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ABSTRACT

The building blocks introduced earlier by us in [1] are
used for constructing a hierarchical nonlinear model
for nonlinear factor analysis. We call the resulting
method hierarchical nonlinear factor analysis (HNFA).
The variational Bayesian learning algorithm used in
this method has a linear computational complexity, and
it is able to infer the structure of the model in addition
to estimating the unknown parameters. We show how
nonlinear mixtures can be separated by first estimating
a nonlinear subspace using HNFA and then rotating the
subspace using linear independent component analysis.
Experimental results show that the cost function min-
imised during learning predicts well the quality of the
estimated subspace.

1. INTRODUCTION

Blind separation of sources from their nonlinear
mixtures—known as nonlinear blind source separation
(BSS)—is generally a very difficult problem, from both
theoretical and practical point of view [2, 3]. The task
is to extract the sources s(t) that have generated the
observations x(t) through a nonlinear mapping f(·):

x(t) = f [s(t)] + n(t) , (1)

where n(t) is additive noise.
Theoretically, the task is difficult since both the

nonlinear mapping and the underlying sources must be
learned from the data in a blind manner, and the prob-
lem is highly ill-posed without a suitable regularisation
[2, 3]. A related problem is that it is often quite difficult
to infer the number of sources and the structure of the
mapping f(·). From practical point of view, efficiency
and reliability of nonlinear BSS algorithms are critical
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issues. They have restricted the number of sources that
can be separated in practice to be quite small in many
instances.
Existing nonlinear BSS methods have been re-

viewed in Chapter 17 of [3] and in [4]. The method
introduced in this paper stems from [5], where a varia-
tional Bayesian learning method called ensemble learn-
ing was used to estimate the generative nonlinear mix-
ture model (1).
In this paper we study the approach outlined in [1].

We construct a hierarchical nonlinear generative model
for the nonlinear mixtures and learn the model by
Bayesian ensemble learning. The theoretical basis was
introduced in [1] but the scope in that paper was much
wider. Here we study in more detail the nonlinear
BSS problem, introducing hierarchical nonlinear factor
analysis (HNFA), an algorithm for extracting a nonlin-
ear subspace. This provides a nonlinear PCA (principal
component analysis) solution. The estimated subspace
can subsequently be rotated by standard linear inde-
pendent component analysis (ICA). This provides the
desired solution to the nonlinear BSS problem.
Compared to nonlinear factor analysis (NFA) pre-

sented in [5], HNFA has several advantages: 1) Its com-
putational complexity scales better for large models;
2) The learning method is always stable and converges
better; and 3) Learning of the structure of the model
has been improved. The disadvantage of HNFA is that
the approximation of the posterior density is farther
away from the true posterior density. This may occa-
sionally lead to inferior performance [6]. However, ex-
periments suggest that in many cases the advantages
are more important.

2. VARIATIONAL BAYESIAN LEARNING

Variational Bayesian learning techniques are based on
approximating the true posterior probability density of
the unknown variables of the model by a function with
a restricted form. Currently the most common tech-



nique is ensemble learning [7, 8, 9] where the Kullback-
Leibler divergence measures the misfit between the ap-
proximation and the true posterior. It has been applied
to standard ICA and BSS [10, 11, 12, 13] and to their
extensions [14, 15, 5, 9], as well as to a wide variety of
other models.
In ensemble learning, the posterior approximation

q(θ) of the unknown variables θ is required to have a
suitably factorial form

q(θ) =
∏

i

qi(θi) , (2)

where θi denotes a subset of the unknown variables.
The misfit between the true posterior p(θ | X) and
its approximation q(θ) is measured by the Kullback-
Leibler divergence. An additional term− log p(X) is in-
cluded to avoid calculation of the model evidence term
p(X) =

∫

p(X,θ)dθ. The cost function then has the
form [7, 8, 9]

C = D(q(θ) ‖ p(θ|X))− log p(X) =

〈

log
q(θ)

p(X,θ)

〉

,

(3)
where 〈·〉 denotes expectation over the distribution
q(θ). Note that since D(q ‖ p) ≥ 0, it follows that the
cost function provides a lower bound p(X) ≥ exp(−C)
for the model evidence p(X).
During learning, the factors qi(θi) are typically up-

dated one at a time while keeping the other factors
fixed. In this paper, we apply the method introduced
in [1]. The posterior has a maximally factorial form,
which means that each unknown variable is approxi-
mated to be independent a posteriori of the rest of the
variables. The computational complexity of each in-
dividual update is then proportional to the number of
connections it has with other variables. Consequently,
updating the posterior variance of all the variables in
the model can be carried out in a time proportional to
the total number of connections in the model.
For each update of the posterior approximation

qi(θi), the variable θi requires the prior distribution
p(θi | parents) given by its parents and the likelihood
p(children | θi) obtained from its children

1. The rele-
vant part of the Kullback-Leibler divergence to be min-
imised is, up to a constant independent of qi(θi)

C(qi(θi)) =

〈

ln
qi(θi)

p(θi | parents)p(children | θi)

〉

. (4)

In ensemble learning, conjugate priors are commonly
used because they make it very easy to solve the vari-
ational minimisation problem of finding the optimal
qi(θi) which minimises (4).

1In a graphical model representation, each variable is condi-
tionally dependent on its parents.

As an example, consider linear mappings with
Gaussian variables. First, note that in (4), the neg-
ative logarithm of the prior and likelihood is needed.
We shall call this quantity the potential. Gaussian
prior has a quadratic potential. The likelihood aris-
ing from a linear mapping to Gaussian variables also
has a quadratic potential. The sum of the potential
is quadratic and the optimal posterior approximation
can be shown to be the Gaussian distribution whose
potential has the same second and first order terms.
The minimisation thus boils down to adding the coef-
ficients of the second and first order terms of the prior
and likelihood.

3. NONLINEAR FACTOR ANALYSIS

In this and the next section, we discuss how Bayesian
ensemble learning can be applied to nonlinear mod-
els. Our approach stems from nonlinear factor analysis
(NFA) [5], where the nonlinear generative model (1)
was estimated by ensemble learning. We briefly intro-
duce NFA, explaining how the computations can be
made in linear time and the cost function analytical by
splitting the nonlinear mapping into two parts. NFA
is in many respects similar to the hierarchical NFA
(HNFA) to be discussed in the next section. For in-
stance posterior approximation is chosen to be max-
imally factorial in both these methods for achieving
computational efficiency and both can in principle sep-
arate any nonlinear mixtures.
Unlike for linear models, no conjugate priors exist

for the sources in the nonlinear model (1). It is there-
fore impossible in practice to solve the functional form
of qi(θi) by minimising (4). Instead of using such free
form approximation [8], the terms qi(θi) are restricted
to be Gaussian in NFA. A justification for this choice
is that it is the free-form solution if the mapping f(·)
is linear.
In [5], a multi-layer perceptron (MLP) network with

one hidden layer was used for modelling the nonlinear
mapping f(·):

f(s;A,B,a,b) = A tanh[Bs+ b] + a , (5)

where A and B are weight matrices, a and b are bias
vectors and the activation function tanh operates on
each element separately.
In NFA, the most time consuming part is the com-

putation of the posterior variance Var(f) over the ap-
proximated posterior distribution q(θ). The estimate
of variance is based on a linear approximation of the
mapping f about the posterior mean of the sources and
weights. This requires computation of the Jacobian
matrix of f(·) with respect to the sources, having a



complexity which is essentially the same as multiplica-
tion of the matrices A and B.
In NFA, neither the posterior mean nor the variance

of f(·) over q(θ) can be computed analytically. The
approximation based on the Taylor series expansion can
be inaccurate if the posterior variance for the input of
the hidden nodes grows too large. This may cause the
instability observed in some simulations.

4. HIERARCHICAL NONLINEAR FACTOR

ANALYSIS

In [1], modular design principles and building blocks for
latent variable models were introduced. The benefits
of the approach are that the cost function and learning
rules can be derived automatically once the structure
of the model is given and learning is stable and com-
putationally efficient. One of the building blocks was a
Gaussian variable ξ followed by a nonlinearity φ:

φ(ξ) = exp(−ξ2) . (6)

The motivation for choosing this particular nonlinear-
ity is that for Gaussian posterior approximation qξ(ξ),
the posterior mean and variance and consequently the
cost function (3) can be evaluated analytically.
Using this construction—Gaussian variables fol-

lowed by nonlinearity—it is possible to build nonlin-
ear mappings for which the learning time is linear with
respect to the size of the model. The key idea is to in-
troduce latent variables h(t) before the nonlinearities
and thus split the mapping (5) into two parts:

h(t) = Bs(t) + b+ nh(t) (7)

x(t) = Aφ[h(t)] +Cs(t) + a+ nx(t) , (8)

where nh(t) and nx(t) are Gaussian noise terms. Note
that we have included a short-cut mapping C from
sources to observations. This means that hidden nodes
only need to model the deviations from linearity.
In HNFA, the extra latent variables h(t) are not

expected to represent the data independently but to
operate on tight guidance of the upper layer2. They
are included in the model merely to reduce the compu-
tational complexity. The algorithm still needs the pos-
terior mean and variance of the mappings in (7) and
(8), but now they all have analytic expressions which
can be computed in linear time.
According to our posterior approximation q(θ), all

variables are independent a posteriori. Introduction of
the extra latent variables h(t) has the negative effect

2A hierarchical model where the middle layer had a more
independent role in representing the observations was presented
in [1].

of increasing the misfit between the approximated and
the true posterior density. Minimisation of the cost
function (3) favours solutions where the misfit is as
small as possible. In [6], it is shown how this can lead
to suboptimal separation in linear ICA. It is difficult to
analyse the situation in linear models mathematically,
but it seems that models with fewer hidden nodes and
thus more linear mappings are favoured. This should
lead to conservative estimates of the nonlinearity of the
model.
On the other hand, introducing h(t) has major ben-

efits: computational complexity of learning is linear
and convergence is stable because the cost function to
be minimised is not based on series approximations.

5. LEARNING SCHEME

The learning scheme is designed to minimise the cost
function (3). The basic operation during learning is an
iteration where all the terms qi(θi) of q(θ) are updated
one at a time by minimising (4). In addition, several
other operations are performed:

• addition of hidden nodes;

• addition of weights;

• pruning of weights; and

• line search.

Line search has been explained in [16]. The idea is
to monitor the individual updates during one iteration
and then perform a line search simultaneously for all
qi(θi). We applied the line search after every tenth
iteration.
The addition and pruning operations aim at opti-

mising the model structure. The cost function (3) re-
lates to the model evidence p(X | model) which can be
used to find the most likely model structure.
In general, addition takes place randomly and prun-

ing is based on estimating whether the cost function
can be decreased by removing a weight. The moti-
vation for this is that ensemble learning can effectively
prune out parts of the model which are not needed. The
weights in the matrix B corresponding to one hidden
node can for instance approach zero. The cost function
can usually be decreased by removing such weights. If
all outgoing weights of a hidden node have been re-
moved, the hidden node becomes useless and can be
removed from the model. Ensemble learning cannot,
however, actively make room for a part of the model
which may be added in the future. It usually takes
some time for the rest of the model to accommodate to
additions.



5.1. Evidence node

During learning, it is necessary to initialise some
variables and keep them fixed for a while until other
parts of the model have accommodated appropriately.
We use evidence nodes, as we call them. They are
attached to a variable θi, whose value we want to set,
and provide a term for the likelihood p(children | θi).
When qi(θi) is updated, θi will be close to the value
set by evidence node if the likelihood term has a
narrow peak but θi can accommodate to other parts
of the model if the likelihood term is wide. After each
iteration, the extra term for the likelihood is decayed
a little on the logarithmic scale, and the evidence
node is removed when the extra term vanishes. The
persistance of the initialisation can be controlled by
the life-span of the evidence node.

5.2. Phases of learning

The model is built in stages. First, only the linear map-
ping Cs(t) is used, so that there are no hidden nodes.
The sources s(t) are initialised by principal component
analysis (PCA) using evidence nodes with a life-span
of 40 iterations in order to estimate a reasonable C.
The linear model is learned for 100 iterations.
After that, 50 randomly initialised hidden nodes are

added to the model and estimation of the model struc-
ture begins. That is, weights are added and pruned
and hidden nodes are added every now and then. Ev-
ery time new hidden nodes are added, five of them are
selected from a pool of 1,000 random candidates. Af-
ter each addition of hidden nodes, there is a period of
30 iterations during which no pruning is applied. This
gives the new hidden nodes enough time to fit them-
selves into the model.
Hidden nodes are added a limited number of

times. After that, learning continues with pruning and
random additions of weights. The number of weights
to be added decreases with time. Finally, only line
searches are applied for the last 1,000 iterations. The
total number of iteratons in the simulations is 10,000
unless otherwise stated.

5.3. Addition of hidden nodes

The hidden nodes are latent variables which can inde-
pendently represent some aspects of the observations.
Due to our model structure, this usually corresponds
to a local minimum of the cost function. It is better
that the sources s(t) represent the data since they can
share their information with all hidden nodes. The lo-
cal minimum can be avoided by evidence nodes which
keep the variance of the Gaussian noise nhi(t) of each
newly added hidden node hi(t) low. Once the sources

take the responsibility for the representation, the vari-
ances of hidden nodes no longer grow significantly. The
life-span of these evidence nodes was 500 iterations in
our experiments.
When hidden nodes are added, their incoming

weights B are initialised to random values. However,
after the first addition, the added hidden nodes are
selected from a large pool of candidate initialisations.
The hidden nodes which correlate best with the
remaining modelling error of the observations are
selected. The first hidden nodes are able to model
many of the large scale nonlinearities in the data. It
is much more difficult to find useful hidden nodes by
random initialisations later on since the new neurons
tend to be quickly pruned away.

6. EXPERIMENTS

In this section, we report experiments with an artificial
data set which demonstrate the ability of the HNFA
method to extract a nonlinear subspace. We show that
it is possible to estimate the correct number of sources.
The value of the cost function correlates well with the
quality of the subspace. Linear ICA is used for rotat-
ing the extracted subspace to separate the independent
source signals.
Our data set closely resembles the one used in

[5, 3]. The data set consists of 1,000 samples from
nonlinear mixtures of eight sources. Four of the
sources are super-Gaussian and the remaining four are
sub-Gaussian. We used the same nonlinear mixing as
in [5, 3] where the nonlinear mapping was a randomly
initialised MLP network with sinh−1 as the activation
function for hidden nodes. Now we also included
additive Gaussian noise whose standard deviation was
one tenth of that of the signal. This corresponds to a
signal-to-noise ratio (SNR) of 20 dB.

6.1. Model selection

We tested both linear models, which were otherwise
like HNFA models but lacked the nonlinear hidden
nodes, and HNFA models with varying number of
sources. The values of the cost function attained after
learning were compared. The best linear model had 14
sources while the best HNFA model had eight sources.
Hence the HNFA method is able to infer the correct
subspace dimension, while the linear model tries to
model nonlinear effects using extra dimensions.

6.2. Subspace estimation

The HNFA method as such cannot find the original
sources for the same reason as PCA cannot find inde-
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Fig. 1. The signal-to-noise ratio of the estimated sub-
space as a function of the cost function value attained
in different simulations.

pendent components: the Gaussian source model has
a rotational indeterminacy. We can, however, mea-
sure the quality of the estimated nonlinear subspace by
measuring how accurately the original sources can be
reconstructed as linear combinations of the estimated
sources. We refer to this as the SNR of the optimal
reconstruction.

The eight-dimensional linear subspace extracted by
linear PCA yielded an SNR of 7.63 dB for optimal re-
construction while the HNFA simulation which reached
the lowest value for the cost function attained an SNR
of 13.91 for optimal reconstruction.

An interesting question is whether the value of the
cost function (3) correlates with the quality of the esti-
mated nonlinear subspace. Figure 1 shows how the
SNR of the optimal reconstruction depends on the
cost function reached by the simulations with eight
sources. We deliberately generated some models which
had fairly few hidden nodes to reach costs between
53,000 and 61,000. The linear model is shown, too,
and its cost is slightly below 62,000. The figure clearly
shows that the cost function is a reliable indicator of
the quality of the subspace.

6.3. Rotation

After a nonlinear subspace has been estimated by
HNFA, we can use standard linear ICA algorithms [3]
for rotating the subspace to obtain independent source
signals. As in [5], we used the FastICA method [17, 3],
but this time its symmetric version instead of the de-
flation one. We found that symmetric FastICA method

PCA + FastICA: SNR = 5.47 dB

HNFA + FastICA: SNR = 12.90 dB

Fig. 2. Each scatter plot shows the values of one origi-
nal source signal plotted against the best corresponding
estimated source signal after a rotation with FastICA.

always converged to the same solution regardless of the
initialisation when the quality of the subspace was ad-
equate.

As expected, we found that the SNR of the sources
provided by FastICA is closely correlated with the SNR
of the optimal reconstruction, being typically about 1
dB lower. Figure 2 shows the scatter plots of the origi-
nal sources and the sources obtained after a rotation by
FastICA. On the first two rows, standard linear PCA
has been used to estimate the subspace. The lower two
rows show the results when the subspace was estimated
using the HNFA method.

Linear PCA yielded an average SNR of 4.32 dB
with FastICA, which is less than expected from the
SNR of the optimal reconstruction. The reason is that
although most runs of FastICA yielded an SNR close
to 5.47 dB, there seems to be another local minimum
around 1.8 dB.

6.4. Comparison to NFA

With our data set, the NFA method achieves signifi-
cantly smaller values of the cost function and better
SNRs. The number of iterations needed by NFA was
much larges because we did not use line searches, but



in 100,000 iterations we reached a cost of 36,368 and
an SNR of 22.58 for optimal reconstruction.
However, we have a reason to believe that this is

because the data is unusually well suited for NFA. Al-
though both methods can in principle model any non-
linear mixing, the sinh−1 activation function matches
better the tanh activation function in NFA than the
nonlinearity (6). Our experiments with speech data
suggest that with real-world data sets, the HNFA
method can outperform NFA. This is probably due to
enhanced structural learning in HNFA. Otherwise, one
can expect the NFA method to reach lower values of
the cost function because its posterior approximation
q(θ) should fit the true posterior better.

7. DISCUSSION

The present version of HNFA is already a ready-to-use
tool for nonlinear subspace estimation, but it is still
possible to improve and automatise the structural es-
timation procedure. Now we estimated the number of
sources by manually going through different models. It
would be possible to estimate the number of sources
in a similar manner as the number of hidden nodes
was estimated. Moreover, pruning of hidden nodes
should be improved. Now only weights were pruned,
and sometimes a hidden node is left with some outgoing
weights although the cost would decrease by removing
the whole hidden node.
An important line of research will be the modelling

of dynamics. In [9], the NFA method was extended to
include a model for the dynamics of the sources. A
similar extension for HNFA would lead to hierarchical
nonlinear dynamical factor analysis.
To conclude, HNFA is a powerful method for es-

timating nonlinear subspaces. The cost function pro-
vides a lower bound for evidence and can be reliably
used to estimate the dimension of the subspace. The
HNFA method provides a nonlinear extension of stan-
dard linear PCA, which is often used as the whitening
stage in linear ICA algorithms [3]. We have used Fas-
tICA for the final rotation of the sources. We showed
that the cost function used in the HNFA method cor-
relates very well with the quality of the estimated sub-
space.
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