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ABSTRACT

Independant component analysis relies on the sta-
tistical independance of the sources, a constraint that
is not always fulfilled when dealing with particular real
life problems. The positivity of mixing coefficients and
of spectral source data, imposed by physical reasons, is
also a strong constraint that permits to improve the
solution of source separation problems. The neces-
sity of dealing with spectral data led first to adapt the
Second-Order Blind Identification (SOBI) algorithm to
frequency domain data sets. The SOBI algorithm is
not able to retrieve non-orthogonal sources from mix-
tures. However, it may produce solutions that are close
to reality. ATheir refinement through the Alternated
Least Squares procedure (ALS) introduces the positiv-
ity constraint and improves greatly the quality of the
separation.

1. INTRODUCTION

Independant component analysis attempts to find a lin-
ear decomposition of observed data (the mixtures) that
minimizes the statistical dependence between compo-
nents (the sources). The sources can be retrieved even
though only a set of their linear combinations is avail-
able [4] [2] [1] [3]. The problem is well-defined only
when the sources are statistically independent. This
primary constraint imposes at least the sources orthog-
onality. The basis of source separation are exposed in
section 2. In applications the sources are not always
orthogonal. The solution produced by ICA algorithms
is then necessarily inaccurate and alternatives must be
investigated in order to retrieve the true sources.
Non-orthogonal source signals can be handled in
two different ways. Either some identified spectral re-
gions present non-overlapping signals and standard ICA
techniques can be applied to them to find the mix-
ing matrix, or new constraint are imposed to solve the
problem. For physical reasons, and especially in what
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concerns spectroscopic analysis, both spectral data and
mixing coefficients are positive. Spectra represent an
energy absorption versus a wavelength variable and
does not vary in sign. Mixing coefficients represent
sample concentrations and are therefore inherently pos-
itive amounts. Other scientific fields may benefit from
this approach, as far as positivity constraint applies.

Source separation in the frequency domain is ap-
propriate [7] when spectra are directly produced by ex-
perimental recording devices or when signals require
pre and/or post-processing in the frequency-domain,
as shown in section 3. These processings include suc-
cessive FT and IFT steps. The FT being a linear oper-
ation, the separating matrix can be applied on time-
domain signals as well on spectra. Separation ma-
trix can be obtained from an adaptation of the Second
Order Blind Identification (SOBI) algorithm, so that
the required correlation matrices are computed directly
from spectra, as explained in section 4.

The introduction of positivity constraint in the sep-
aration of frequency data is explained in section 5. Ap-
proximate orthogonal spectral sources obtained by ICA
methods are refined using an iterative procedure named
Alternated Least Squares (ALS). The efficiency of such
a decomposition, regarding the influence of the noise
level, is evaluated on simulated data in section 6. It
illustrates the interest of non-orthogonal source sepa-
ration when performed in the frequency domain, and
constrained by positivity considerations.

2. BLIND SOURCE SEPARATION

The aim of Blind Source Separation is to retrieve n
sources from m linear combinations (m > n) provided
by sensors. The mixed signal can be written as:

X=Y+N=AS+N, (1)
where X are the detected signals, Y are the mixed sig-
nals, A is the mixing matrix, S are the source signals
and N is the noise introduced by the sensors.



Resolution techniques require statistically indepen-
dent signals and white sensor noise. Two signals are
uncorrelated if their second order cross cumulant (or
scalar product) is zero. This does not mean these two
signals are independent. The independence is proved
to an order k if cross cumulants up to order k£ are null.
This explains why the used separation criteria rely gen-
erally on higher-order statistic considerations. One of
the methods based on second order only statistics is
the Principal Components Analysis (PCA). Tts goal is
to find orthogonal principal directions and to reduce
the dimension of the data set when possible. Neverthe-
less, PCA does not solve the source separation problem
because it lacks a criterion for statistical independence.
Alternatively, introducing the hypothesis of temporally
correlated source signals, an efficient separation is al-
lowed with a second order only algorithm (SOBI) [1],
as shown below.

The source separation problem is under-determined
even in the absence of detector noise, since:

n

ri(t) = 3 2o (1), (2)

s
i=1 J

As a consequence the power of the sources can be con-
sidered as normalized to unity without loss of general-
ity.

The first step of the separation is the search of a
whitening matrix that transforms the original set of
m signals into a reduced basis of n orthogonal signals
named the whitened data set. The correlation matrix
of any vector signal Z(t) is defined by:

Rz(t) = E(2(t).2*(t+ 7)) . (3)

If the noise is white, uncorrelated with itself and with
the signals, then:

Rx (r) = Ry (7). (4)

Therefore, the correlation matrix (7 = 0) of the whitened
mixture is the identity. The whitening matrix W is ob-
tained by diagonalization of Rx(0). For any 7 value:

Rwy (1) = W.Ry (7). W = (W.A) .Rs(r). (W.A)"
U UH

(5)
When 7 = 0, this relation shows that W.A is a uni-
tary matrix U because Rg(0) = I,,. For other 7 values
Rs(7) is still a diagonal matrix and therefore U is the
unitary matrix that diagonalizes Rwy (7). Since the
matrix Y is not available because of the sensor noise,
only estimates of the whitened matrix W of W and U
of U are available. The matrix of the whitened sensor
data verifies Ryj, 5, = I,. The whole separation process
may be summarized as follows:
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e The matrix W is estimated by diagonalization of

Rx (0),

A set of Ry 4 (7) is calculated,

U is evaluated so that it jointly diagonalizes this
set,

e The mixing matrix is retrieved using:

A=W*oD, (6)

The source signals are estimated by:

S= A" RYX. (7)

3. SEPARATION IN THE FREQUENCY
DOMAIN

Separation of frequency data is worth of interest when
spectral data are directly available or when signals re-
quire pre and/or post processing in frequency domain
[6]. Preprocessing is applied to correct artifacts or to
extract pertinent data. One should take into account a
particular case where the location of the spectral lines
may vary during the recording process [5]. Such fluc-
tuations caused by the experimental setup and do not
depend on the sample to be analyzed. An IFT is per-
formed to reconstruct time domain signals. A suitable
algorithm is finally applied to separate sources. The
visualization of spectral sources required an other FT
step. Theses successive forward and backward Fourier
transformation steps are useless if spectra can be di-
rectly separated. Candidates for an efficient separation
in the frequency domain are data for which frequency
content i1s low compared to the number of temporal
samples as we will see below. The FT being a lin-
ear operation, the separating matrix can be applied on
temporal data or on spectra as well. The computa-
tion of the mixing matrix by a technique related to
the SOBI algorithm requires the knowledge of the co-
variance matrices. These ones are directly computed
from the spectral data [7]. Thus, a new SOBI algo-
rithm named f-SOBI dealing with spectral data was
developed.

A collection of amplitudes in the frequency domain
corresponds to a sum of sine functions in time domain.
A rebuilt signal is written:

A(LAY) = Z ag. exp <i2ﬂ'.k£e .l.At) , (8)
&

A(LAL) =) apw?, (9)

k

where:



e w=exp (ZQT”),
o f. is the sampling frequency,

T is the number of samples,

kfe
T

Ak,

are the frequency lines whose amplitudes are

e At is sampling period.

The correlation function between two vectors A and B
1s expressed as:

1
Rap (1) =+ Zl:A (I.A).B* (IL.At—7),  (10)
where 7 = n.At, then:
_ 1 ki . . _k'(I=n)
RAB(T)_Z;(;%.U) ).(;bk,.w ,
(11)

(12)

finally:
Rap (1) = Zakb,:wk".
k
It is the IFT of the term by term product of the vectors
A and B*.

The m mixture vectors provide m? correlation func-
tions represented by p x m? matrices where p is the
number of 7 values to consider. Each correlation ma-
trix being hermitian, there are only pm(m + 1)/2 cor-
relation coefficients to compute.

When the spectral content is low compared to the
number of samples, the numbers p of delays and of
spectral lines k are small, it 1s not necessary to resort
to a FT algorithm to obtain the Rap (n) values. A
direct calculation can be undertaken.

The rest of the separation is then achieved using
the native SOBI algorithm renamed from here t-SOBI.
The matrix R, (n = 0) is diagonalized to compute the
whitening matrix, which is then applied on spectra to
yield whitened data. The separation and mixing ma-
trices are obtained within scaling factors and within a
permutation through joint diagonalisation of the other
(n # 0) covariance matrices. The separation matrix
is computed on the fly by multiplying all the transfor-
mation matrices applied to the original mixtures that
yield the sources.

This extention can be viewed as an alternative choice
for the cross correlation we want to reduce: t-SOBI
takes into account the correlation at short distances in
the time (or direct) space, while in f-SOBI the cor-
relations in the Fourier transform space are consid-
ered. The f-SOBI was developed for NMR, spectro-
grams displaying narrow peaks. The spectral correla-
tion rapidly decreases, while it is always strong enough
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Figure 1: Top left: simulated sources, right: mixtures;
bottom left: orthogonal separation, right: positive sep-
aration

in the Fourier space. With spectrograms whith large
lines this argument is not valuable and spectral data
fit more adequately the requirements of t-SOBI.

4. SEMI-BLIND SEPARATION

A possible way of dealing with non-orthogonal sources
consists in searching non-overlapping sub-spectra in the
frequency representation of the signal [6]. The selected
regions must be chosen so that they include signals
from all sources. The selection itself requires some de-
gree of data interpretation, underlying on prior knowl-
edge on the data themselves. The source separation
process, applied on the extracted spectral regions, yields
the separating matrix. Clearly, even though this ma-
trix 1s evaluated on partial data, it applies to the entire
data set. Its application to the original mixture data
leads to desired source signals. This processing can be
performed as well on temporal data as spectra since
FT is a linear operation. The overall process can be
resumed as follows:

1. Record time-domain data,
2. FT,
Select independent areas to build pseudo-spectra,

Perform IFT to obtain pseudo-data in time do-
main,

Apply a separation algorithm to pseudo-data,

ot



Figure 2: Comparison between true (dot-dashed line) and estimated (solid line) central positions, depending on
the distance (on z axis) of two gaussian sources and according to the signal noise ratio (SNR). The first one is
always centered on zero while the second one is moving along the z axis. Top left: without any noise, right: 5%

SNR; bottom left: 10% SNR, right: 20% SNR

6. Calculate the separating matrix,

7. Apply the separating matrix on initial data to
obtain the sources.

Steps 4, 5 and 6 can be more efficiently replace by direct
separation in frequency domain as explained in part 3.

5. POSITIVE DECOMPOSITION

The preceding approach is feasible only if orthogonal
sub-spectra can be identified. A more versatile ap-
proach consists in relaxing the orthogonality assump-
tion. Positivity of source data and mixing coefficients
has proved to be a useful alternative constraint. Many
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physical applications provide positive signals. Mixing
coefficients are related to proportions or substance con-
centrations and therefore are positive. Under these as-
sumptions, the separation of the responses into indi-
vidual components is possible. A method, the Multi-
Components Resolution (MCR) analysis [8], involves
three steps:

1. Abstract factor analysis, conceptually identical to
whitening,

. Real factor analysis, that involves a fourth order
statistical data analysis,

Search of a solution that follows the positivity
requirement.
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Figure 3: Top left: simulated spectra, right: mixtures of spectra; bottom left: orthogonal demixing, right: demixing

when positive constraint is considered.

The first two steps produce solution sources that are
orthogonal and cannot be the true ones. The third
step is named ALS, Alternated Least Squares. It is a
projection on convex set (POCS) algorithm, justifying
its convergence. Assuming that X = AS, A (resp. S)
can be evaluated from S (resp. A) and X:

S=(AA)TLIAX, (13)

A=X1!'5(5!9)71, (14)

in the least-squares sense. True sources are obtained
by ALS following an iterative process:

1. Set to zero the negative parts of S,

2. Estimation of A,

3. Set to zero the negative coefficients of A,

4. Estimation of S“,

5. Return to 1 if convergence is not achieved.

The process is stopped when no evolution of the result
is perceptible.

The first two steps of the MCR analysis may be
replaced by a SOBI analysis if time correlated data
mixtures are available and if the Fourier transform of
the source signals provide positive spectra.

325



6. RESOLUTION POWER OF THE
POSITIVE DECOMPOSITION

We check the resolution power of the positive decom-
position on simulated data. The orthogonal separation
can yield sources with negative parts. Then, original
sources are retrieved by taking into accompt positivity
constraint as shown in figure 1. For a set of tests, two
gaussian sources were simulated, their standard devia-
tion o is 1. The mixing proportions [1 2, 2 1] provide
two mixtures. The first source is centered on 0 while
the second is moving along the z axis from position 0.2
to 5. For each gaussian source, the true and the esti-
mated central positions are compared. They are drawn
in figure 2 where the z axis is the distance between two
gaussian sources. Without any noise, the measured er-
ror becomes negligible when the distance between two
centers is higher than 1.5. For each mixture with added
noise, hundred separation trials are performed. The es-
timated positions are averaged. A bias is visible when
the distance between centers is less than 2. This sets
the limits of the positive separation capability for such
signals.

A more realistic example is provided using source
spectra randomly generated. The standard deviation
and the position of the amplitude of gaussian peaks
are calculated as 1+exp(az) where a is constant and z
is uniformly drawn on the interval [0 1]. The position
of the center of each peak is uniformly drawn over the
frequency range. The elements of the mixing matrix
are integers drawn on the [0 1 0] interval. Each source
consists in a sum of fifteen such gaussian peaks. Or-
thogonal decomposition naturely shows negative parts.
The positive decomposition succeeds to retrieve spec-
tra similar to initial randomly drawn sources as shown
in figure 3. Many trials following this scheme were un-
dertaken and confirm the feasability of our approach to
positive decomposition.

When no prior knowledge is available, one cannot
extract orthogonal sub-spectra, the application of the
positivity constraint provides an alternative to allow a
good separation.

7. CONCLUSION

This contribution enlightens the interest of positive de-
composition for applications compatible with positivity
hypothesis. This is especially the case of spectroscopy.
The separation 1s performed in the frequency domain
from which the correlation matrices are calculated and
then supplied to a second order algorithm. It is suffi-
cient since it gives an orthogonal decomposition which
provides a sufficiently good starting point for proceed-
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ing to the positive decomposition. Then, an alternated
least square algorithm including positivity constraint
is applied. Positive sources are retrieved for simulated
data as well for real spectra. Illustration borrowed from
NMR, spectroscopy will be presented during the work-
shop.
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