BLIND SEPARATION OF SPATIALLY INDEPENDENT COMPONENTS FROM
H,"°0 DYNAMIC MYOCARDIAL POSITRON EMISSION TOMOGRAPHY

Jae Sung Lee, Ji Young Ahn, Myoung Jin Jang, Kwang Suk Park, and Dong Soo Lee

Department of Nuclear Medicine, Seoul National University College of Medicine,
28 Yungun-Dong, Chongno-Gu, Seoul 110-744, Korea

E-mail: jaecs@snuvh.snu.ac.kr and dsl@plaza.snu.ac.kr

ABSTRACT

We applied the ICA method to separate the ventricle and
tissue components and to extract left ventricular input
function from the H,O myocardial PET under the
assumption that the elementary activities of ventricular
pools and myocardium were spatially independent, and
that the mixture of them composed dynamic PET frames.
ICA-generated left ventricular input functions were
compared with the ROI-generated ones, and also with the
invasively derived arterial blood samples. Moreover, the
rMBF calculated with the ICA-generated input functions
and single compartment model was correlated with the
results obtained with the radiolabeled microspheres.

1. INTRODUCTION

Based on the differential equation for the kinetics of
radiopharmaceutical, regional myocardial blood flow
(rtMBF) can be estimated using the time activity curve
(TAC) of the blood pool and myocardial tissue measured
by positron emission tomography (PET)[1]. In the
quantification of rMBF using H,'°O dynamic PET, the
input TAC could be obtained by sampling the blood from
the artery or by drawing the region of interest (ROI) on the
left ventricular (LV) area in the PET image. Arterial blood
sampling is too uncomfortable method for both the
patients and operator since it should be performed several
times during the PET scanning in rapid manner. In contrast,
the non-invasiveness in the method of drawing the ROI
could reduce the patients and operator’s burden.

It is, however, hard to identify the anatomical structure
of the LV on a PET image to draw the ROI [2]. The reason
is because H,'°O with bolus injection is rapidly and evenly
distributed over the whole cardiac regions, such as the left
and right ventricle (RV) and myocardial tissues as shown
in Figure 1. It was, therefore, necessary to equip the
additional device to generate radioactive-gas and to
acquire CO PET image for the determination of the LV
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area to obtain the exact LV input function [1].

Factor analysis has been proposed to extract the LV
input function and tissue TAC from the H,"O PET
without C'°O PET scanning [2]. Although the factor
analysis is considered as an attractive tool to process
dynamic image sequences, the problem of non-uniqueness
of the solution and the additional assumptions of a priori
knowledge to solve the problem make the user of this
method cumbersome [3], [4].

Biomedical application of the blind source separation by
Independent Component Analysis (ICA) has received
considerable attention because of its plausibility to
biomedical signals [5], [6], [7]. In this study we applied
this fairly novel approach to the problem of noninvasive
extraction of LV input function from the H,'°O dynamic
myocardial PET image.
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Figure 1. Sequential frames of H,' O myocardial PET: it is
difficult to define anatomical structures exactly because of
the rapid distribution of H,"0 to the whole cardiac regions
and low signal to noise ratio due to the short acquisition
time.

2. METHOD
2.1. Image Acquisition and Reconstruction
H,'"°0 PET scans were performed on five dogs at rest and
dipyridamole-induced stress using an ECAT EXACT 47

scanner (Siemens-CTI, Knoxville, USA), which has an
intrinsic resolution of 5.2 mm FWHM (full width at half
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Figure 2. Schematic diagram of the processor for the blind source separation problem: demixer extracts the estimates u(p) of
the independent source signal s(p) from the mixed input data x(p) by adjusting the weights between its input and output

nodes.

maximum) and images 47 contiguous planes with
thickness of 3.4 mm simultaneously for a longitudinal
field of view of 16.2 cm. Before H,"°O administration,
transmission scanning was performed using three Ge-68
rod sources for attenuation correction. Dynamic emission
scans (Ssecx2, 10secx9, 30secx3) were initiated
simultaneously with the injection of 555~740 MBq H,'°O
and continued for four minutes. Arterial blood samples
were acquired at 5 seconds interval for the first 2 minutes.
Transaxial images were reconstructed by means of a
filtered back-projection algorithm employing a Shepp-
Logan filter with cut-off frequency of 0.3 cycles/pixel as
128x128%47 matrices with a size of 2.1x2.1x3.4 mm.

2.2. Preprocessing of H,'°O PET image

Initial eighteen frames (two minute) of PET images were
used for analysis. To increase the signal to noise ratio,
contiguous three reconstructed slices were summed with
each other.

On the transverse slices of static images containing the
biggest heart, original images were masked to reduce the
extracardiac noise and include only cardiac component.
Masked images with 32x32 pixels were extracted
automatically. Binary images of cardiac region were
composed of the pixels above 10% of global maximum
pixel value of the transverse slice.
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The resulting masked images with dimension of
32x32x18 (pixelxpixelxframe) were reformatted to
18x1024 (framex pixel) matrices for further analysis.

2.3. Independent Component Analysis

We assumed that the elementary activities of ventricular
pools and myocardium were spatially independent, and
that the mixture of them composed dynamic myocardial
PET frames as following equations.

X, = ALV,I ><SLV +ARV,1 ><SRV +AT1,1 XSTI

Xz = ALV,z ><SLV + ARV,Z ><SRV + ATI,Z XSTI (1)

Xy= ALV,N XSy + ARV,N XSgy + ATI,N XS

where, the random variables S;y, Sgy and Stirepresent the
elementary activities corresponding to the left and right
ventricular pool and myocardial tissue, respectively.

Since their anatomical structures are not overlapped in
the 3-dimensional space, they could be regarded as
independent sources. X; is the PET image matrix of ith
frame and time dependent coefficient A..; represents the
contribution of the activity of each anatomical structure to
the PET image of each frame. The vector [A..; A..;



A.. 5] corresponds to the TAC of each structure. Equation
(1) could be represented in matrix formulation as follows.

X=A-S 2)

where S is the matrix of independent component map, A is
the mixing matrix of which each column corresponds to
the TAC of each component, and X is the PET data matrix.

The goal of blind source separation using ICA is to
find a linear transformation W of the mixed signal X in
order to make its outputs as independent as possible,
which is written as

U=W-X=W:-A-S 3)

where the U is an estimate of the sources [8]. Schematic
diagram of this process is shown in Figure 2.

Before application of ICA, principal component
analysis (PCA) using singular value decomposition (SVD)
was performed to decorrelate the input images. The first
four components with the largest variances were selected
as input data for ICA and the remaining noise components
were discarded.

ICA unmixing process was performed using the
extended infomax learning algorithm proposed in [10] to
maximize the joint entropy provides a simple learning rule
for sources with a variety of distributions. Neural network
with four input and four output nodes was trained to
perform the ICA process. All the data points were passed
25 times into the network through the learning rule using a
block size of 100 for batch learning. The learning rate was
fixed at 0.0005. Log-likelihood of the point distribution
function described as following equation [10] was
computed continuously to measure the independency of
the output of network and determine the optimal repetition
time of the training.

N
L(u, W) =log|det(W)|+ )_log p, (u,) 4)

TAC of each independent component was obtained
from the each column of the mixing matrix A in (3), which
was computed using the pseudo-inverse of the matrix of
finally estimated source data, U. If we replace the source
data matrix S in (3) with the estimates U and multiply both
side with its pseudo-inverse, UT(U-UT)'I, mixing matrix A
can be obtained simply as

A=X-U"(U-U")"' (5)
True left ventricular input function was obtained by
rescaling the independent components which corresponded
to the input TAC by the similar way that Wu and her
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collegues used in their factor analysis for FDG and amonia
PET data [11]. The TAC was rescaled so as that its
maximum value have the same value as the average of the
counts above a threshold (70% of the maximum) in the
corresponding dynamic frame of PET image.

2.4. Myocardial Blood Flow Estimation

We computed rMBFs using the input function by the ICA
and compared them with those by the ROI method. Tissue
and blood pool TACs were obtained from the manually
drawn ROI on the image of myocardium that was made by
simple subtraction of the initial 30 seconds’ image from
the two minutes’ one.

rMBF was estimated using single compartment model
[12]. Radioactivity in myocardial tissue can be described
by the following equation.

1) = éca(w ® exp(%’) ©)

where ® denotes the convolution integral, Cy(?) is tissue
TAC observed in myocardial region (counts/g), C,(?) is the
arterial blood input function (counts/ml), F/V is the rMBF
per unit of tissue volume (ml/g/min), and A is tissue/blood
partition coefficient (ml/g).

Since partial volume and spillover effects contaminate
the TAC observed in PET image, the tissue TAC should be
related to the true activities by the following relationships.

—Ft
VA

CT,PET (= Fum |:§ Ca nH® exp( ):| + Fpy Ca () (7

where, Cr, per(t) is observed PET tissue activity (counts/g),
Fy is recovery coefficient of tissue activity, and Fpy, is
fraction of blood activity observed in tissue activity.

Total sixty tissue TACs (six per each image) were fitted
to (7) to estimate F/V, Fyuy, and Fpgy with the fixed
partition coefficient (A=0.92). Correlation coefficient
between the rMBFs by the both methods was computed.

Moreover, the rMBF calculated with the ICA-
generated input functions and single compartment model
was correlated with the results obtained with the
radiolabeled microspheres (n=5 dogs).

3. RESULT

In all the cases, LV input functions were extracted
successfully by the ICA method. The log-likelihood
increased rapidly and reached plateau between 15 and 20
repetition of training as shown in Figure 3. The results
were consistent in all the canine studies. Even though we
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Figure 3. Plot of the log-likelihood of the PDF of the
observation during the training as a function of repetition
time: it increased rapidly and reached plateau between 15
and 20 repetition.

realized the ICA algorithm and reading process of PET
image by the low speed computer language, Matlab
(Mathworks, Natick, Mass., USA), computation time for
whole process was less than 15 seconds on the workstation
with 333 MHz CPU and 128 MB memory (DEC
AlphaStation 600, Digital Equipment Corp., Maynard,
Mass., USA).

Figure 4(a) shows an example of transverse slice of
static image on which the ICA performed and the resulting
independent component image of LV. LV was well
identified in the central region of the mask. LV activities
by the ICA and ROI methods are compared in Figure 4(b).
Solid and dashed lines are ICA- and ROI-generated TACs,
respectively. Their shapes were very similar except for the
smoother tail of the ICA-generated one, which means the
removal of the statistical noise in TAC.

Consequently, ICA-generated input functions showed
good correlation with the ROI-generated ones (relative
error=4.9+1.8 %), and showed similar shape with the
arterial samples except for the time lags. rMBF with ICA
ranged 0.6~3.9 ml/min/g, and showed good correlation
with the result by microsphere (r=0.92, p<0.00001).

4. CONCLUSION

Using the blind source seperation by ICA, we could non-
invasively extract the input function for the compartment
modeling of myocardial perfusion from the H,"°O PET
images. The rMBF using the LV activity by the ICA as the
input function was correlated well with that by the ROI
method. Since all the process was automatically achieved
with very short computation time, it will be clinically
useful for the quantification of the rMBF using H,"”O
dynamic PET.
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Figure 4. (a) A transverse slice of static image on which
the ICA performed and the resulting independent
component image of LV above the arrow: LV was well
identified in the central region of the mask. (b) LV
activities by the ICA and ROI methods (solid line: ICA,
dashed line: ROI): their shapes were very similar except
for the noiseless tail of the [CA-generated TAC.
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