IMPLEMENTING DECISIONS IN BINARY DECISION TREES USING
INDEPENDENT COMPONENT ANALYSIS

Petteri Pajunen

Helsinki University of Technology
Lab. of Computer and Information Science
P.O. Box 5400
FIN-02015 HUT
Finland

ABSTRACT

There are various ways to implement decisions in bina-
ry decision trees. Most approaches can be interpreted
as greedy methods optimizing some local goodness cri-
teria at each node. Often it is required that either
target values (regression trees) or class labels (classi-
fication trees) are available. In this paper linear ICA
is applied to implement the decisions in a binary tree.
The rationale is that ICA can be used to find directions
where the data has “structure”. The linear transforma-
tion defined by ICA can then be interpreted as a change
of variables, where the new variable captures the struc-
ture, e.g. has smallest entropy. The linear decisions are
then made by tresholding the variable. An experiment
is presented which shows that the proposed method can
find reasonable representations of real-world data in an
unsupervised manner, i.e. without using class labels.

1. INTRODUCTION

Decision trees are a common methodology for induc-
tive inference. There benefits include fast computa-
tional properties and a representation that may be easy
to interpret in terms of decisions. Typically they are
used when data is discrete-valued but extensions to
continuous-valued data exist.

Decision trees can be used for solving classification
and regression problems. Especially binary trees pro-
vide a computationally effective solution, since only
log, n decisions have to be made for a tree with n leaves.
Furthermore, if the decisions are linear, then each de-
cision is essentially an inner product between a data
vector and a normal vector of a separating hyperplane.

A binary decision tree works by recursively parti-
tioning the data set into two. This series of decisions
implicitly defines a binary tree, where the decisions are
made at the nodes. Depending on the result of each

483

Mark Girolam:

University of Paisley
Dept. of Computing and Information Systems
Paisley, PA1 2BE
Scotland

decision, the observed sample continues down the tree
to a child node or leaf. Finally, each observation ends
up in a leaf and hence the tree has classified the data.

The typical problem where decision trees are ap-
plied is when the observed data is as set of multivariate
attribute values, e.g. x(k) = [age(k), sex(k), height(k)].
In basic methods, the decisions are made by choosing
one of the attributes and computing a threshold, which
then implements a binary decision on all observations.
For example, we might choose the attribute sex(k) as
the deciding attribute and then separate the observa-
tions into classes male and female.

The choice of the attribute in the ID3 algorithm
[1] is based on the concept of information gain. The
attribute which reduces entropy the most is selected
for implementing the decision. This measure, howev-
er, depends on using training data in which we know
the correct classes for each observation. The informa-
tion gain then chooses the decision that gives the best
partitioning with respect to classification performance.
The algorithm can be therefore interpreted as a greedy
optimization method for minimizing classification error
using a binary tree.

2. DECISION TREES WITH LINEAR
COMBINATIONS OF
CONTINUOUS-VALUED ATTRIBUTES

The basic approaches, e.g. ID3 have been extended in
various directions. Continuous-valued attributes have
been considered in [2, 3] and decisions made by thresh-

olding linear combinations of continuous-valued attributes

in [4, 5]. However, the decisions are made by depending
on known class labels for the observations. In this pa-
per we consider implementing the decisions by thresh-
olding linear combinations without depending on class
labels, i.e. we depend alone on the data distribution

p(x).

3. LINEAR DECISIONS AND
INDEPENDENT COMPONENT ANALYSIS

If a multivariate data set is considered in the classifi-
cation problem, each decision divides the data set in
two. Intuitively, it is desirable to divide the data set so
that different types of samples go to different parts of
the tree. With known class labels this can be achieved
using one of various information gain measures, or sim-
ply by computing the optimal separating hyperplane.
However, it is our purpose to construct a decision tree
without knowing the class labels.

In this paper, a single ICA vector is used to com-
pute the decision rule in each node. The ICA vector
w defines the direction in which the data set has most
“structure” as explained below. The decision rule is
then implemented as a separating hyperplane with nor-
mal w.

In Independent Component Analysis it is normally
assumed that the observed multivariate data is gener-
ated by the generative statistical model

X, = As, + €,

where the components of s,, have some desirable prop-
erties to facilitate solving the mixing matrix A. How-
ever, finding the inverse of A involves in theory the
minimization of mutual information [6, 7, 8, 9] which
can be decomposed as

I(y) =05 |A| + 3 H(y:) + H(x).

Therefore ICA is often solved one component y;, at a
time by imposing certain restrictions on the separating
matrix. Consequently, one is looking for directions that
minimize entropy. A single row vector of the separating
matrix W gives one component y,, = W. x,,.

Entropy can be interpreted as a measure of struc-
ture in the data if we accept the notion that non-
Gaussian distributions imply more structure than Gaus-
sian distributions. This can be demonstrated for exam-
ple considering multimodal distributions which have
clearly non-Gaussian distributions when we consider
directions which would retain the multimodal distribu-
tion in projections. Other directions where the differ-
ent modes would overlap in projections are closer to
Gaussian and simultaneously do not have the visible
multimodal structure. For exploratory data analysis
looking for such directions have been proposed in [10].

From the classification point of view, we would like
to implement a decision that effectively separates dif-
ferent types of data samples to different outcomes of

484

the decision. Looking to implement a linear binary de-
cision means that we need to define a hyperplane which
separates the samples into two classes. If we choose this
hyperplane as the one defined by w as the normal vec-
tor, then the hyperplane will be orthogonal to the most
interesting direction.

This can be interpreted in another way: the linear
transformation y, = w’x, is a change of variables into
a new variable which has most structure. The decision
rule is then simply a thresholding operation on the new
variable.

4. A PROBABILISTIC INTERPRETATION

A soft binary partitioning at each node can be achieved
by considering the following log-likelood expression which
assumes that the priors are both equal.

E:Zlog Z P(Yn|Cr, w)/2

ke{C1, C2}

n=1

Considering the binary partition as being composed of
two equiprobable zero-mean and unit variance Gaus-
sians as in [11, 12] gives the following gradient term.

oL
ow Z {2P(Cilyn) —yn — 1} %y

Where 2P(Ci|y,) = 1+ tanh(wTx,,). Now the EM al-
gorithm can be applied to solve this system of equations
by computing the posterior probability of the dichoto-
my in the E-step and re-estimating the vector w in the
M-step. Setting the gradient of the log-likelihood to
zero yields

QZP(Cl|yn)xn = an —+ anxgw
n n n

and noting that the sample mean is zero gives the fol-
lowing M-step.

whe = IR 1(x)

Where Ryxx is the sample covariance matrix of the da-
ta allocated to each node and (x) denotes the poste-
rior class mean estimate), P(C1|yn)%, This can be
further simplified by pre-whitening the data at each n-
ode thus Rxx =1 and so the EM update boils down
to a batch form of a one-unit Hebbian update term
wnew =3 tanh(woldxT)x,,.

Of course an instantaneous gradient update could
also be used and again noting that the observations are
zero-mean

oL

W

ow

Tw = Z {2P(Cilyn) — yn} ynw

follows the relative gradient update which was used in
multivariate form for hierarchic data clustering in [11].

Aw = p(1 + tanh(y)y — y*)w

5. CONSTRUCTING THE BINARY
DECISION TREE

The available training data xg,...,xy—1 can be used
to implement a binary decision tree as follows:

1. estimate the sample mean of the observations x,,
and transform by subtracting this estimate: x;, =
xn, — E{z,}

. use the zero-mean observations to find an ICA

vector w yielding the structured variable y,,
Tt
WX,

partition the observations into two classes:

x'ne{

or using a soft partition then

x;e{

where the posteriors are defined above.

Class 1,
Class 2,

wlix! >0

wlix! <0

Class 1,
Class 2,

P(Cilx;) > P(C2[x;,)
otherwise

4. repeat the above steps for both subclasses

The construction of the binary tree is limited by the
number of observed samples since reliable estimation of
ICA requires a sufficient amount of data. However, this
limitation is somewhat less severe compared to regular
ICA since only one component is computed at each
node.

6. SELECTING THE SIZE OF THE
DECISION TREE

The above method for constructing the decision tree
did not include any methods for model selection, i.e. de-
ciding the size of the tree. Growing the tree as large
as possible suffers from overfitting which means that
properties of the training data are being modeled that
do not generalize to unobserved data.

There are two general ways to limit the size of the
decision tree:

¢ stopping rules, which prevent further splitting of
the nodes

e pruning rules, which discard decisions after the
tree has been constructed

485

Most of the methods require that the class labels
are known. For example using validation sets can be
used to test the usefulness of further splitting. If the
performance increases on the validation set, then the
new decision is included.

For our approach, the most promising approach is
to use information-theoretic criteria such as MDL [13,
14] to measure if the decision wastes more informa-
tion than it saves [15]. This has not yet been imple-
mented in our approach and it is considered further
research. However in the experimental work report-
ed we note that the transformed variables will have a
non-Gaussian structure typified by the two class modes
of the binary partition. It is therefore reasonable to
exploit a measure of non-Gaussianity of the projected
data; nodes whose transformed variables exhibit Gaus-
sian characteristics' can therefore be identified as leaf
nodes.

7. ICA DECISION TREES IN
CLASSIFICATION

A simple way to perform a classification task using bi-
nary trees is to construct the tree first without regard-
ing class membership of the observations. Afterwards,
each leaf of the tree may be labeled by estimating the
conditional class membership probabilities. The leaf
node can then be classified by choosing the most prob-
able class as the correct label.

In machine learning literature binary decision trees
have been proposed which construct linear decisions at
tree nodes using information about class membership
of the samples. The proposed method here applying
independent component analysis differs mainly in its
selection of the linear decisions: only the underlying
probability distribution p(x) of the multivariate obser-
vations is used. The approach is useful also when class
memberships of the observations are unknown

8. EXPERIMENTS

To investigate the ability of ICA decision trees to rep-
resent clustered data, we chose a data set with known
class labels and applied it to learn a decision tree. How-
ever, the known class labels were ignored in learning the
tree. The leaves were assigned class labels only after
the linear decisions had been fixed.

The data applied was the Oil Pipeline Data used in
[11, 16]. The training data consists of twelve-dimensional
samples each of which is classified into one of three pos-
sible classes.

1Uni-modalilty was considered as a reasonable indicator for
terminal nodes

The training set contained 1000 samples, which makes

it possible to use a binary tree with depth at most 10.
The depth must be somewhat smaller since there must
be enough training samples at each node where the lin-
ear decisions must be computed.

First, all samples were assigned to the root of the
tree and after removing the mean value a single ICA
vector was computed. For these experiments the algo-
rithm used was the relative gradient rule [11, 17, 18]

Aw = p(1 + tanh(y)y — y*)w

The choice of nonlinearity in the above rule is justified
in [11] where it is derived from the symmetric Pear-
son mixture model. The discussion in the section(4)
motivates the use of such an ICA rule for binary clas-
sification at each node.

After learning the vector w each zero-mean sam-
ple x,, was classified according to the sign of the inner
product w”x,. This is simply the projection of x,, in
the direction defined by the ICA vector w. Another in-
terpretation is that the decision is made by a threshold-
ing operation of the variable y,, = w’x,, which could
be based on the maximum estimated class posterior
probability.

The results of the linear decision rule partition the
training samples into two subsets. Each of these sets is
assigned to the left and right children (nodes immedi-
ately below) of the current node. The above procedure
is recursively called at each node of the tree, with the
exception of the leaf nodes.

In the reported experiment, the tree was construct-
ed without taking into consideration the known class
labels. Only the leaf nodes were assigned a class label
by selecting the most probable class. This was done by
choosing the class with most training samples allocated
to the leaf node.

A test set of 1000 samples was used to measure the
performance of the decision tree in terms of classifica-
tion error. The result was a 78% accuracy measured
in the test set. The classification accuracy measured
in the training set was 88%. Although it is not mean-
ingful in general to measure classification performance
in the training set, in this case it illustrates how well
the proposed algorithm is able to represent the class-
es in the data. Remember that the representation was
computed without using the class labels. Good classifi-
cation performance in the test set implies that mostly
samples from the same class end up in any one of the
leaf nodes.

Unsupervised learning, however, cannot be expect-
ed to match the performace of classifiers, which take
into consideration the known class labels of training
data. As a reference figure, a multi-layer perceptron

486

trained using the class labels achieved a classification
error of 98.6% on a test set of this data [16].

9. SUMMARY AND CONCLUSIONS

Benefits of decision trees include quick optimization
due to greedy approach of recursively selecting the sub-
optimal decisions and fast computation of the decisions
in applying the tree. These benefits are not dependen-
t on knowing the class labels of the observations and
therefore can be utilized in knowledge discovery.

Similarly, Independent component analysis requires
no class labels to represent data but enjoys certain
information-theoretic properties that suggest its appli-
cability in data analysis. An especially simple way of
using ICA is to compute a single ICA vector and inter-
pret it as the most interesting direction as in projection
pursuit.

In this paper, we combined the benefits of decision
trees and ICA to implement a linear decision based on
an attribute representing the interesting direction. It
was found that the resulting decision trees are fast to
compute and seem to represent data well without using
class labels in training.

Further research includes investigating information-
theoretic stopping criteria to prevent overfitting and
combining ICA and class labels in implementing deci-
sions.

10. REFERENCES

[1] J. Quinlan, “Induction of decision trees,” Machine
Learning, vol. 1, pp. 81-106, 1986.

[2] U. Fayyad, On the Induction of Decision Trees for
Multiple Concept Learning. PhD thesis, University
of Michigan, EECS Department, 1991.

[3] U. Fayyad and K. Irani, “Multi-interval discretiza-
tion of continuos-valued attributes for classifi-
cation learning,” in Proceedings of 13th Inter-
national Joint Conference on Artificial Intelli-
gence (R. Bajcsy, ed.), pp. 1022-1027, Morgan-
Kaufmann, 1993.

P. Utgoff and C. Brodley, “Linear machine deci-
sion trees,” Tech. Rep. COINS 91-10, University
of Massachusetts, Amherst, MA, USA, 1991.

[5] S. Murthy, S. Kasif, and S. Salzberg, “A system
for induction of oblique decision trees,” Journal of
Artificial Intelligence Research, vol. 2, pp. 1-33,
1994.

[6]

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. Comon, “Independent component analysis — a
new concept?,” Signal Processing, vol. 36, no. 3,
pp. 287-314, 1994.

H. Yang and S. Amari, “Adaptive online learn-
ing algorithms for blind source separation: Maxi-
mum entropy and minimum mutual information,”
Neural Computation, vol. 9, no. 7, pp. 1457-1482,
1997.

P. Pajunen, “Blind source separation using al-
gorithmic information theory,” Neurocomputing,
vol. 22, pp. 35-48, 1998.

P. Pajunen, “Blind source separation of natural
signals based on approximate complexity mini-
mization,” in Proc. Int. Workshop on Independen-
t Component Analysis and Signal Separation (I-
CA’99), (Aussois, France), pp. 267-270, January
1999.

J. Friedman and J. Tukey, “A projection pursuit
algorithm for exploratory data analysis,” IFEE
Tr. on Computers, no. 23, pp. 881-889, 1974. S-
er. C.

M. Girolami, “Hierarchic dichotomizing of poly-
chotomous data - an ICA based data mining tool,”
in Proc. Int. Workshop on Independent Compo-
nent Analysis and Signal Separation (ICA’99),
(Aussois, France), pp. 197-202, January 1999.

M. Girolami, A. Cichocki, and S. Amari, “A com-
mon neural network model for exploratory da-
ta analysis and independent component analysis,”
IEEE Transactions on Neural Networks, vol. 9,
no. 6, pp. 1495-1501, 1998.

J. Rissanen, “Modeling by shortest data descrip-
tion,” Automatica, vol. 14, pp. 465-471, 1978.

G. Schwarz, “Estimating the dimension of a mod-
el,” Annals of Statistics, vol. 6, no. 2, pp. 461-464,
1978.

M. Mehta, J. Rissanen, and R. Agrawal, “MDL-
based decision tree pruning,” in Proceedings of
First International Conference on Knowledge Dis-
covery and Data Mining, (Menlo Park, CA), p-
p- 216221, AAAT Press, 1995.

C. Bishop and G. James, “Analysis of multiphase
flows using dual-energy gamma, densitometry and
neural networks,” Nuclear Instruments and Meth-
ods in Physics Research, no. A327, pp. 580-593,
1993.

487

[17] S. Amari, “Natural gradient works efficiently in

learning,” Newral Computation, vol. 10, pp. 251—
276, 1998.

[18] J.-F. Cardoso and B. Laheld, “Equivariant adap-

tive source separation,” IEEE Trans. on Signal
Processing, vol. 44, no. 12, pp. 3017-3030, 1996.

488

