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ABSTRACT

This paper addresses the blind source separation problem for the
case where more sensors than source signals are available. A
noisy-sensor model is assumed. The proposed algorithm com-
prises two stages, where the first stage consists of a principal com-
ponent analysis (PCA) and the second one of an independent com-
ponent analysis (ICA). The purpose of the PCA stage is to increase
the input SNR of the succeeding ICA stage and to reduce the sen-
sor dimensionality. The ICA stage is used to separate the remain-
ing mixture into its independent components. A simulation exam-
ple demonstrates the performance of the algorithm proposed.

1. INTRODUCTION

1.1. Problem description

Blind source separation (BSS) is a problem posed by many appli-
cations related to acoustics or communications. Usually the BSS
problem is analyzed for the case where there are just as many sen-
sors as source signals. Furthermore, ideal sensors are usually as-
sumed, which have no additive sensor noise. Only little workhas
been done on the analysis of algorithms in the case of noisy sen-
sors [1, 2, 3, 4]. Usually one hopes that the sensor noise is low
enough so as not to influence the performance of the BSS algo-
rithm considerably. This paper concentrates on the case where a
low SNR is present at the sensors, and shows that one possible
way to enhance the performance of the separation is to use more
sensors than source signals.

This situation is referred to as theoverdetermined blind source
separation problem and sometimes also as the undercomplete
bases problem. It is overdetermined in the sense that if the sources
are of interest, more observations than necessary for the recon-
struction of the original signals are available. However, if refer-
ring to the Linear Algebra system of finding the separation matrix
given the mixing matrix, the term underdetermined is used, since
we have more unknowns than equations.

We divide the task at hand into two stages. Starting with�
input sensors, the first stage performs a singular-value decomposi-
tion producing� s virtual sensors (� s � � ), which still contain
a noisy mixture of the source signals, but with a higher SNR than
the true sensors. The remaining� � � s virtual sensors contain a
mixture of the sensor noises and are discarded in the second stage.
The second stage consists of an ordinary blind source separation
algorithm for the� s � � s problem.
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Figure 1: Blind source separation setup (� s� � � �).

1.2. Notation

The notation used throughout this paper is the following: Vectors
are written in lower case, matrices in upper case. Matrix andvec-
tor transpose, complex conjugation and Hermitian transpose are
denoted by�	
� , �	
�, and�	

 � ��	
� 
� , respectively. The sam-
ple index is denoted by�. The identity matrix is denoted by�,
a vector or a matrix containing only zeros by�. � � 	� denotes
the expectation operator. Vector or matrix dimensions are given in
superscript. The Frobenius norm of a matrix is denoted by�	�� .

2. OVERDETERMINED BLIND SOURCE SEPARATION

2.1. Problem description

The mixing process is described as

�� � ��� � �� (1)

where�� � ��� � 	 	 	 � ��s
�� contains the samples of the unknown
source signals at time�, �� � � � � 	 	 	 �  � 
�� the samples of the
� sensor signals at sample time�, �� the samples of the sensor
noise at time�, and�� !� s � "# � $ $ $ #� %� is the unknown mix-
ing matrix. In the overdetermined case we have more sensors than
source signals (� & � s).

Solving the blind source separation problem means to find a
separation matrix'� s!� such that the output of the separation
process

(� � ' �� � ' ���� � �� 
 � )�� � ' �� (2)

retrieves waveform-preserving estimates of the unknown source
signals by using only the time series of the sensor signals� � for
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Figure 2: Overdetermined blind source separation setup using the proposed two-stage algorithm (� s � � � � � �).
� � � � � � 	 	 	 . ) denotes the total transfer matrix of the global
system.

2.2. Assumptions

In addition to the problem proposed above, we make the following
assumptions:	 � Time-invariant mixing matrix� .	� � has full rank� s.	


Source signals�� , � � � � 	 	 	 � � s, are mutually
independent and iid.	 � All source signals�� but possibly one are non-Gaussian.	� All source signals are unknown and have the same
power
 �s .	�
There are more sensors than source signals�� & � s
.	�
All sensors have the same noise characteristics.
The sensor noise is additive white Gaussian noise with
power
 �n . The sensor noise of the sensors is mutually
independent.	�
The source signals and the sensor noise are mutually
independent.

As a consequence,
	


and
	� imply��� � �

�
���
� � � 
 �s �� s (3)

and
	�

implies ��� � �
����
� � � 
 �n �� . (4)

3. PROPOSED ALGORITHM

The proposed algorithm has two stages. The first stage is based on
aprincipal component analysis (PCA) algorithm where we project
the � sensor signals onto an� s-dimensional signal-plus-noise
subspace and an� � � s dimensional noise subspace. The sec-
ond stage performs anindependent component analysis (ICA) of
the signal-plus-noise space to obtain the estimates of the source
signals.

3.1. First stage: Principal Component Analysis (PCA)

First we want to decorrelate the sensor signals. Decorrelation is a
necessary but not a sufficient condition for independence. To this
end we transform the sensor signals by a unitary transformation
matrix'd �

� � 'd
�� (5)

such that
��� � � �� ��
� � becomes a diagonal matrix.

By applying the SVD (singular-value decomposition) on � ,
we have

� � � ��� � 
 � � �  ���� ! � 
 (6)

where�� !� and�� s!� s are unitary matrices, and���� !� s

and ���� s!� s
are diagonal matrices which contain the singular val-

ues
� �� 
 of �  ��� � "#$% �
 � � 	 	 	 � 
� s
 (7)

with 
 � & 
� & $ $ $ & 
�s & ' (8)

where the last inequality comes from the assumption
	�.

The SVD of the input correlation matrix
�((

gives with (3)
and (4) �(( � �

����
� � (9)

� � ��� �
 � ���
(10)

� 
 �s ��
 � 
 �n �� (11)

� 
 �s � ��� � 
 � ��� � �
 � 
 �n �� (12)

� 
 �s � ��� ���� �
 � 
 �n �� (13)

� 
 �s � ���� �
 � 
 �n � �
 (14)

� � )
 �s ���� � 
 �n �� * �
 (15)

� � ����(( �
 (16)
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with���� !� � "#$% �
 � � 	 	 	 � 
�s � ' � 	 	 	 � '
 (17)����(( � "#$% )
 �x� � 	 	 	 � 
 �x�s
� 
 �x� s� � � 	 	 	 � 
 �x� * (18)

� "#$% �
 ��
 �s � 
 �n � 	 	 	 � 
 �� s
 �s � 
 �n � 
 �n � 	 	 	 � 
 �n � .
(19)

The first term of (15) contains the contribution of the sourcesig-
nals, while the second one contains the contribution of the sensor
noise. By choosing

'd �
�� '� s!�

d1

' �� �� s�!�
d2

�	 � �
 � � � �
(20)

we obtain with (5) and (15) the correlation matrix��� � �
�� ��
� � (21)

� 'd
�(( '
d (22)

� 
 �s ���� � 
 �n �� � ����(( . (23)

Therefore
���

becomes a diagonal matrix containing the singular
values of

�((
in descending order with
 �x� & $ $ $ & 
 �x� s

&
 �x�s� � � $ $ $ � 
 �x� � 
 �n . Since
���

is a diagonal matrix, the
signals in

�
are mutually uncorrelated, but not necessarily inde-

pendent. Furthermore, the signals in

�
are ordered by their powers

and since'd is a unitary matrix, the first� s elements of

�
con-

tain all the signal power of the source signals received at the sen-
sors � , � � � � 	 	 	 � � , and the remaining� � � s elements
of

�
contain only a mixture of the sensor noise. Assuming the

knowledge of the number of source signals� s, we can partition
the vector

�
into its� s principal and� � � s minor components�

� 
 �
� s

s�
� �� s
n � . (24)

By doing so, we can now use

�
s for the second stage and discard

�
n, as the elements of

�
n do not contain any components of the

source signals. We only use the principal components for further
processing. This procedure corresponds to aprincipal component
analysis (PCA). Note that there are as many principal components
as unknown source signals. Furthermore, the principal compo-
nents are mutually uncorrelated. We therefore use�

s � 'd1
� (25)

to generate� s virtual sensors from the� true sensors.

3.2. Second stage: Independent Component Analysis (ICA)

In the second stage we use an ICA algorithm to find a separation
matrix's such that

(� � 's�
�

s
� (26)

is an estimate of�� up to scaling and permutation of the elements.
Perfect separation occurs if the output signals of( are mutually in-
dependent. The joint density of( is then a product of the marginal
densities of�� [5] 
 � ��� � � s��� �
 �� ��� 
 (27)

because independence of the source signals is assumed by
	


,
i.e.


 � ��� � �� s�� � 
 �� ��� 
.
By using a PCA stage we have reduced the overdetermined

� �� s BSS problem to an� s �� s BSS problem with additive
sensor noise. We can now use any known BSS algorithm for the
regular (� s � � s) case, e.g., the natural gradient learning algo-
rithm proposed in [6]

's�� � � 's
� � � ��� s � � �(
� � 's

� (28)

the EASI algorithm proposed in [7]

's�� � � 's� � � ��� s � (�(
� � (��
� � � �(
� � 's� (29)

the Infomax algorithm [8]

's�� � � 's� � � �' �
s
� � � ��s
� � (30)

or a blind stochastic gradient algorithm, e.g., multichannel blind
LMS (MBLMS) [9],

's�� � � 's
� � � �( � � � � 
 �s
� (31)

where� � � � �(� 
 and � �	
 is a nonlinear function known as
the Bussgang nonlinearity or the score function, which depends
on the pdf of the source signals [10, 11]. Alternatively, a batch
algorithm can be used for the separation, see [12] for instance,
which explicitly uses higher-order cummulants.

3.3. Combining both stages

Both stages are now combined as shown in Fig. 2. With (25) and
(26) we obtain

'�s!�� � 's�'d1 . (32)

The first stage, i.e.'d1, can be seen as a preprocessing step, which
decorrelates the sensor signals and reduces the input dimension.
From

	 � and
	 � we know that

�((
is time invariant, and there-

fore'd1 does not have to be adapted. However,'s is computed
by an iterative learning algorithm. With (2) we obtain the total
transfer matrix of the global system

)� � 's�'d1� (33)

which should become close to a scaled permutation matrix to attain
a good signal separation. Of course) is available in a simulation
environment only, as the mixing matrix� is unknown by assump-
tion.

3.4. Minimum-norm solution

In the noiseless case, the underdetermined system equation) �
'� � ��s is fulfilled by an infinite number of possible separation

matrices' , e.g., all matrices of the form' � � "  ���� � ��� %�
 ,
where

���
is an arbitrary� s � �� � � s
 matrix. An additional

constraint is necessary to make the separation matrix unique. One
possibility is to constrain' to have the minimal possible Frobe-
nius norm. Such a solution is referred to as theminimum-norm
(MN) solution [13]. Because of the unitary invariance property

of the Frobenius norm [14] we have�' ��� � � "  ���� � ��� % ��� �
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� ��� �� ��� � ���� ��� . Thus,�' �� is minimal with
��� � �, and the

minimum-norm solution becomes

' MN � � "  ��� � � � %�
 � �
�

(34)

� �  ���� �'d1 (35)

where�
�

denotes the Moore-Penrose pseudoinverse of� , see
also [15]. Since'd1 is contained in' MN , see (35), the proposed
PCA preprocessing stage is part of the minimum-norm solution.
Furthermore, from (32) we can define

' MN
s � �  �����

. (36)

3.5. Minimum mean-squared error solution

Using the mean-squared error (MSE) as the cost function, we can
write down the cost to minimize as

�
MSE � � ���� � (� ��� � . (37)

Using (2) and setting the cost derivative with respect to thesepa-
ration matrix' to zero, we arrive after some simplifications at

� �
MSE�' � �

�
����
 �
 � '���
 �
 � ' ��
 
� � ' 	

(38)

Solving Eq. (38) for the separation matrix' yields theminimum
mean-squared error (MMSE) solution

' MMSE � ����
 ������
 � ��� 
�� 	 (39)

Inserting
���

and
���

from (3) and (4), respectively, (39) can
then be written as

' MMSE � �
 ���
 � 
 �n
 �s �� 
� � . (40)

By inserting (6) into (40) and after a longer calculation, weobtain

' MMSE � �   �����
'd1 (41)

where

  ��� � "#$% �
�
 �� � � �n� �s
 � � 	 	 	 � 
 ��s

� � �n� �s
� s

�
	 . (42)

We now recognize, that if
n goes toward zero,  ��� converges to-
ward  ���, and therefore' MMSE approaches' MN . Since'd1 is
also contained in' MMSE, we can clearly see that the proposed
PCA preprocessing stage is part of the MMSE solution ' MMSE.
Furthermore, from (32) we can define

' MMSE
s � �   ���� �

. (43)

3.6. Estimation of the number of sources

Until now we have assumed that we know the number of unknown
source signals� s which are involved in the mixing process. How-
ever, often� s is unknown and therefore has to be estimated. Since
the input correlation matrix

�((
or

���
have� s dominant sin-

gular values and� �� s minor singular values which have all the
same value
 �n , see also (19), the number of source signals involved
in the mixing process can be evaluated by choosing a threshold
just above
 �n . Moreover, if the number of active source signals
� s changes, it will be visible also from analyzing the distribution
of the singular values. Alternatively, an information-theoretic cri-
terion can be used to estimate the number of source signals [16].

4. SIMULATION

In the following, we give a simulation example to analyze thebe-
havior of the algorithm proposed.

4.1. Performance measurement

In order to describe the performance of the algorithm proposed, we
use thesignal-to-noise ratio (SNR), thesignal-to-interference ra-
tio (SIR), thesignal-to-interference-plus-noise ratio (SINR), and
the convergence rate as the criteria. We define the followingper-
formance measurements:

SNR� � 
 SNR of input sensor signal � ,
SNR�� 
 total input SNR,
SNR�
� 
 SNR of virtual sensor signal
� ,
SNR�

�
s
 total SNR of virtual sensors

�
s,

SNR��� 
 SNR of output signal�� ,
SNR�(
 total output SNR,
SIR ��� 
 SIR of output signal�� ,
SIR �( 
 total output SIR,
SINR ��� 
 SINR of output signal�� ,
SINR �(
 total output SINR.

4.2. Simulation

In the simulation we have� s � � source signals, each being
a 4-QAM signal. We compare the behavior of the proposed al-
gorithm with � � 5, 10, and 20 sensors. The complex mixing
matrices are set up as� �!� � � �, � ��!� � 
��� ��� �� , and

� ��!� � 
��� ��� ��� ��� �� , where each� �!�� , � � � � 	 	 	 � �,
is a random complex submatrix with�� � �� � 
 � �� � 
 � �, con-
dition number� �� � 
 � 
 � �� � 
 �
� s �� � 
 � �' and logarith-
mically distributed singular values. The respective condition num-
bers are� �� �!� 
 � �', � �� ��!� 
 � 
 	
, and� �� ��!� 
 � � 	
.
For the update of's we use a block algorithm with (28), block
length� � �'', step size� � ' 	��, and the Bussgang nonlinear-
ity � �( 
 as�� ��� 
 � �� ��� �� .

The simulation is set up with
 �� �
 �� � �� dB. Fig. 3 (top)
shows SNR� � 
, the resulting SNR’s at the true sensors. Fig. 3
(middle) shows SNR�
� 
, the SNR’s at the virtual sensors after
the PCA stage. Fig. 3 (bottom) shows SNR��� 
, the SNR’s of the
output signals after convergence, i.e.' �' � . The constellation
diagram of�� after convergence is given in Fig. 5. The learning
curves of SINR�( 
, SIR �( 
 and SNR�( 
 are shown in Fig. 4.
The input SNR, output SNR, SIR, and SINR after convergence are
given in Table 1 together with the values for the minimum-norm
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Table 1: SNR’s with� s� � source signals and
 �� �
 �� � �� dB
System PCA ICA: ' � Minimum norm:' MN MMSE: ' MMSE

� SNR�� 
 SNR�
�

s
 SNR�( 
 SIR �( 
 SINR �( 
 SNR�( 
 SIR �( 
 SINR �( 
 SNR�( 
 SIR �( 
 SINR �( 

5 9.5 dB 9.5 dB 3.2 dB 11.9 dB 2.6 dB 0.3 dB � 0.3 dB 5.0 dB 8.4 dB 3.3 dB

10 9.5 dB 12.6 dB 10.0 dB 24.0 dB 9.8 dB 9.7 dB � 9.7 dB 10.1 dB 25.2 dB 9.9 dB
20 9.5 dB 15.6 dB 14.1 dB 24.6 dB 13.8 dB 14.0 dB � 14.0 dB 14.1 dB 33.5 dB 14.0 dB
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Figure 3: SNR’s after convergence for� � 5,10, and 20:
(top) SNR� � 
, (middle) SNR�
� 
, (bottom) SNR��� 
. The
output signals�� are sorted by their SNR.

solution' MN and the MMSE solution' MMSE defined in (34) and
(41), respectively.

We see that for five sensors, both the separation quality and the
convergence time are very poor. Doubling the number of sensors,
i.e.� � �', improves the situation considerably. The main differ-
ence between 10 and 20 sensors is the higher output SNR, whereas
the convergence rate and the separation quality differ onlymargin-
ally. The improvement of SNR�( 
 by using more sensors also
stems from the fact that� �� 
 is smaller in the case where more
sensors are used, as the output SNR improvement is more than just
3 dB for each doubling of the number of sensors. A small singu-
lar value
� results in a small SNR�
� 
, a noisy virtual sensor
� . Since the blind algorithm under consideration steers all out-
put signals�� to have equal power, the noisy signal
� is strongly
amplified and therefore causes noisy output signals.

From Table 1 we see that the minimum-norm solution' MN

always forces perfect separation (SIR� � ), irrespective of the
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Figure 4: Convergence behavior of SNR�(
, SIR �( 
, and
SINR �(
 for �

�
� �: (top) � � �, (middle)� � �', (bottom)

� � �'.

1 2 3 4 5

Figure 5: Constellation plot after convergence with� s � �
4-QAM signals: (top)� � �, (middle)� � �', (bottom)� � �'.
The output signals�� are sorted by their SNR.
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resulting output SNR. This leads to a poor SINR for five sen-
sors, caused by the low output SNR. We conclude from this that
the minimum-norm solution is not the preferred solution forlow
SNR�

�
s
, especially in a communication system, where minimiz-

ing the SINR is of major interest. The MMSE solution' MMSE

always achieves the highest SINR and SNR, however, typically
there is only a small difference to' � . Note that for the adaptive
algorithm a further increase of the final SIR can be achieved by
reducing the step size�. Furthermore, from Fig. 4 and Table 1 we
see that the final output SINR is mainly limited by the output SNR
and not by the output SIR. The sensor noise is the limiting factor
for the quality of the output signals.

5. CONCLUSIONS

A two-stage algorithm to solve the overdetermined blind source
separation problem with noisy sensors has been proposed. Ina
preprocessing step, a PCA divides the input space into a signal-
plus-noise space and a noise space. The signals in the signal-
plus-noise space are then propagated to a subsequent ICA stage.
The proposed preprocessing stage is an implicit part of the mini-
mum-norm solution and also of the MMSE solution. Furthermore,
the advantage of using more sensors than source signals has been
demonstrated by a simulation example, which show that a faster
convergence rate as well as a higher steady-state SINR can be
achieved.
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