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ABSTRACT

As extensions to the strict method developed in [1], varia-
tions of the Newton method for the independent component
analysis(ICA) are proposed. Our method presented here is
highly practical and simple. Concrete merits of our algo-
rithm are as follows.i) Robust under gaussian noises. In
the presence of strong gaussian noises it outperforms the ex-
isting methods like the JADE[2] and the FICA[3].

���
By

two deformations it becomes considerably stable globally.
Although the first deformation is apparently unnatural, a
justification is given based on the random matrix arguments.����

Each step of the methods proposed here resolves itself
into the determination of the inverse of 2�2 matrices or
generalized inverse matrices of 3�2 matrices. There is no
need to deal with gigantic matrices and little computational
resources are required.

1. OVERVIEW

The ICA is considered as an optimization problem on
the frame of theN-dimensional projective space. In [1]
Akuzawa and Murata have proposed a multiplicative New-
ton algorithm for the ICA by regarding the frame as the
cosetGL�1�� �N �GL�N �� �. The method described in [1] is
a pure-Newton method and the second-order-convergence is
shown rigorously. In this paper we will propose new meth-
ods for the ICA starting from this pure-Newton method.
First, we construct a cheap quasi-Newton method. Then the
method is deformed by the introduction of a “stabilizing pa-
rameter”ξ and acquires a pretty good global convergence.
Secondly, we propose an extended quasi-Newton method,
which directly results in the construction of a highly practi-
cal algorithm. The extension introduced here may be useful
for many overdetermined optimization problems other than
the ICA. The algorithm thus constructed is extremely ro-
bust under gaussian noises even if the noises are correlated,
which is a fatally important feature when we deal with data
preprocessed by the PCA.

The framework is as follows. We denote by��c cumu-
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lants estimated from the observed data:
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where �� is the sample average. In this paper we will
mainly deal with the fourth order cumulants. The fourth
order cumulants such as� y3

1y2 �c, � y2
1y2y3 �c, and �

y2
1y2

2 �c are called, respectively,�3�1�-type, �2�1�1�-type,
and �2�2�-type. The exploitation of the�2�2�-type cumu-
lants is characteristic of our method. We assume thatT sam-
ples ofN-dimensional variables�y�0�it �1 � i � N � 1 � t � T �
are available as observed data. The mean value have already
drawn from the data, that is,∑T

t�1yit 	 0 for all i. Here-
after the last lower index denoting the sample number is
omitted and the data are denoted asN-dimensional vectors.
For example,y�0� 	 �y�0�1 �y�0�2 � � � � �y�0�N

�T, where we denote
by the upper subscript T the transposition. It is presumed
thatN-dimensional mutually independent random variables�si �1 � i � N� with zero means lie behind the observed data.
We assume that two random variables�si � and�yi � are re-
lated by

yi 	 ∑
j

Ai j sj � ηi � (1.2)

where�ηi � constitutes anN-dimensional gaussain random
variable with zero-mean and variancevi j . The noises�ηi �’s
are not assumed to be mutually independent. Note that
the robustness under the gaussian noises is not acquired by
methods which exhaust a half degrees of freedom in the
prewhitening even if the noises are not correlated. This is
one of the motivations for us to construct algorithms which
do not require prewhitening.

We consider a sequencey�0� �y�1� �y�2� � � � � , which con-
verges to the optimal pointy�∞� where each component be-
comes mutually independent. We specify the flow of this
sequence byN �N matrices�∆ �s�;s 	 0�1�2� � � � �, which
describe the amount of individual steps:

y�s�1� 	 �exp∆�s� �y�s� � (1.3)
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Since the ICA is anN�N � 1
�
-dimensional optimization, an

N-dimensional redundancy remains. To suppress the indef-

initeness we attach constraints∆�s�ii 	 0 for 1 � i � N[1, 4].
These constraints are natural since the diagonal degrees of
freedoms correspond to the componentwise scalings and
the scalings are nothing to do with the independence[1].
The goal of this paper is the construction of sequences�∆�s� � which are robust under gaussian noises and converge
rapidly.

In the following two sections we will deal with only one
time step and show how to determine∆ �s� from the data�y�s� �. So the upper subscript��s�� will be omitted.

2. QUASI-NEWTON METHOD

2.1. normal quasi-Newton

A Newton algorithm on ap-dimensional space is interpreted
in two ways:

1. the minimization of a cost function based on its sec-
ond order expansion

2. the determination of a point where objective functions
fi for 1 � i � p vanish simultaneously based on their
first order expansions.

Here we adopt the second interpretation since it can deal
with problems of broader range. We choose as the objective
functions

Qi j 	� y3
i y j �c � i

�	 j � 1 � i � j � N � (2.1)

that is, we want to determine a set�yi � which satisfiesQi j 	
0 for all i and j � �	 i

�
. We denote byO�∆k� polynomials

of matrix elements of∆ which does not contain terms with
degrees less thank. Under the transformationy� exp�∆�

y,
Qi j transforms as

Qi j � Qi j � ∆ ji � y4
i �c �3∆i j � y2

i y2
j �c �O�∆2� �

(2.2)

where we have neglected cumulant terms which contain
more than two distinct components such as� y1y2y2

3 �c.
This approximation is similar to that by Amari[5]. The
amount of a step∆ is determined after the Newton manner.
That is,∆i j and∆ ji is determined by the condition�
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i y2
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or more explicitly,�
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(2.4)

Note that conditions forN�N � 1
�

elements of∆ are divided
into 2-dimensional linear equations thanks to the approxi-
mation. Thus the determination of∆ by this procedure is
computationally much cheaper for a largeN than the pure-
Newton method and the JADE, which requires an eigen-
value decomposition of theN2 �N2 cumulant matrix. The
updating rule based on (2.4) works perfectly if we start from
a point close to the optimal one. Unfortunatelly this method
is not necessarily stable globally. In the next subsection we
propose a deformation of the updating rule which makes the
method considerable stable.

2.2. deformation and stability on earlier stages

Let us introduce a positive numberξ and defineS�ξ� as

S�ξ� 	 � � y4
i �c �3� ξ� � y2

i y2
j �c�3� ξ� � y2

i y2
j �c � y4

j �c � � (2.5)

Then we propose to use�
∆ ji

∆i j� 	 �S�ξ��1
�
Qi j

Q ji� (2.6)

as the updating rule instead of (2.4). The difference between
(2.6) and (2.4) vanishes at the optimal point. Numerical ex-
periments indicate that a positiveξ is crucially important
for the global stability of the algorithm. This is an empirical
fact. Let us illustrate the situation more theoretically. In this
subsection we neglect the noise and assume thaty 	 As. At
the initial point, we do not know anything about the transfer
matrix A. Suppose that everyAi j is a gaussian random vari-
able with an identical varianceσ and zero-mean. We call
this exsemble the Laguerre orthogonal ensemble (LOE) as
in the context of physics[6, 7]. Since there is no invariant
measure onGL�N �� �, it is natural to adopt the LOE as a
prior distribution. We can show, however, that

ELOE�S�ξ�� 	 a

�
3 3� ξ

3� ξ 3 � (2.7)

wherea is some real number. So if we chooseξ 	 0, the
average becomes singular. This explains the importance of
nonzeroξ. In consideration of the fact that� y2

i y2
j �c must

vanish at the optimal point, it is understood that a negative
value forξ is not a good choice for the global stability. In
the example below we adaptively control the value forξ:
we chooseξ 	 1 in the beginning and when the updating
width becomes small, we alter it to smaller value likeξ 	
0�3. By the introduction ofξ, the algorithm becomes fairly
stable. Further deformation is, however, in order, which is
explained in the next section.

3. EXTENDED QUASI-NEWTON METHOD

In this section we extend our method furthermore. The
method which will be proposed here is a new extension
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to the Newton method. The ICA is an optimization on an
N�N � 1

�
-dimensional space. This is essentially an overde-

termined problem since the optimal point should be among
the zero point of infinitely many functions. Any of these
functions can be used as the objective function. In the algo-
rithm above described, we have chosen the (3,1)-type fourth
order cumulants. Here we introduce additional�2�2�-type
objective functions,

Ri j 	� y2
i y2

j �c
� (3.1)

It transforms under the action of e∆ to y as

Ri j � Ri j � 2∆ ji � y3
i y j �c �2∆i j � yiy

3
j �c �O�∆2� �

(3.2)

where we have omitted terms with more than two distinct
components as in the previous case. We denote the kurtosis
of each component ofy by Ki :

Ki 	� y4
i �c

� (3.3)

Let us combine (2.3) with (3.2) and consider the vector,

α 	 ��α1

α2

α3

�� 	 f � �� Ki �3� ξ�Ri j�3� ξ�Ri j K j

2Qi j 2Q ji

�� �
∆ ji

∆i j� �
(3.4)

where

f 	 ��Qi j

Q ji

Ri j

�� � (3.5)

At the optimal point, each element off must vanish. Since
α 	 0 is an overdetermined problem we choose two rows
from it in the usual Newton approach to determine the up-
dating width∆. Here we try to utilize all of the three rows,
that is, we choose∆ which minimizes the norm ofα. We use
the euclidean norm. For brevity’s sake we introduce vectors
r1 andr2 by

r1 	 �� Ki�3� ξ�Ri j

2Qi j

�� and r2 	 ���3� ξ�Ri j

K j

2Q ji

�� � (3.6)

Then∆ is determined by�
∆ ji

∆i j� 	 � ��r1 �r1
� �r1 �r2

��r2 �r1
� �r2 �r2

���1 ��r1 � f ��r2 � f �� � (3.7)

Otherwise, we can rephrase (3.7) by using

V 	 �� Ki �3� ξ�Ri j�3� ξ�Ri j K j

2Qi j 2Q ji

�� (3.8)

as �
∆ ji

∆i j� 	 � �VTV
��1VT f � (3.9)

The updating rule (3.7) or (3.9) is the main result of this pa-
per. The matrix on the right-hand-side of (3.9) is interpreted
as a generalized inverse ofV. Note that there might be other
choices for the norm. This norm, however, works good.

4. PERFORMANCE

We have performed two numerical experiments to verify
the performance of our method. For the updating rule we
use (3.9). In the first experiment, the source signals are 6-
dimensional sound data with 48000 samples. The source
signals are mixed by a matrix choosen from the LOE. Al-
though singular matrices have measure zero on the LOE,
matrices with very small determinants may be choosen on
this setting. After the mixture we add noises. For the noises
we choose 6-dimensional mutually independent gaussian
random variables, since the JADE and the FICA are not op-
timized for the correlated gaussian noises. Note that our
method is little affected by the presence of the correlations
among gaussian noises. In this experiment the noise level is
low. The ratio of the standard deviation of the signals and
noises are 8.61% on the average. We have iterated 50 times
the demixing problem. As a whole, it can be said that the
setting of this experiment is fairly tough. Indeed, the con-
ventional simple methods do not work perfectly as in the
usual cases. Of course our method also fails sometimes.
The numerical results, however, shows the power of our
method. The results are as follows(Fig.1). By our method
time needed for one trial is 8.76 seconds, the crosstalk is
1.89%, and the maximum remaining crosstalk in one trial
is 11.98% each on average. The median of the maximu re-
maining crosstalk is 6.23%. The results by JADE are 2.79
seconds, 4.40%, 26.88%, and 18.19%. By FICA the results
are 4.26 seconds, 5.10%, 31.80%, and 20.08%. These re-
sults indicate our method is much stabler than the remaining
two methods in this setting.

The next experiment is more noisy one with three sig-
nals. The noise level is 29.07%. The results are as follows.

our method JADE FICA
time(sec.) 3.07 0.37 1.47
mean crosstalk(%) 8.51 20.62 21.52
mean max crosstalk(%) 12.7 31.93 33.62
max crosstalk median(%) 3.15 27.15 27.16

It also illustrates the power of our method. See also Fig.2
The results of the JADE and the FICA are quite similar and
much worse than our method.
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5. CONCLUDING REMARKS

In this paper we have constructed a deformed quasi-Newton
method for the ICA. This method is simple and robust under
gaussian noises. Moreover, its convergence is quite fast and
considerably stable. It must also be noted that we can use
our method for fairly high-dimensional problems since the
computational quantity for this algorithm is ofO�N2�.

The robustness under gaussian noises is a result of two
factors. First, since the objective functions are fourth order
cumulants they are not affected by the gaussian noises. The
second factor is related to the prewhitening process. We do
not need to prewhiten the data since the quasi-Newton flow
constructed in this paper can move toward any direction in
theN�N � 1

�
-dimensional space. In the presence of noises,

the prewhitening results in ‘the overwhitening’ since at the
optimal point the off-diagonal elements of the covariance
matrix do not necessarily vanish. This explains partly the
reason that the prewhitening is not preferable.

The stability of our method is also the consequence of
two ideas: the deformation described in the subsection 2.2
and the addition of the�2�2�-type cumulants to the objective
functions. The latter is put into shape by the introduction
of the generalized inverse technique to the Newton method.
Of course, it is fair to mention that our method is slower
than the JADE and the FICA in noiseless lower dimensional
cases for now.

Let us examine other possibilities. If the dimension of
the observations are much greater than the number of sig-
nals, the factor analysis can be used to estimate the distri-
bution of the noises and there might be alternative simple
methods to obtain results comparable with ours. We can,
however, not estimate the variance of the noises accurately
by the factor analysis if the number of the source signals are
greater than the half of the channel number of the observa-
tions. So the method developed in this paper is especially
useful in such occasions.
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Figure 1: The results of six signal demixing problems. The
horizontal axis denotes the trial number. The solid lines
with diamonds, broken lines with squares, and dotted lines
with circles denote, respectively, the results of our method,
the JADE, and the FICA.
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Figure 2: The results of three signal demixing problems.
Stronger noises are present than in the previous example.
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