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ABSTRACT

In ICA and BSS methods, the mutual information (MI)
of the estimated components is one of the most desirable
measures of statistical dependence, for use as an objective
function. However, its use requires the estimation of the
statistical distributions of the components. Previous MI-
based ICA methods have resorted to an a-priori knowledge
of those distributions or to their approximation by trun-
cated series expansions or by means of kernels. This pa-
per presents a method for simultaneously estimating those
distributions and performing MI-based ICA, using a sin-
gle network trained with a single objective function. The
method is able to correctly handle mixtures of subgaussian
and supergaussian sources.

1. INTRODUCTION

We consider a classical independent components analysis
(ICA) situation, in which we have a set of observed patterns
o, and we wish to find a matrix A such that the components
of the output pattern, given by’

y = Ao (1)
are as independent from one another as possible. In such a
situation, one of the most desirable independence measures
for the estimation of A is the mutual information (MI) of
the components of y, defined as

I(y) = Z H(y:) — H(y) (2)

where H(-) denotes the entropy of the random variable
given in the argument. Among other advantages, this inf-
ormation-theoretic measure is independent of the scaling of
the estimated components, and has an absolute minimum
of zero for truly statistically independent components.

The use of mutual information as an optimization crite-
rion requires the knowledge of the statistical distributions
of the estimated components. However, these distributions
change during the optimization of the analysis matrix A,
and the distributions of the independent components to be
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extracted are very often unknown. This has made the use
of true mutual information cumbersome, and has led to sev-
eral approximations. In the well known method of Bell and
Sejnowski [1], the approximate cumulative distributions of
the components are assumed to be known, and are used
as nonlinearities at the outputs (see Section 2 for a more
detailed description). Several authors, on the other hand,
have used truncated series expansions of the densities of
the output components [2, 3, 4]. In [5] a density estimate
based on Gaussian kernels was used. While these methods
have shown to be useful in practice, it would be desirable
to have a method in which the estimation of the distribu-
tions is more flexible and more closely integrated with the
minimization of the mutual information.

In this paper we present an efficient method for simulta-
neously estimating the analysis matrix A and the statistical
distributions of the estimated components y;. The estima-
tion of A is performed by minimizing the mutual informa-
tion of the components of y, making use of the estimated
distributions of these components. The estimation of A and
of the components’ distributions is performed by a single
network, optimized with a single objective function. The
method can be considered as an extension of the method of
Bell and Sejnowski.

The paper is organized as follows. Section 2 briefly dis-
cusses the ICA method of Bell and Sejnowski. Section 3
shows how to extend it by incorporating the simultaneous
estimation of the output distributions. Section 4 presents
experimental results. Section 5 concludes.

2. THE METHOD OF BELL AND SEJNOWSKI

The ICA method of Bell and Sejnowski [1] uses a network
as depicted in Fig. 1. In this network, the observed pat-
terns o first go through a linear block that corresponds to
the product by A in (1) and that yields the vector of esti-
mated components y. Each estimated component y; then
goes through a fixed, invertible nonlinearity v;, yielding the
output z; = ;(y;). The analysis matrix A is estimated by
maximizing the joint entropy of the output components,
H(z).

If we choose each nonlinearity ; so as to equal the
cumulative probability function (CPF) of the correspond-
ing component y;, then maximizing H(z) is equivalent to
minimizing the mutual information of the estimated com-
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Figure 1: Architecture of the ICA systems studied in this
paper. In the method of Bell and Sejnowski the nonlineari-
ties 1; are fixed a-priori. In our proposed method they are
adaptive, being implemented by multilayer perceptrons.

ponents, because
I(y) = —H(z) (3)

In fact, the mutual information of the components of y is
not affected by performing invertible, nonlinear transforma-
tions on these components, and therefore

1y) = 1)
S H(x) - H2) @

But if 1); is the cumulative probability function P(y;), then
z; is uniformly distributed between 0 and 1, and H(z;) = 0.
This justifies (3).

In the ICA method of Bell and Sejnowski, the nonlin-
earities ¢; are fixed. In practical situations these nonlinear-
ities usually are chosen on the basis of some prior knowledge
about the distributions of the components to be estimated.
Linear ICA is a highly constrained problem, and therefore
only a limited knowledge of those distributions is needed.
For example, it is known that for most supergaussian distri-
butions it is sufficient to use the logistic sigmoid as nonlin-
earity. It would, however, be desirable to have a method to
directly estimate the appropriate nonlinearities within the
optimization process itself.

3. ESTIMATING THE COMPONENTS’
DISTRIBUTIONS

‘We shall now see how to estimate the cumulative distribu-
tions P(y;) simultaneously with the estimation of the analy-
sis matrix A. We shall use the same structure as the method
of Bell and Sejnowski (Fig. 1), but each of the nonlineari-
ties v; shall now be adaptive, being implemented by means
of a multilayer perceptron (MLP) with a single input and
a single output. In principle, each of these MLPs should
be constrained in such a way that it could only implement
monotonically increasing functions, with outputs between
0 and 1. We shall see, however, that it is preferable, in
practice, to relax these constraints somewhat. The system
formed by the linear block and the output MLPs constitutes
a single multilayer perceptron with a specialized architec-
ture. The whole network (i.e. the linear part corresponding
to A and the nonlinearities ;) shall be trained by maxi-
mizing the output entropy H(z).

Due to the constraints on the output MLPs, the out-
put patterns are confined to a unit hypercube with its sides
aligned with the coordinate axes. Maximizing the entropy

H(z) subject to this constraint leads the output density to
approximate a uniform density. In particular, the marginal
distribution of each output component z; will approximate
a uniform distribution in [0,1] as much as possible, sub-
ject only to the capabilities of the respective output MLP.
Therefore, the nonlinearity 1; will approximate the cumu-
lative probability function P(y;) as much as possible, and
will track the variations of this function as the separating
matrix A is adapted. We shall therefore designate the out-
put MLPs as CPF-nets. Since the nonlinearities v; track
the CPFs of the estimated components, —H (z) tracks the
mutual information of those components, and maximizing
H(z) is equivalent to minimizing I(y), as desired.

The only approximations involved in this process are
the approximations of the CPFs made by the output MLPs.
One should recall that in estimating a distribution from a
finite set of training data, some smoothing must be per-
formed. In our method the smoothing can be controlled
through the size and structure of the MLP and, if appro-
priate, through the use of some regularization procedure.
The use of MLPs to estimate the cumulative probability
functions gives us a large freedom in choosing the appropri-
ate amount of smoothing for each situation.

This is the basis of our proposed ICA method. We shall
now proceed to discuss some of its details. First of all, we
need to constrain each output MLP so that it is limited
to implementing monotonically increasing functions vary-
ing between 0 and 1. Monotonicity can be enforced by
using a network in which all weights (except biases) are
constrained to being non-negative, and all units’ activation
functions are monotonically increasing. The limitation of
the output to the interval [0, 1] can be enforced in several
ways. One of them is to use, in the output unit, an acti-
vation function varying between 0 and 1. Another way is
to use activation functions varying between 0 and 1 in the
hidden units, to use a linear output unit, and to constrain
the weights leading to the output unit to have a sum of 1.

Although theoretically correct, constraints of this kind
are not convenient because their constraint spaces have
”corners”, which give rise to local maxima of the objec-
tive function H(z). We have found a constraint that works
quite well in practice. It consists simply of keeping the Eu-
clidean norm of the vector of weights leading to the output
unit of each of the CPF-nets normalized, and initializing
all interconnection weights (i.e. all weights except biases) of
these nets to positive values. The output units are linear.
Assume that each CPF-net has h hidden units in its last
hidden layer, and that the units in this layer have activa-
tion functions which are increasing, varying between 0 and
1. If all interconnection weights are positive and if we nor-
malize the Euclidean norm of the output weight vector to
1/V/h, the maximum value at the output is obtained when
all units of the last hidden layer are saturated to 1 and all
weights leading to the output unit are equal to 1/h. In this
case the value of the output is 1. Since the minimum possi-
ble value of the output is 0, the output is bounded between
0 and 1, as desired. On the other hand, if the intercon-
nection weights are initialized to positive values they will
almost always remain positive because, if a weight would
change to negative, this would normally imply a decrease
in H(z). Therefore we don’t need to explicitly constrain
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Figure 2: Network for computing the Jacobian

the signs of the weights.

The whole system is trained through gradient ascent on
H(z). Performing gradient optimization with constraints of
the kind mentioned above is relatively simple. We perform
the ordinary weight update using the unconstrained gradi-
ent, and we then project the updated weight vector onto the
constraint manifold. This projection is relatively simple to
perform for all the kinds of constraints indicated above. For
the specific case of the constraint on the Euclidean norms of
the output weight vectors, we simply need to re-normalize
each of these vectors after its update, by dividing it by its
norm times \/ﬁ

Computing the gradient of H(z) is somewhat more com-
plex in our method than in Bell and Sejnowski’s one. We
start as in [1],

H(z) = H(o) + (log| det J|) (5)

where the angled brackets denote statistical expectation,
and J = 0z/0o is the Jacobian of the transformation per-
formed by the network. H (o) does not depend on the net-
work’s parameters, and thus can be excluded from the max-
imization. We approximate the statistical expectation in
the last term by the empirical average (average over the
training set),

K
(log | det J|) = EZlog|detJ | (6)

k=1

where J* designates the Jacobian of the transformation per-
formed by the network when its input is o* (the k-th pattern
in the training set?), and K is the size of the training set.

The computation of the gradient of log | det J*| consists
essentially of performing a backpropagation. In Fig. 2 we
depict a network that computes J, for the case where the
CPF-nets have a single hidden layer and linear output units.
The network in the upper part of the figure is the estima-
tion network of Fig. 1. It is depicted here in a different
form, for convenience. The network in the lower part of the
figure computes the Jacobian itself. We now describe the
structures of these two parts in more detail.

The estimator network in the upper part of the figure
has as input an observed pattern o. Block A multiplies this
pattern vector by matrix A, yielding at its output the vec-
tor of estimated components y, as in (1). Together, blocks

2Superscripts do not denote exponents: instead, they index
patterns in the training set.

171

B, ® and C jointly represent the set of CPF-nets of Fig.
2. In fact, the set of CPF-nets can be viewed as a sin-
gle multilayer perceptron with a special topology. Block B
multiplies y by the weight matrix of the input layer of this
perceptron, s = By. Its output s is the vector of input
activations of the hidden units of the CPF-nets. Block &
applies to each of these activations the corresponding non-
linear activation function ¢*. Finally, block C multiplies
the vector of outputs of the hidden units by the weight ma-
trix C of the output layer, yielding the output vector z.

The network in the lower part of the figure computes
the Jacobian itself. This network propagates matrices, in-
stead of vectors (this is depicted, in the figure, by the “3-D
arrows” that link blocks). The network’s input is the iden-
tity matrix. Block A multiplies this by matrix A, yielding
as output A itself (this seems trivial but is convenient later,
for the backpropagation phase). Block B is similar: its out-
put is G = BA. Block &' multiplies G, componentwise, by
the derivatives of the nonlinear activation functions of the
®-block:

hij = ¢’(5i)gij (7

The gray arrow brings, from the upper network, the values
s; needed for computing ¢’ (s;). Finally, block C is similar
to A and B. Its output is the Jacobian, J = CH.

To compute the gradient of E = log|det J| we need to
input into the lower part of the backpropagation network
(which is obtained by linearizing and transposing the net-
work of Fig. 2) the gradient of E relative to J,

OE
Eii (8)

where the superscript —7 denotes the transpose of the in-
verse. We must input zero into the upper part of the back-
propagation network, since the objective function does not
directly depend on z itself. However, information flows
backward into the upper part through the gray links, and
that information should be backpropagated through the up-
per part.

Most of the backpropagation network can be found in
the usual way, since forward propagation involves almost
only products by matrices and passing through nonlinear
activation functions. Blocks in the lower part of the figure,
which have matrices as inputs, can be considered as collec-
tions of identical blocks with vectors as inputs, one for each
column of the input matrix. The only nonstandard part is
block ®'. Figure 3-a) shows a unit of this block, which is
described by (7). Backpropagation corresponds to multi-
plying the backpropagated input by the partial derivatives
of h;; relative to g;; and s;, respectively. We have

J—T

ah’b .
Wi; =¢'(s:) 9)
hi' 1"

A (10)

Therefore, the corresponding backpropagation unit is as de-
picted in Fig. 3-b).

3The method can deal equally well with different activation
functions for different units, if necessary.
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Figure 3: a) A unit of the ® block. b) The corresponding
backpropagation unit.

The system of Fig. 2 has shared weights between the
A blocks in the upper and lower parts of the figure. If we
view each block of the lower part as a collection of identical
blocks, as mentioned above, we must also treat these iden-
tical blocks as having shared weights. The procedure for
handling a shared weight is well known. We compute the
partial derivatives relative to the various instances of the
weight in the usual way and we add them together. This
sum is the partial derivative relative to the shared weight.

We note that blocks ® and C of the upper part of Fig. 2
are not needed for the optimization. We have shown them
for better correspondence with Fig. 1. When performing
the experimental tests described in the next section, we
have kept these blocks to be able to display scatter plots of
z, to assess the evolution of its distribution as it approaches
uniformity.

4. EXPERIMENTAL RESULTS

We have performed several tests of the ICA method de-
scribed above. Here we present only some of the more rel-
evant ones, for brevity. We have used, in all the tests, the
structure of Fig. 1, with 4 hidden units in each CPF-net.
These hidden units had tanh activation functions®. The
output units of the CPF-nets were linear, and we used the
Euclidean norm constraint as described above. No explicit
regularization was used.

Training was performed in batch mode, with momen-
tum. We used adaptive step sizes and cost function control
(as described in [6], sections C1.2.4.2 and C1.2.4.3) for ac-
celerating the training®. The use of this acceleration proce-
dure was crucial in obtaining short training times.

We used two-component patterns in all of the tests de-
scribed here. The mixture matrix was the same for all tests,
randomly chosen as

4Since these functions vary between —1 and 1, the outputs
of the CPF-nets are also constrained to this range, instead of
[0,1]. This corresponds only to a change of origin and scale of
the outputs and does not affect the optimization results. It yelds
faster optimization, however.

5We used an additive (instead of multiplicative) tolerance in
the cost function control procedure of section C1.2.4.3 because
our cost function is logarithmic and can take negative as well as
positive values.

0.92 0.68

M= [ 035 0.22 (11)
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Figure 4: Separation of supergaussian signals. Top: source
signals. Middle: mixtures. Bottom: separated signals.
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Figure 5: Scatter plots of the separation of supergaussian
signals. Left: source signals; speech (horizontal) and noise
(vertical). Right: mixtures.

This matrix is close to singular (condition number of about
41), making source separation somewhat difficult. No pre-
sphering of the observations was used (although it could
have been used, and would have made separation easier).
The training sets were formed by randomly sampling from
the mixture patterns. The size of the training set was al-
ways 100, which is relatively small.

Figures 4 to 7 show the results of ICA on a mixture of
two supergaussian sources (speech and supergaussian noise).
The CPF-nets adapted themselves quite well to the CPFs
of the sources (note the skewed character of the distribution
of the speech signal). The quality of the separation can also
be assessed from the matrix

0.00

0.54 (12)

0.57
AM = [ —0.02 ]

which is rather good for such a small training set. In this
and other tests that we performed, the system was always
able to separate mixtures of supergaussian sources quite
well.

Figures 8 to 11 show the results for a mixture of speech
and strongly subgaussian, bimodal noise. Note again how
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Figure 6: Scatter plots of the separation of supergaussian
signals. Left: separated signals; speech (vertical) and noise
(horizontal). Right: signals at the outputs of the CPF-nets

(note the uniform distribution). These plots show only the
100 patterns of the training set.
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Figure 7: Separation of supergaussian signals — nonlinear-
ities estimated by the CPF-nets. Top: noise. Bottom:
speech. These nonlinearities are estimates of the CPFs,
apart from a rescaling of the range to [—1,1].

the CPF-nets adapted themselves to the CPFs of the sources
In this case we had

We always obtained quite good separation for mixtures of
supergaussian and subgaussian signals, in this and other
tests.

-0.01 0.31

0.55 0.00 (13)

- |

When both sources were mildly subgaussian (both were
uniformly distributed), the system was still always able
to perform a good separation. When both sources had
strongly subgaussian, bimodal distributions the system some
times converged to a good solution, corresponding to the ab-
solute minimum of the mutual information (Fig. 12). How-
ever, it sometimes converged to a local minimum of the
MI in which only one of the sources was well separated
(Fig. 13) or even to another minimum in which none of the
sources was well separated (Fig. 14). Local minima are a
drawback of mutual information (and of several other de-
pendence measures) when two or more of the sources are
multimodal.
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Figure 8: Separation of a supergaussian and a subgaussian
signal. Top: source signals. Middle: mixtures. Bottom:
separated signals. Samples are shown as unconnected dots
for better visibility of the bimodal character of the noise.
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Figure 9: Scatter plots of the separation of a supergaus-
sian and a subgaussian signal. Left: source signals. Right:
mixtures.

5. CONCLUSIONS

We have presented a method for performing MI-based ICA /
BSS, with simultaneous estimation of the distributions of
the components. The method is based on the ICA method
of Bell and Sejnowski, but uses adaptive nonlinearities to
estimate the actual cumulative probability functions of the
components. Compared to the methods that approximate
the densities of the components through truncated series [2,
3, 4] or through kernels [5] it has the advantage of allowing
a more flexible approximation of the distributions, with a
rather free choice of the amount of smoothing to be used.
The method can can be extended to nonlinear ICA and to
the separation of nonlinearly mixed sources, as described
elsewhere [7].
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Figure 12: Separation of two subgaussian, bimodal signals
at an absolute minimum of the MI. Left: scatterplot of the
separated signals. Middle: scatter plot of the outputs of
the CPF-nets. Right: nonlinearities estimated by the CPF-

nets.
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Figure 13: Separation of two subgaussian, bimodal signals
at a local minimum of the MI. Left: scatterplot of the sep-
arated signals. Middle: scatter plot of the outputs of the
CPF-nets (note the non-uniform distribution). Right: non-

linearities estimated by the CPF-nets.
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Figure 14: Separation of two subgaussian, bimodal signals
at another local minimum of the MI. Left: scatterplot of
the separated signals. Middle: scatter plot of the outputs

of the CPF-nets (note the non-uniform distribution). Right:
nonlinearities estimated by the CPF-nets.



