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Abstract. Count data arises for example in bioinformatics or analy-

sis of text documents represented as word count vectors. With several

data sets available from related sources, exploiting their similarities by

transfer learning can improve models compared to modeling sources in-

dependently. We introduce a Bayesian generative transfer learning model

which represents similarity across document collections by sparse sharing

of latent topics controlled by an Indian Buffet Process. Unlike Hierarchi-

cal Dirichlet Process based multi-task learning, our model decouples topic

sharing probability from topic strength, making sharing of low-strength

topics easier, and outperforms the HDP approach in experiments.

1 Introduction

Classical machine learning methods learn models for data from a single data
source. When few training samples are available for the learning task, methods
may overfit or have too little information to infer complicated models. To gain
more information for the learning task, transfer learning [1] methods transfer
knowledge from earlier tasks to a new one, and multi-task learning [2] methods
learn several tasks together from their respective data sets, exploiting their un-
derlying relationships. When set in the probabilistic modeling framework, such
approaches typically build a hierarchical model describing how model parameters
vary among tasks; models for all tasks are then learned simultaneously.

We introduce a multi-task learning (transfer learning) method for an unsu-
pervised learning problem: generative modeling of count data in multiple tasks,
such as bag-of-words text documents from several collections. We model each
data source with the topic model family [3]; with a nonparametric extension
where both the number of topics and their strengths are learned from data. To
model sharing of information among tasks, we allow topics to be shared among
tasks. We use an Indian Buffet Process (IBP; [4]) to model how many topics are
active overall and which topics each task uses to model its respective documents;
we allow a further sparsity-inducing step to turn off some topics from each task.

∗AF, JG and JP had equal contributions. Authors belong to AIRC, a CoE of the Academy
of Finland (AoF). The work was supported by AoF decisions 123983 and 252845; Finnish
Doctoral Programme in Computational Sciences and in part by PASCAL2 NoE, ICT 216886.



Finally we generate the strengths of active topics in each task from a Gamma
prior. We use Bayesian inference (MCMC sampling) to infer the posterior over
topics and make predictions about new documents as in any Bayesian model.

The most relevant earlier work is the Hierarchical Dirichlet Process model
(HDP; [5]) which extends the single-task Latent Dirichlet Allocation model
(LDA; [3]) and learns the number of topics from data by a Dirichlet Process (DP)
prior; it is also extended to multi-task problems by modeling topic strengths in
each task as draws from an upper-level Dirichlet process prior; we denote the
multi-task version by MT-HDPLDA. MT-HDPLDA implicitly assumes that the
topics most likely to be shared are also the strongest topics. This neglects the
possibility of sharing weak topics. In contrast, our IBP-based sharing separates
the choice of which topics to share from generation of topic strengths, allowing
more flexible sharing between multiple tasks. In experiments our model out-
performs MT-HDPLDA on several data domains. Another related model is the
single-task model in [6], which uses an IBP prior to control which topics are
active in each document and draws strengths of active topics from Gamma pri-
ors. The model in [6] is for single-task learning only. Our model can be seen
as a multi-task counterpart, where the “IBP+Gamma” type generation of topic
strengths is used across multiple tasks rather than across documents in one task.

Sections 2 and 3 describe our model and the experiments; Section 4 concludes.

2 Multi-task topic models

The basic single-task topic model Latent Dirichlet Allocation (LDA; [3]) gen-
erates a document through activity of latent topics; to generate a document,
a topic distribution is drawn from a prior, and to generate each word in the
document, a topic is drawn from the topic distribution and the word is drawn
from a topic-wise word distribution. LDA assumes a fixed number of topics.

The Hierarchical Dirichlet Process (HDP; [5]) generalizes LDA to learn the
number of topics from data and model multiple document collections (data sets),
by Bayesian nonparametric inference. In an HDP, topics for a document are
drawn from a Dirichlet process (DP), which in turn is drawn from a data set
level DP, which can in turn be drawn from an overall DP across data sets. The
topmost DP in the hierarchy determines which topics are active overall and their
strengths; lower-level DPs choose among their parent-level active topics, varying
their strengths by a stick-breaking construction to yield differing topic distri-
butions at each branch of the hierarchy. When inferring topics from data, the
topmost DP can activate new topics as well as change their strength; the HDP
can thus infer the number of topics from data. See [5] for details. Since sharing
is done by the topic strength hierarchy, with the stick-breaking construction the
strongest topics (which generate many words overall) are the most likely to sur-
vive in several branches of the hierarchy and thus be shared across data sets; this
can make the model a bad fit for multi-task problems with low-strength shared
topics (topics discussed in many document collections but not at great length).

Recently a single-task model with more flexible topic sharing was proposed



[6] using an Indian Buffet Process Compound Dirichlet Process prior which can
be seen as a spike-and-slab prior over topic strengths. An Indian Buffet Process
prior is placed on binary flags of whether topics are present in documents rather
than on their strengths which are generated separately from Gamma variables;
the model then avoids the coupling of topic strength and topic sharing implicit
in the HDP model. The model is for single-task learning only; when only few
data are available from each data source, a multi-task solution is needed.

2.1 New sparse nonparametric topic model for transfer learning

We present a new hierarchical Bayesian multi-task (transfer learning) model
which allows flexible sharing of low-strength and high-strength topics across
multiple data sets, with a spike-and-slab prior. Learning the model for each
data set is called a task; our model performs transfer learning by learning the
tasks together. We draw the binary matrix of which topics are present in each
task from an Indian Buffet Process (IBP); to draw a topic for a new task, the IBP
chooses one of the existing topics according to how many tasks they are already
present in, or activates a new topic, hence the number of active topics is inferred
from data. Since we empirically found that IBP did not provide enough sparsity
for our small data, we implemented an additional sparsity masking step turning
off some components in each task. The strength of remaining active topics is
drawn from Gamma distribution within each task; from this task-specific topic
prior, the remaining generation proceeds as in LDA, drawing document-specific
topic distributions and then the words for each document.

The full generative scheme (see Figure 1) is as follows: Step 1. Draw a
binary matrix B ∼ IBP(α). The cth row bc of B tells which topics are active
in task c. Draw topic strength prior γ(k) ∼ Gamma(a1, a2) for each component
k = 1, 2, ...∞. Step 2. For each task c, sample an additional topic sparsity

masking ψ
(k)
c ∼ Bernoulli(ǫ) which turns off some topics k from bc, then draw

topic strength φ
(k)
c ∼ Gamma(γ(k), 1). Draw the size of the task (total number of

words) as a negative binomial n
(.)
c ∼ NB(

∑
k b

(k)
c φ

(k)
c ψ

(k)
c , 12 ). Step 3. Draw the

topic-to-word distributions βk ∼ Dirichlet(η). Step 4. For every document d =
1, 2, ...Dc in task c, draw the distribution over topics θc,d ∼ Dirichlet(bc.φc.ψc)
where bc,φc and ψc are multiplied elementwise; then for each word n, draw
topic index zc,d,n ∼ Multinomial(θc,d) and term wc,d,n ∼ Multinomial(βzc,d,n).
Here α, ǫ, η, a1 and a2 are the model hyperparameters. Inference by sampling,
discussed next, is efficient and only processes a finite number of topics at each
step as is usual in nonparametric models.

2.2 Bayesian inference for our model

To infer our model from the multi-task data sets, we use a combination of col-
lapsed Gibbs sampling and the Metropolis-Hastings algorithm to sample from
the posterior distribution of the model parameters. We integrate out the topic
specific distribution over words, the topic mixture distribution and the binary
IBP matrix; sampling is needed only over the remaining variables. In the Gibbs
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Fig. 1: Plate diagram for our sparse transfer learning topic model.

we cyclically sample the topic assignment z, the topic strength φ and the IBP
prior π (stick-breaking parameters) for topic activation. To sample topic as-
signmentswe integrate out the topic distribution. The posterior that the nth

word comes from topic k is p(zc,d,n = k|z\c,d,n, wc,d,n,∆) ∝ (n
(k)
wc,d,n,\c,d,n

+

η)
∫
dθc,d p(zc,d,n = k|θc,d)p(θc,d|z\c,d,n,∆) where∆ = {φ•

c ,π
•,γ, α, ǫ} and su-

perscript • denotes active topics. The likelihood involves a combinatorial inte-
gration over values of the sparse IBP matrix, but since we only need the posterior

for taking topic k, the integral simplifies to E[θ
(k)
c,d |z\c,d,n,∆] ∝ E[((n

(k)
c,d,\c,d,n +

φ
(k)
c )b

(k)
c ψ

(k)
c )/(n

(.)
c,d,\c,d,n+

∑

j

b
(j)
c , ψ

(j)
c , φ

(j)
c )]. While not combinatorial, this ex-

pectation is inefficient to evaluate in closed form as we would need to do so
for every word in Gibbs sampling. We use an approximation similar to [6], us-
ing 1st order Taylor expansion for the three possible cases: topic k is active
in the current task (data set); topic k does not appear in the current task but
is active in the corpus (all data sets); or topic k is inactive in the whole cor-
pus. We must process inactive topics in case the sampling activates one: a
topic is inactive (denoted by a superscript ◦) if it is never used in the whole

corpus, i.e. nk(.)(.) = 0 even if
∑
c b

(k)
c > 0, and active otherwise. Inactive top-

ics have an ordering of decreasing stick lengths: P (π◦
k|π

◦
k−1, zk:k>K† = 0) ∝

exp(
N∑

i=1

1
i
(1− π◦

k)
i)π◦

k(1− π◦
k).I(0 ≤ π◦

k ≤ π◦
k−1), where K

† is an index such that

all active topics have index k < K†. Stick parameters for the inactive topics are
sampled using the above equation by adaptive rejection sampling1 [7]. For active
topics we sample the stick parameters π•

k underlying the IBP matrix by semi or-

dered stick breaking [8]: p(π•
k|B) ∼ Beta(

C∑

c=1
b
(k)
c , 1+C−

C∑

c=1
b
(k)
c ). Even though

topic assignments can be sampled while integrating over the binary IBP matrix,
the IBP matrix is still required here for sampling the stick parameters for the
active topics. The current value of the IBP matrix is reinstantiated according to

1Multiple samples were generated and an average was used to get a better approximation.



p(b
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(k)
c = 1. The masking

vector ψc is initialized by a similar equation as the IBP matrix by interchanging

b
(k)
c with ψ(k)

c and πk with ǫ.

Lastly, for the topic strength parameters, the joint probability of φ
(k)
c and

total number of counts assigned to topic k is p(φ
(k)
c , n

(k)
c |γ(k), b
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We use Metropolis-Hastings to compute the posterior, and sample γ(k) in a

similar manner from the joint posterior for γ(k) and φ
(k)
(.) .

3 Empirical results

We compare our model to the nearest method Hierarchical Dirichlet Process
based multi-task learning (MT-HDPLDA).

Experiment 1: Continuum of problem domains. We expect our model
to perform well in the case of multi-task problems where both overall strong
and non-strong topics are shared; we build a continuum of multi-task problem
domains where this situation occurs. At either end of the continuum, data is
generated from a model where shared topics are strong (generate many words
overall); the left end is a simpler case where both models can work well, and the
right end is a complicated case especially suitable for MT-HDPLDA. Interesting
domains lie between the two ends: in these intermediate domains, the topic
generation mechanisms from either end are mixed together linearly, yielding
small shared topics from both generators. We create nine domains across the
continuum, identified by the mixing coefficient (0 to 1) between the generators.

Each problem domain is a multi-task scenario where each learning problem
has 10 tasks (data sets). We use the setting where one task is more interesting
than others; the interesting task has 24 documents with 8 words each, other
tasks have 8 documents with 8 words each, all generated from 10 topics with a
vocabulary of 150 words. We generate 10 such learning problems in each domain
and run our method and MT-HDPLDA on each problem (for sampling, we use
1500 iterations initial burnin, then draw 100 samples 15 iterations apart); results
are evaluated by predictive likelihood on held-out documents from the interesting
task.Figure 2(left) shows that in the intermediate domains where weak topics
are shared in the interesting task, we outperform MT-HDPLDA.

Experiment 2: NIPS data. We take the five most frequent sections of
NIPS articles from 1987 to 1999 (http://www.gatsby.ucl.ac.uk/∼ywteh); in total
they contain 1147 documents with vocabulary size 1321 and average document
length ∼ 950 words. The most frequent group is ”Algorithms and Architecture”,
which we choose as the interesting task. We run our model, MT-HDPLDA and
single-task HDP as a baseline; we follow [5] for MT-HDPLDA, set η = 0.5 in both
models, and α = 5 and γ ∼ Gamma(5, 0.1) for ours; for sampling we initialize
the Gibbs samplers randomly, take 1000 burn-in iterations, and then draw a total



of 10 samples 50 iterations apart. We learn models for different sizes of training
data in the interesting task (5-40 documents) with 50 documents in each other
task, and use 5-fold cross-validation in each case. Results are again evaluated
by average predictive log-likelihood of held-out documents from the interesting
task. Figure 2(right) shows the results: single-task learning naturally works
poorly, and our model outperforms MT-HDPLDA in the challenging scenarios
where training data is small and hence multi-task learning is most needed.
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Fig. 2: Experiment results. Left: test set predictive likelihoods for simulated
data continuum, error bars are over 10 random datasets. Right: test set predic-
tive likelihoods for NIPS articles, error bars are over 5 folds.

4 Conclusions

We have introduced a sparse multi-task topic model that is a robust and flexible
method to model sharing of strong and weak topics in multiple tasks. The
proposed non-parametric model outperforms a state of the art HDP based topic
model on a simulated data continuum and on real data with small training sets.
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