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ABSTRACT

An extension of the Gaussian mixture model is pre-
sented using Independent Component Analysis (ICA)
and the generalized Gaussian density model. The mix-
ture model assumes that the observed data can be cat-
egorized into mutually exclusive classes whose compo-
nents are generated by a linear combination of inde-
pendent sources. The source densities are modeled by
generalized Gaussians (Box and Tiao, 1973) that pro-
vide a general method for modeling non-Gaussian sta-
tistical structure of univariate distributions that have
the form p(z) o« exp(—|z|?). By inferring ¢, a wide
class of statistical distributions can be characterized in-
cluding uniform, Gaussian, Laplacian, and other sub-
and super-Gaussian densities. The generalized Gaus-
sian mixture model using ICA infers for each class the
source parameters, the basis functions and bias vec-
tors. The new method can improve classification accu-
racy compared with standard Gaussian mixture models
and shows promise for accurately modeling structure in
high-dimensional data.

1. INTRODUCTION

In pattern classification, the performance of a method
is often determined by how well it can model the un-
derlying statistical distribution of the data. One re-
cent example of this is independent component anal-
ysis (ICA). The success of ICA on problems such as
blind source separation and signal analysis results di-
rectly from its ability to model non-Gaussian statistical
structure. If the source distributions are assumed to
be Gaussian, this technique is equivalent to principal
component analysis (PCA). PCA assumes the data to
be distributed according to a multivariate Gaussian. In
contrast, ICA assumes that the source distributions are
non-Gaussian allowing modeling non-Gaussian struc-
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ture, e.g., platykurtic or leptokurtic probability den-
sity functions. In many applications of ICA, the form
of the source distribution (or equivalently the “non-
linearity”) is fixed. More recent work has extended
these results so that the form of distribution can also
be inferred from the data for example, using Gaussian
mixtures (Attias, 1999) or mixtures of sub-Gaussian
and super-Gaussian densities (Lee et al., 1999a).

In many pattern recognition problems there are data
clusters in which each cluster can be fitted by non-
Gaussian distributions. To model the ensemble of data
classes a mixture model (Duda and Hart, 1973) is con-
sidered where the observed data can be categorized into
several mutually exclusive classes. When the class vari-
ables are modeled as multivariate Gaussian densities,
it is called a Gaussian mixture model. This model can
be generalized by assuming that the sources in each
class are independent and non-Gaussian. In Lee et al.
(1999b) we modeled the underlying source density by
two predefined non-Gaussian densities (super and sub-
Gaussian) as used in the extended infomax algorithm.
A binary parameter switched from a sub- or super-
Gaussian density.

In this paper, we are interested in modeling a con-
tinuously defined parametric form of the underlying
density for each class. The exponential power distri-
bution (Box and Tiao, 1973)! is used to model dis-
tributions that deviate from normality. They provide
a general method for modeling non-Gaussian statisti-
cal structure of univariate distributions that have the
form p(z) x exp(—|z|?). By inferring ¢, a wide class
of statistical distributions can be characterized includ-
ing uniform, Gaussian, Laplacian, and other sub- and
super-Gaussian densities. This formulation of a mix-
ture model using the generalized Gaussian contains as
special the Gaussian mixture model when all the source

lalso called a generalized Laplacian or generalized Gaussian.



densities are restricted to be Gaussian. Using this dis-
tribution in ICA, we show that the generalized Gaus-
sian mixture model can be used to infer the degree of
non-Gaussian statistical structure for classes of mul-
tivariate densities. This can be applied to situations
where multiple classes exist with unknown source den-
sities.

This paper is organized as follows: We present the
generalized Gaussian model and show how to infer the
parameters for this density model. This model is used
for capturing the densities of the unknown sources in
ICA. Finally, this ICA model is extended to multiple
classes yielding in the generalized Gaussian mixture
model using ICA. We demonstrate in simulations that
this model can improve classification accuracy com-
pared with standard Gaussian mixture models and shows
promise for accurately modeling structure in high di-
mensional data.

2. THE GENERALIZED GAUSSIAN
MODEL

The generalized Gaussian is used to model distributions
that deviate from normality. In its simplest form, this
distribution is

plz) o exp(~ g ol"). )

By varying the exponent g, it is possible to describe
Gaussian, platykurtic, and leptokurtic distributions.
Using ¢ = 2/(1 + 8), Box and Tiao (1973) expressed
this distribution in the following general form
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In this form, the data’s mean and standard deviation
are given by p and o, respectively. The parameter
is a measure of kurtosis and controls the distribution’s
deviation from normality.? When 8 = 0, the distribu-
tion is the standard normal; it is a Laplacian (or double

2Box and Tiao (1973) considered the case for 8 over the range
[-1,1], but the distributions are also valid for the more general
case for g > 1.
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Figure 1: Exponential power distributions for various
values 8. The parameter (3 is also a measure of the
distribution’s kurtosis, and varies with the standard
kurtosis measure, ys.
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exponential) for 3 = 1. As 8 — —1, the distribution
becomes uniform over the unit interval. As 8 — oo,
the distribution a delta function at zero. The param-
eter B can also be converted to the standard kurtosis
measure v, = E(z — u)*/o* — 3. For the exponential
power distribution, this relation is

(L)), IR BN
T[3(1+9)]

Figure 2 shows examples of the exponential power dis-
tribution for various values of 8 and the correspond-
ing values of 7. In addition to the standard normal
and the Laplacian, also shown is the distribution la-
beled “ICA tanh” which shows the best-fitting expo-
nential power distribution to the implied prior distribu-
tion under the widely-used tanh non-linearity in ICA.
The form of this prior is p(z) = cosh(bz)®/*/Z where
Z = w1?T'(a/2b)/T((a + b)/2b). The fit by the ex-
ponential power distribution (for a = b = 1) is almost
exact, differing by having a slightly shaper peak, and
yielding a Kullback-Leibler divergence of 0.0007 for the
optimum £ = 0.495 and o = 1.525.

2.1. Estimating

For the purposes of finding the basis functions and the
B parameter in ICA, zero mean and unit variance is
assumed. The problem then becomes to estimate the
value of 3 from the data. This can be accomplished
by simply finding the maximum posteriori value of 3.
The posterior distribution of 3 given the observations
x ={x1,...,zn} is

p(Blx) o« p(x|8)p(B) (6)
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where the data likelihood is
p(x18) = [Tw(® exp [—e(Blaa/ 7], (7)

and p(f3) defines the prior distribution for 8. Because
B > —1, it is convenient to use p(3) ~ Gamma(l +
Bla,b). Choosing the values a = 2 and b = 2 gives a
broad prior distribution with a 95% density range of
[—0.5,10.5], which is sufficient for our purposes here.
See Box and Tiao (1973) for further discussion on in-
ference with the exponential power distribution.

3. THE GENERALIZED GAUSSIAN ICA

The objective of ICA is to infer both the unknown
sources and the unknown basis functions (mixing ma-
trix) from the data signal (Jutten and Herault, 1991;
Comon, 1994; Bell and Sejnowski, 1995). This problem
can be formulated explicitly as one of density estima-
tion (Pearlmutter and Parra, 1996; MacKay, 1996; Car-
doso, 1997). The data likelihood is derived by marginal-
izing over the sources

p(x|A) = / p(x]s, A)p(s) ds. (8)

Because there is a unique expression for the data in
terms of the sources, s = A~!x, the conditional likeli-
hood is a delta function

p(x|s,A) =d(x — As). (9)
In this case, the expression for the data likelihood is
p(s)
A) = . 10
p(xA) = 2 0 (10)

Performing gradient ascent on this expression gives a
rule for learning the mixing matrix, A

T 0 _ T
AA x AA A logp(x|A) = —A(p(s)s” —1I) .(11)

where the prefactor AAT is used to obtain the natu-

ral gradient solution (Amari et al., 1996) which gives

an ascent direction that is insensitive to rescalings of

the data. The vector o(s) is a function of the prior

and is defined by o(s) = alogisp(s). In the case of the

exponential power distribution (eq.2), for p(s) we have
a

pi(si) = —nlsi — pal " 'qeo; ?, (12)
where n Sign(si - lu”L)J q = 2/(1 + ﬁi)7 and c
[[(3/q)/T(1/q)]?/2. Details of the learning rule deriva-
tion are given in Lewicki (2000). Figure 2 shows exam-
ples of the fitting two dimensional distributions with
the ICA-exponential power model. The values of

were estimated periodically during learning by maxi-
mizing the posterior (eq.6).
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Figure 2: Fitting independent components of two
dimensional distributions using generalized Gaussian
source models. The scatter plot (a) shows the data
distributions. The arrows indicate the learned basis
functions (rescaled). The histograms of the distribu-
tion of coeflicients and the inferred values of the ex-
ponential power parameter 8 are shown in (b). The
example shows a mixture of super- and sub-Gaussian
sources in which the true values of 8 were -1 and +4.
The inferred 8 values were -0.89 and 3.78 respectively.

4. THE GENERALIZED MIXTURE MODEL
USING ICA

A mixture density is defined as (Duda and Hart, 1973):

K
p(x,|0) = ZP(Xn|Ck50k)p(Ck)a (13)
k=1
where © = (0y,--- ,0k) are the unknown parameters

(Ag, by, Br) for the component densities p(x,|Chk,8k)-
The likelihood of the data is the joint density

N

p(X|0) = [] p(xx10).

n=1

(14)



We assume that p(X|©) is a differentiable function of
©. The log-likelihood L is then

N
L= logp(x,|©)

n=1

(15)

and the gradient for the parameters of each class k is

ﬁj s Vop(x0)

= p(x2|0)

[ p(xalC, 60p(C1)]
p(x4|0)

V0, 0(%n|Ck, 0)p(Ck)
p(xn|®) -

VoL

N Vok

>

n=1

(16)
Using the Bayes relation, the class probability for a
given data vector x,, is

P(Xn |0k, Cr)p(Ch)
>k P(Xn|Ok, Cr)p(Cr)

Substituting eq.17 in eq.16 leads to

p(Ck|XTL7

0) = (17)

V9, 0(%Xn|0k, Cr)p(Ck)

Ve, L
O P(%n 0k, Cr)p(Cr)

Il

p Ck|xn7 @

)
)

Il

Vo, log p(x,|Ck, 6k).(18)

N
>
n=1
N

Z p(Ck |Xn7 @
n=1

The log likelihood function in eq.18 is the log likeli-
hood for each class. For the present model, the class log

likelihood is given by the log likelihood for the standard
ICA model:

s
l0gp(xa 61, C) = log [ Rt (19)
= logp(A, ' (x, — by)) — log|det A|.

Gradient ascent is used to estimate the parameters
that maximize the log Likelihood. The gradient pa-
rameters for each class are the gradient of the basis
functions and the gradient of the bias vector Vg, L =
{Va,L,Vp,L, Vs, L}. We consider each in turn.

4.1. Estimating the basis functions

Adapt the basis functions for each class Ay with eq.18.

N
Va, L= Zp(0k|xn, ©)Va, log p(x,|Ck,0k)-
= (20)

242

The adaptation is performed by using gradient ascent
with the gradient of the component density with re-
spect to the basis functions giving

AAk X p(Ck|Xn7

0) 77— log p(xn|Ch, Ok)-

0
OA (21)
In the basis functions adaptation, the gradient of the
component density with respect to the basis functions
Ay, is weighted by p(Cj|xy, ©).

The section 2 describes the learning rules for the
adaptation of % log p(%x,|Ck, 0r) using the general-

ized Gaussian ICA (eq.11 and eq.12).

4.2. Estimating bias vectors

We can use eq.18 to adapt the bias vectors for each
class Ag.

N
Vi L =Y p(Ck|%n, ©) Vi, 1og p(xn|Cr, 0.

n=1

(22)

The adaptation is performed by using gradient ascent
with the gradient of the component density with re-
spect to the bias vector by, giving

0
Aby, o< p(Ci|xn, @)a—bk log p(%,|Ck, 01)-

(23)
Using eq.20 in eq.23 we can adapt by as follows
0
Abk 0.8 p(cklxna )6b [logp(A ( Xn — bk))
—log | det Ag] (24)

Instead of using the gradient we may also use an ap-
proximate method for the adaptation of the bias vec-
tors. The maximum likelihood estimate © must satisfy
the condition

Zp Cklxn;

We can use eq.25 to adapt the bias vector or mean
vector by.

Vak logp(xnlckaek) - 0
(25)

Vb, L 0

Zp Cklxna

Substituting €q.20 into eq.26 shows that the gradient
of the first term in eq.20 must be zero. From this it
follows that

)V, log p(xp |0k, Ck)

0. (26)

Vb, log p(A; ! (x5 — by)) = (27)



Assuming that we observe a large amount of data =,
and the probability density function (p.d.f.) of the
prior p(s¢) is symmetric and differentiable, then log p(s;)
will be symmetric as well and the bias vector can be
approximated by the weighted average of the data sam-
ples

2_n ¥nhp(Ci|Xn, ©)

b, =
P TS hep(Crl%a, ©)

(28)
where

—28;,
hy, = |x, — by| T (29)
is an additional term from the generalized Gaussian
model consideration (Box and Tiao, 1973).

4.3. Estimating §;

Adapt the generalized Gaussian parameters 3y for each
class k with eq.7.

N
Ve L =Y p(Cklxn, 0)Vp, log p(xn|Cr, bk).
n=1 (30)

The adaptation is performed by using gradient ascent
with the gradient of the component density with re-
spect to B;. Note that [ is a vector containing the
parameter for each source in the class.

A o< p(Cilxn, 0) 5

log p(%,|Ck, 0.
(31)

In the beta adaptation, the gradient of the component
density with respect to 8y, is weighted by p(Ck|xn, ©).
Section 2.1 describes the learning rules for the adap-
tation of f3; for all sources in each class using the
generalized Gaussian density model.

5. UNSUPERVISED CLASSIFICATION

To demonstrate the performance of the learning algo-
rithm, we generated random data drawn from differ-
ent distributions in each class and used the proposed
method to learn the parameters and to classify the
data. Figure 3 shows an example of two dimensional
data and four classes. The data in each class was gen-
erated by random choices for the parameters (8, Ay,
by). The [ parameters were chosen as follows in the
range from -1 to +2, resulting in uniform, Gaussian and
heavy Laplacian densities. The task for the algorithm
was to learn the four basis vectors, bias vectors and [y
parameters given only the unlabeled two dimensional
data set. The parameters were randomly initialized.
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Unsupervised Classification of Four Classes
T u

Figure 3: An example of classification of a mixture of
independent components. There are 4 different classes,
each generated by two independent sources and bias
vectors. The algorithm is able to infer the 8 param-
eters, estimate the basis vectors and bias vectors for
each class.

Table 1: Estimated 8 and KL-divergence

| B&KL) [ G | G | C | Cy |
B(sk) 03 [ 02 16 2
KL(p(sx)]|q(Br)) || 0.003 | 0.005 | 0.005 | 0.007

The algorithm always converged after 300 to 500 iter-
ations depending on the initial conditions. During the
adaptation process, the data log likelihood increased
with the number of iterations. The arrows in Figure 3
indicate the basis vectors of A;,. Table 1 shows the
inferred parameters for 3; and the Kullback-Leibler di-
vergence measure between the inferred density model
and the actual source density. The classification perfor-
mance was tested by processing each data instance with
the learned parameters G, Ay and bg. The probabil-
ity of the class p(Ck|xn, 6k) was computed and the cor-
responding instance label was compared to the highest
class probability. For this example, in which the classes
had several overlapping areas, the algorithm was run 10
times with random initial conditions, in which it con-
verged all times. The difference between the inferred
Br and the true () were less than 10%. The classifica-
tion error on the whole data set averaged over 10 trials
was 4.0% £ 0.5%. The Gaussian mixture model used
in AutoClass (Stutz and Cheeseman, 1994) gave an er-
ror of 5.5% £ 0.3% and converged in all 10 trials. For
k-means (Euclidean distance measure) clustering algo-
rithm, the error was 18.3%. The classification error
with the original parameters was 3.3%.



6. DISCUSSION

We proposed a new algorithm for capturing the statisti-
cal structure in multivariate data. The mixture model
allows the modeling of the data in mutually exclusive
classes, allowing unsupervised classification and find-
ing several clusters or class in data. In each class the
data is assumed to be generated by a linear superpo-
sition of independent sources that have non-Gaussian
densities. The deviation from Gaussianity is modeled
using the generalized Gaussian density in which the
exponent can be inferred from the data. Since this
model requires only one parameter for modeling the
source density it is less complex than ICA models that
require a set of parameters for describing the density
of the sources (Pearlmutter and Parra, 1996; Attias,
1999). This mixture model is an extension of the Gaus-
sian mixture model where the source components have
non-Gaussian densities. It differs from the ICA mix-
ture model in Lee et al. (1999b) where the underlying
density is described by a fixed sub or super-Gaussian
distribution. Here, the distribution is modeled contin-
uously which allows a more accurate density estimation
and hence more accurate characterization of the under-
lying data structure.

Simulations demonstrate that this method can be
used in unsupervised classification and the performance

will be equal or superior to the Gaussian mixture model.

The advantage is more evident in real data containing
outliers and more non-Gaussian distributions.

In capturing the statistics of natural images Lewicki
(2000) has shown that the use of the exponential power
distribution in ICA provides even sparser codes than
previous methods that used a fixed density model (Bell
and Sejnowski, 1997; Lewicki and Sejnowski, 2000).
For modeling a wide range of images we expect that
the generalized Gaussian mixture model using ICA will
provide very efficient image codes for compression al-
gorithms, better blind separation of a greater variety
of sources, and better performance for de-noising algo-
rithms.
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