. A
noisy-sensor model is assumed. The proposed algorithm com-
prises two stages, where the first stage consists of a painmim-
ponent analysis (PCA) and the second one of an independent co
ponent analysis (ICA). The purpose of the PCA stage is t@amez

the input SNR of the succeeding ICA stage and to reduce the sen
sor dimensionality. The ICA stage is used to separate thairem mixing process separation process
ing mixture into its independent components. A simulatigan-
ple demonstrates the performance of the algorithm proposed

Figure 1: Blind source separation setuds= M =4).

1. INTRODUCTION 12, Notation

1.1. Problem description The notation used throughout this paper is the followingctves
are written in lower case, matrices in upper case. Matrix\atd
tor transpose, complex conjugation and Hermitian trarsgoe
denoted by(.)7, (.)*, and(.)® = ((.)*)”, respectively. The sam-
ple index is denoted by. The identity matrix is denoted bl
a vector or a matrix containing only zeros By E {.} denotes
the expectation operator. Vector or matrix dimensions aengn
superscript. The Frobenius norm of a matrix is denotef].py..

Blind source separation (BSS) is a problem posed by many-appl
cations related to acoustics or communications. UsuadyR8S
problem is analyzed for the case where there are just as reany s
sors as source signals. Furthermore, ideal sensors arkyussta
sumed, which have no additive sensor noise. Only little waak
been done on the analysis of algorithms in the case of noisy se
sors [1, 2, 3, 4]. Usually one hopes that the sensor noisenis lo
enough so as not to influence the performance of the BSS algo-

rithm considerably. This paper concentrates on the caseenhe 2. OVERDETERMINED BLIND SOURCE SEPARATION
low SNR is present at the sensors, and shows that one possible o

way to enhance the performance of the separation is to use mor 2-1- Problem description

sensors than source signals. _ _ The mixing process is described as
This situation is referred to as tleerdetermined blind source
separation problem and sometimes also as the undercomplete xt = As; + my 1)

bases problem. It is overdetermined in the sense that itiiness T .
are of interest, more observations than necessary for tran+e wheres; = (s1,... ,su); contains the sa;nples of the unknown
struction of the original signals are available. Howevergfer- source signals at timg x; = (z1,... ,oum), the samples of the
ring to the Linear Algebra system of finding the separatiotrina M sensor signals at sample timen, the samples of the sensor
given the mixing matrix, the term underdetermined is usetes ~ hoise at timet, andA ™ > = [a; - - - an/]" is the unknown mix-

we have more unknowns than equations. ing matrix. In the overdetermined case we have more serisanms t
We divide the task at hand into two stages. Starting With ~ Source signalsif > Ms). . .
input sensors, the first stage performs a singular-valuendgasi- Solving the blind source separation problem means to find a

tion producing)Ms virtual sensors{/s < M), which still contain separation matrif Ms*M sych that the output of the separation
a noisy mixture of the source signals, but with a higher SNth ~ Process

the true sensors. The remainiff) — Ms virtual sensors contain a _ _ _

mixture of the sensor noises ef:% are discarded in the setamyel s ur = Wx; = W (As; +n:) = Ps; + Wn, @
The second stage consists of an ordinary blind source s&para retrieves waveform-preserving estimates of the unknowmrcso
algorithm for theMs x Ms problem. signals by using only the time series of the sensor sigrnafer
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Figure 2: Overdetermined blind source separation setuyguke proposed two-stage algorithii{ = 2, M = 5).

t=1,2....
system.

P denotes the total transfer matrix of the global

2.2. Assumptions

In addition to the problem proposed above, we make the fatigw
assumptions:

Al Time-invariant mixing matrixA..

A2 A has full rankMs.

A3 Source signals,,, m = 1,... , Ms, are mutually
independent and iid.

A4 All source signals,,, but possibly one are non-Gaussian.

A5 All source signals are unknown and have the same
powero?.

A6 There are more sensors than source sigftals> Ms).

A7  All sensors have the same noise characteristics.
The sensor noise is additive white Gaussian noise with
powera?. The sensor noise of the sensors is mutually
independent.

A8  The source signals and the sensor noise are mutually
independent.

As a consequence3 and.A5 imply
R.. 2 E {ststH} =o2 T, 3)
and.A7 implies

Ron 2 B {nin} =0l 1u. (4)

3. PROPOSED ALGORITHM

The proposed algorithm has two stages. The first stage isl loase
aprincipal component analysis (PCA) algorithm where we project
the M sensor signals onto ai/s-dimensional signal-plus-noise

subspace and al — Ms dimensional noise subspace. The sec-

ond stage performs andependent component analysis (ICA) of
the signal-plus-noise space to obtain the estimates ofdhes
signals.
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3.1. First stage: Principal Component Analysis (PCA)

First we want to decorrelate the sensor signals. Decoiogalét a
necessary but not a sufficient condition for independenoehi®
end we transform the sensor signals by a unitary transfiomat
matrix Wy
Vi = det (5)

such thaR,v £ E {v.v{'} becomes a diagonal matrix.

By applying the SVD gingular-value decomposition) on A,
we have

A=UEVH=U[2]VH (6)
0

where UM*M gnd VMsXMs gre ynitary matrices, anB™ *Ms

sX M.

andf)M * are diagonal matrices which contain the singular val-
ueso,, (A) of A
¥ = diag (o1, . - . @

aUMs)
with
012022 - >0p, >0

8)

where the last inequality comes from the assumptd@n
The SVD of the input correlation matriRxx gives with (3)
and (4)

Rooc 2 F {xux/'} (©)
=AR.. A" + Ry (10)
=cZAA" + ol 1y (11)
=o2USVIVETU" 4621y (12)
=02 USS" U + 0l 1n (13)
=olUT U” +2uUu”? (14)
=U (03 S 402 IM) u? (15)
=uxl u” (16)



with because independence of the source signals is assumgd,by

sMxM . i..De(s) = Zi Psy (Sm)-
2 = diag (01,- .. ,015,0,-..,0) an B§/ )using a PCA s(tagg we have reduced the overdetermined
x2, = diag (af e 02 o2 Ol ) (18) M x MsBSS problem to ai/s x Ms BSS problem with additive
! MM+l M sensor noise. We can now use any known BSS algorithm for the
= diag (0702 + 0y ... ,0a1.00 + 0y Tnye o ,00) regular (Ms x M) case, e.g., the natural gradient learning algo-

(29) rithm proposed in [6]

The first term of (15) contains the contribution of the sowsite
nals, while the second one contains the contribution of gmsaer
noise. By choosing

We, ;= Wy, + gt [Lus, = you'] W, (28)

the EASI algorithm proposed in [7]
Msx M
— War — 177 — 17! 20 H H H
Wy = W~ MM =U"=U (20) W, =W +H[IMS_Utut +uwy; —yeuy ]Wst (29)
d2

we obtain with (5) and (15) the correlation matrix the Infomax algorithm [8]

Ry S E {VtVtH} (21) W5t+1 — Wst + I [WSZH _ YtVsiH] (30)
H
= Wa R Wy (22) or a blind stochastic gradient algorithm, e.g., multicherisiind
=0T 40l =2y (23)  LMS (MBLMS)[9],
ThereforeR. becomes a diagonal matrix containing the singular Ws 1y =Ws +p (g —ye) VstH (31)

values ofRxx in descending order withrf1 > e > UEM >

s

UXZMS+1 =.-- =0y, = op. SinceR,, is a diagonal matrix, the
signals inv are mutually uncorrelated, but not necessarily inde-
pendent. Furthermore, the signalsvimre ordered by their powers
and sincéWj is a unitary matrix, the firsi/s elements ofv con-
tain all the signal power of the source signals receivedeastn-
SOrszy,, m = 1,..., M, and the remaining/ — Ms elements

of v contain only a mixture of the sensor noise. Assuming the 3.3. Combining both stages
knowledge of the number of source signals, we can partition
the vectorv into its Ms principal and M — Mg minor components

wherey; = g(u;) andg(.) is a nonlinear function known as
the Bussgang nonlinearity or the score function, which depends

on the pdf of the source signals [10, 11]. Alternatively, &cha

algorithm can be used for the separation, see [12] for iostan
which explicitly uses higher-order cummulants.

Both stages are now combined as shown in Fig. 2. With (25) and
(26) we obtain

My

Ve

v=|{ = , (24) WM = W, Wy . (32)

vﬁ,V[_MS

BY doi for th d d di d The first stage, i.8Wy1, can be seen as a preprocessing step, which
y doing so, we can now use for the second stage and discard  yacqrrelates the sensor signals and reduces the input sionen

v, as the elements of, do not contain any components of the o 41 and 45 we know thafRaxx is time invariant, and there-

source signals. We only use the principal components foéhéur  ¢,0 \.\ does not have to be adapted. Howe¥k is computed

processing. This procedure corresponds poiacipal component by an iterative learning algorithm. With (2) we obtain théato

analysis (PCA). Note that there are as many principal components = o<far matrix of the global system

as unknown source signals. Furthermore, the principal cemp

nents are mutually uncorrelated. We therefore use P, = Wy, Wa A (33)
Ve = Warx (25) which should become close to a scaled permutation matritama
to generatelfs virtual sensors from the M true sensors. a good signal separation. Of coutBds available in a simulation
environment only, as the mixing matrix is unknown by assump-
3.2. Second stage: Independent Component Analysis (ICA) tion.

In the second stage we use an ICA algorithm to find a separation . .
) 3.4. Minimum-norm solution

matrix Ws such that

In the noiseless case, the underdetermined system eq@tion

‘WA =1, is fulfilled by an infinite number of possible separation
is an estimate of; up to scaling and permutation of the elements. matricesw, e.g., all matrices of the forfiv = V[ffl £]UH,

u; = Ws, Ve, (26)

Perfect separation occurs if the output signala afe mutually in- where€ is an arbitraryMs x (M — Ms) matrix. An additional
dependent. The joint density afis then a product of the marginal  constraint is necessary to make the separation matrix enique
densities ofup, [5] possibility is to constraifW to have the minimal possible Frobe-
Ms nius norm. Such a solution is referred to as th@imum-norm
Du(u) = Hpum (tm) (27) (MN) solution [13]. Because of the unitary inv~aii?nce pnape
m=1 of the Frobenius norm [14] we hayW || = ||[Z = €]||7 =
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=-1 . .
IZ 1I% + lI€ll%. Thus,|[W||# is minimal with€ = 0, and the
minimum-norm solution becomes

W =V[E
~—1
=VY Wy

"oju” = A% (34)

(39)

where A# denotes the Moore-Penrose pseudoinversd pkee
also [15]. SincéWaq; is contained ifW™, see (35), the proposed
PCA preprocessing stage is part of the minimum-norm solution.
Furthermore, from (32) we can define

~—1

WN =VE (36)

3.5. Minimum mean-squared error solution

Using the mean-squared error (MSE) as the cost function,ane c
write down the cost to minimize as
Juse = E {|lst — w3} 37)

Using (2) and setting the cost derivative with respect toskea-
ration matrixW to zero, we arrive after some simplifications at

at]MSE
oW

=F {(—ssHAH + WAss”" A" + WnnH)} =0.
(38)

Solving Eq. (38) for the separation matiW¥ yields theminimum
mean-squared error (MMSE) solution

W'™E = R AP (AR AT + Ran) 7 (39)

InsertingRss andRann from (3) and (4), respectively, (39) can
then be written as

2
WEE = AT(AAT 4 T5T) (40)

S
By inserting (6) into (40) and after a longer calculation, alain

-1

WMMSE =V §

‘W1 (42)
where
2 2
~ of+ % oir, + 2
Y = diag =, 2 (42)
g1 O Mg

We now recognize, that i, goes toward zeray converges to-

ward ¥, and therefordW "t approacheWV"". Since Wy; is
also contained irW"“*€, we can clearly see that the proposed
PCA preprocessing stage is part of the MMSE solution W'VE,
Furthermore, from (32) we can define

(43)

84

3.6. Estimation of the number of sources

Until now we have assumed that we know the number of unknown
source signald/s which are involved in the mixing process. How-
ever, oftenMs is unknown and therefore has to be estimated. Since
the input correlation matriRxx or Ry~ haveMs dominant sin-
gular values and/ — Ms minor singular values which have all the
same valuerZ, see also (19), the number of source signals involved
in the mixing process can be evaluated by choosing a thréshol
just aboveo?2. Moreover, if the number of active source signals
Ms changes, it will be visible also from analyzing the disttibn

of the singular values. Alternatively, an information-dhetic cri-
terion can be used to estimate the number of source sigr@ls [1

4. SSIMULATION

In the following, we give a simulation example to analyze liee
havior of the algorithm proposed.

4.1. Performance measurement

In order to describe the performance of the algorithm pregpae
use thesignal-to-noise ratio (SNR), thesignal-to-interference ra-
tio (SIR), thesignal-to-interference-plus-noise ratio (SINR), and
the convergence rate as the criteria. We define the follopwarg
formance measurements:

SNR(zm ) SNR of input sensor signal,,,
SNR(x) total input SNR,

SNR(vm)  SNR of virtual sensor signaky,,
SNR(ws) total SNR of virtual sensores,
SNR (%) SNR of output signals,,,
SNR(u) total output SNR,

SIR (um) SIR of output signat,,,,
SIR(u) total output SIR,

SINR(u,»,)  SINR of output signal,,,
SINR(u) total output SINR.

4.2. Simulation

In the simulation we havé/s = 5 source signals, each being
a 4-QAM signal. We compare the behavior of the proposed al-
gorithm with M =5, 10, and 20 sensors. The complex mixing
matrices are set up a&**® = A, A'9® = [AT AZT]T, and
A5 = [AT AT AT A4T]T, where eaclA3*5 n=1,... ,4,

is a random complex submatrix witfA ,||2 = o1 (An) =1, con-
dition numbery(Ar,) = o1 (An) /om, (Ar) = 10 and logarith-
mically distributed singular values. The respective cbadinum-
bers arex(A%*®) =10, x(A'°%5) = 3.3, andx(A*°*5) = 2.3.
For the update oWs we use a block algorithm with (28), block
length L = 100, step sizex = 0.15, and the Bussgang nonlinear-
ity g (u) @Sgm (um) = tm |um|”.

The simulation is set up with2/o2 = 15 dB. Fig. 3 (top)
shows SNRz., ), the resulting SNR’s at the true sensors. Fig. 3
(middle) shows SNRw,,), the SNR’s at the virtual sensors after
the PCA stage. Fig. 3 (bottom) shows SKR, ), the SNR’s of the
output signals after convergence, W.= W ;. The constellation
diagram ofu,, after convergence is given in Fig. 5. The learning
curves of SINRu), SIR(u) and SNRu) are shown in Fig. 4.
The input SNR, output SNR, SIR, and SINR after convergenee ar
given in Table 1 together with the values for the minimummor



Table 1: SNR’s withMs=>5 source signals ane? /o2 = 15 dB

System PCA ICA: W, Minimum norm: W™ MMSE; W"VsE
M | SNR(x) || SNR(v) || SNR(u) | SIR(u) | SINR(u) || SNR(u) [ SIR(u) | SINR(u) || SNR(u) | SIR(u) | SINR(u)
5 9.5dB 9.5dB 3.2dB | 11.9dB 2.6dB 0.3dB o) 0.3dB 5.0dB 8.4dB 3.3dB
10 9.5dB 12.6dB || 10.0dB | 24.0dB 9.8dB 9.7dB o) 9.7dB || 10.1dB | 25.2dB 9.9dB
20 9.5dB 15.6dB || 14.1dB| 24.6dB| 13.8dB | 14.0dB o) 140dB || 14.1dB| 33.5dB| 14.0dB

o
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Figure 3: SNR's after convergence fbf =5,10, and 20: Figure 4: Convergence behavior of SK&®, SIR(u), and
(top) SNR(z:,), (middle) SNR(vr,), (bottom) SNRuy,). The SINR(u) for M, = 5: (top) M = 5, (middle) M = 10, (bottom)
output signals.,, are sorted by their SNR. M =90.

solutionW™" and the MMSE solutioiW "€ defined in (34) and i e
(41), respectively. x‘é%‘t -%%I
We see that for five sensors, both the separation qualityrend t iyl i
convergence time are very poor. Doubling the number of genso
i.e. M =10, improves the situation considerably. The main differ- - % *® p P
ence between 10 and 20 sensors is the higher output SNR,ashere Q » » % ) )
the convergence rate and the separation quality differ malsgin- *® #
ally. The improvement of SNRu) by using more sensors also
stems from the fact that(A) is smaller in the case where more * & . & .
sensors are used, as the output SNR improvement is moreugtan j P N * * - * ’~* * ¥
3 dB for each doubling of the number of sensors. A small singu- * R L E 3 %
lar valueo,, results in a small SNRv,,,), a noisy virtual sensor 1 > 3 2 5

vm . Since the blind algorithm under consideration steerswh o
put signala.,,, to have equal power, the noisy sigmg is strongly
amplified and therefore causes noisy output signals.

From Table 1 we see that the minimum-norm soluf\di™
always forces perfect separation (SHRoo), irrespective of the

Figure 5: Constellation plot after convergence wity = 5
4-QAM signals: (topM =5, (middle) M =10, (bottom)M = 20.
The output signals., are sorted by their SNR.
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resulting output SNR. This leads to a poor SINR for five sen- [10] J.-F. Cardoso, “Blind signal separation: Statistipghci-
sors, caused by the low output SNR. We conclude from this that
the minimum-norm solution is not the preferred solution Itow
SNR(ws), especially in a communication system, where minimiz-
ing the SINR is of major interest. The MMSE solutioW "

always achieves the highest SINR and SNR, however, tygicall [12]

there is only a small difference W ... Note that for the adaptive
algorithm a further increase of the final SIR can be achiewed b
reducing the step size. Furthermore, from Fig. 4 and Table 1 we
see that the final output SINR is mainly limited by the outphfS
and not by the output SIR. The sensor noise is the limitingpfac
for the quality of the output signals.

5. CONCLUSIONS

A two-stage algorithm to solve the overdetermined blindreeu
separation problem with noisy sensors has been proposed. In
preprocessing step, a PCA divides the input space into alsign

plus-noise space and a noise space. The signals in the-signal

plus-noise space are then propagated to a subsequent IG&A sta
The proposed preprocessing stage is an implicit part of time m
mum-norm solution and also of the MMSE solution. Furthernor
the advantage of using more sensors than source signaleéas b
demonstrated by a simulation example, which show that arfast

convergence rate as well as a higher steady-state SINR can bef

achieved.
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