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Abstract

With data from recent large-scale drug sensitivity measurement campaigns, it is

now possible to build and test models predicting responses for more than one hundred

anti-cancer drugs against several hundreds of human cancer cell lines. Traditional quan-

titative structure-activity relationship (QSAR) approaches focus on small molecules in

searching for their structural properties predictive of the biological activity in a single

cell line or a single tissue type. We extend this line of research in two directions: (1) an

integrative QSAR approach, predicting the responses to new drugs for a panel of mul-

tiple known cancer cell lines simultaneously, and (2) a personalized QSAR approach,

predicting the responses to new drugs for new cancer cell lines. To solve the modeling

task, we apply a novel kernelized Bayesian matrix factorization method. For maxi-

mum applicability and predictive performance, the method optionally utilizes genomic

features of cell lines and target information of drugs in addition to chemical drug de-

scriptors. In a case study with 116 anti-cancer drugs and 650 cell lines we demonstrate

the usefulness of the method in several relevant prediction scenarios, differing in the

amount of available information, and analyze the importance of various types of drug

features for the response prediction. Furthermore, after predicting the missing values

of the data set, a complete global map of drug response is explored to assess treatment

potential and treatment range of therapeutically interesting anti-cancer drugs.
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Introduction

Several recent large-scale high-throughput screening efforts provide drug sensitivity measure-

ments for a whole panel of human cancer cell lines and dozens of drugs. So far, these data

have been used in search for dependencies between genomic features and drug responses,

addressing the personalized medicine task.

The core computational problem of personalized medicine is the following: given genomic

features of the cell lines and their sensitivity measurements from an a priori fixed set of

drugs, predict sensitivity of a new cell line to these drugs. In other words the corresponding

computational models are devised to generalize across cell lines (Figure 1A). In personalized

medicine research, a variety of features have been studied for genomic characterization of

cell lines. These features include gene expression, copy number variation and mutational

status of the cell lines. For model learning, several statistical methods have been applied,

most commonly multivariate linear regression (using LASSO and elastic net regularizations)

and non-linear regression (e.g., neural networks, kernel methods).1–5

On the other hand, quantitative structure-activity relationship (QSAR) methods investigate

structural properties of drug molecules regarding their effects on the drug’s biological activ-

ity, for an a priori fixed set of target cells.6 The resulting computational models can be used

for predicting the activity of drug compounds outside the data set, i.e., they have been de-

signed to generalize across drugs. (Figure 1B). Statistical methods for learning such models

are described in the next paragraph. Our work focuses on QSAR analysis of cancer drugs

and extends the traditional QSAR approach in two directions: (1) an integrative QSAR

approach: the responses to new drugs are predicted for a panel of representative cancer cell

lines simultaneously, and (2) a personalized QSAR approach: responses to both new and

established drugs are predicted for new cancer cell lines. The latter extension is developed

with the motivation to eventually be applied to primary cancer cell lines. Both extensions

are tested thoroughly using the data from the Sanger Genomics of Drug Sensitivity in Cancer

project.1,7
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Two lines of research are crucial in the QSAR field: the development of suitable descrip-

tors capturing chemical and physical properties of drug molecules, and the development of

statistical methods to learn prediction models. The available descriptors range from 2D

fingerprints to spatial features and physiochemical properties.6,8,9 This paper contributes

to the second line, development of statistical methods, aiming at models that relate the

descriptors to biological activity. Previous work includes linear methods (e.g., multivariate

linear regression, partial least squares PLS, principal component regression PCR) as well

as non-linear methods (kernel methods, neural networks). In the specific problem of QSAR

analysis for cancer drugs, multivariate linear regression, PLS, PCR, kernel methods and neu-

ral network type methods have been widely applied. Linear approaches are most prominent

in QSAR analysis.6,8 Multivariate linear regression has been used in numerous studies,10–12

including analysis of anti-proliferative activity of compounds in human cancer cells.13 A ma-

jor challenge in the analysis is that structural descriptors can be highly correlated and the

number of descriptors is large, often exceeding the number of chemical compounds available

for training. There exist several ways to deal with these problems. A frequent solution

is to combine linear regression with feature selection techniques.14–16 In addition, sparsity

of linear regression models can be enforced by employing LASSO or elastic net regulariza-

tion.11 Another common strategy is principal component regression (PCR),6 which consists

of a two-step procedure. In the first step, the top principal components of the descriptor

data are computed to obtain a low-dimensional data representation by linear combinations

of the original descriptors. This representation is used in the second step as input to the

regression model. The main idea of partial least squares (PLS) is similar to that of PCR.

However, PLS additionally exploits the output values to construct the linear combinations

of the descriptors. PLS has been introduced to the QSAR field with Comparative Molecular

Field Analysis (CoMFA)17 and has been highly popular ever since.8,18 Also PLS methods for

multivariate output values have been used for QSAR studies18. In cancer analysis, PLS has

been applied to connect compound activity to genomic properties of cells19. Beyond the lin-
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ear methods, nonlinear QSAR analysis has been studied. One approach is kernel regression.

For example, Yamanishi et al.20 predicted drug side effects from the chemical structure and

the target information of drugs using multiple kernel regression. An alternative approach

for nonlinear QSAR analysis are neural networks21. Sutherland et al.22 compared a neural

network-based QSAR model with other commonly known QSAR methods using benchmark

data sets. Their study reported that neural networks are equally or more predictive than PLS

models, when used with a basic set of 1D and 2D descriptors. However, with the availability

of high-dimensional data, the feasibility of simpler models such as traditional neural networks

depends on appropriate pre-selection of features to reduce the dimensionality of the data.

Recently, deep learning methods utilizing high-dimensional data have been studied for gen-

eral QSAR problems in chemoinformatics. Lusci et al.23 demonstrated a recursive approach

for modeling deep architectures for the prediction of molecular properties, and illustrate the

usefulness of their approach on the problem of predicting aqueous solubility. The method

proposed in this paper is also applicable to the general QSAR problem in chemoinformatics

and is fully equipped to deal with high dimensionality of the data.
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Figure 1: Two complementary approaches of exploiting high-throughput drug screening data
from cancer cell lines: A. Personalized medicine approach (generalization across cell lines):
given genomic properties of a cell line, predict the cell line’s responses to a fixed set of drugs.
B. QSAR approach (generalization across drugs): given chemical and structural properties of
a drug, predict the response of this drug in a fixed set of cell lines. Each approach consists of
two different steps. The first step is to learn a model that describes the relationship between
drug responses and genomic (or chemical) properties. In the second step the model is used
to make predictions for new data with unknown response values. Methods to learn these
models are described in the main text. This paper extends the approach B, see Figure 2.
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We present a novel matrix factorization method to address the task of QSAR analysis

in cancer. The method goes beyond the existing work in this application field in two main

aspects (Figure 2). First, multiple cancer cell lines are integrated into one model, instead

of building separate models for individual cell types13,24 or averaging across the cancer cell

lines25. This results in an integrative QSAR prediction, i.e., the columns of the drug response

matrix in Figure 2 are predicted together (not one by one independently), making it possible

to utilize their commonalities. Second, the model utilizes biological information not only

in the form of known targets as additional drug features, but also in the form of genomic

profiles of the cell lines. This allows us to also make predictions for untested drugs on new

cell lines (i.e., cell lines outside the training set). This can be viewed as personalized QSAR

prediction, which has not been addressed earlier and is a new research problem (Figure 2).

Technically, the method we propose for this task can be regarded as a type of general-

ized “recommender system”, incorporating both side information on drugs (corresponding to

items) and side information on cell lines (corresponding to users). In previous work, matrix

factorization-based collaborative filtering, a popular approach in product recommendation

that does not use any side information, proved useful for predicting missing values of com-

pound activity in multiple cell lines26. Generalizing the matrix factorization to include side

information on both sides allows maximum flexibility in the various prediction scenarios. In

recommender system terminology, the integrative QSAR prediction corresponds to making

recommendations for the use of untested, cold-start compounds across the different cancer

types, whereas the personalized QSAR prediction considers cold-start compounds in combi-

nation with a cold-start cell line. Our recommender system is based on Kernelized Bayesian

Matrix Factorization method (KBMF), which was originally introduced for drug-protein in-

teraction analysis27 and has been extended to use multiple types of side information28. We

present a case study on drug response data from the Wellcome Trust Sanger Institute7. As

side information for drugs we use 1D, 2D, and 3D descriptors as well as protein targets. The

side information for cell lines includes gene expression, copy number variation, and muta-
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Figure 2: Extended QSAR analysis approach for cancer drug response prediction proposed
in this work. Traditional QSAR analysis predicts efficacies of new cancer drugs from drug
properties (Figure 1B). The proposed approach additionally integrates side information on
the cell lines for which drug responses are predicted; here, the side information consists of
genomic characteristics of the cell lines. With this approach, two new tasks can be performed:
(1) integrative QSAR analysis: predicting drug efficacy for multiple cell lines simultaneously
and (2) personalized QSAR analysis: predicting drug efficacy for a new cell line. In the
figure, each block represents a data matrix. The matrix of drug response values has one row
per drug and one column per cell line. The side information for drugs is given by a set of
matrices, each of which represents the drugs as rows and drug features of a specific type as
columns. Here, five drug feature types are considered: biological targets, fingerprints, 1&2D
descriptors, Vsurf and GRIND/GRIND2. The contents of these data matrices are binary or
quantitative values characterizing a specific drug with respect to the specific features. The
side information matrix for cell lines contains cell lines as columns and genomic features as
rows (GE: gene expression, CNV: copy number variation and Mut: cancer gene mutations),
only one block is shown to save space.

tion data. The method learns an importance weight for each data type and is implemented

as a Bayesian model, solving the extended QSAR problem by probabilistic modeling. The

kernel-based formulation allows for nonlinear relationships in the QSAR analysis.
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Materials and Methods

Kernelized Bayesian Matrix Factorization (KBMF)

Drugs and cell lines are assumed to come from two domains X and Z, respectively. We

assume two samples of independent and identically distributed training instances from each

domain, denoted by X = {xi ∈ X}Nx

i=1 and Z = {zj ∈ Z}Nz

j=1. For calculating similarities,

we use multiple kernel functions for each domain, namely, {kx,m : X × X → R}Px

m=1 and

{kz,n : Z × Z → R}Pz

n=1. The set of kernels may correspond to different notions of similarity

on the same feature representation or may use information coming from multiple feature

representations (i.e., views). The (i, j)th entry of the output matrix Y ∈ RNx×Nz gives the

drug response measurement between drug xi and cell line zj.

Figure 3 illustrates the method we use; it is composed of three main parts included in

one unified model: (a) kernel-based nonlinear dimensionality reduction, (b) multiple kernel

learning, and (c) matrix factorization. First, we briefly explain each part and introduce the

notation. We then formulate a probabilistic model and derive a variational approximation

for learning and predictions.

Kernel-Based Nonlinear Dimensionality Reduction. This part performs feature

extraction using the input kernel matrices {Kx,m ∈ RNx×Nx}Px

m=1 and a common projection

matrix Ax ∈ RNx×R, where R is the resulting subspace dimensionality. The projection gives

kernel-specific components {Gx,m = A>xKx,m}Px

m=1. The main idea is very similar to kernel

principal component analysis or kernel Fisher discriminant analysis, where the columns of

the projection matrix can be solved with eigen decompositions29. However, this solution

strategy is not possible for the more complex model formulated here.

Having a shared projection matrix across the kernels has two main implications: (i) The

number of model parameters is much lower than if we had a separate projection matrix for

each kernel, leading to more regularization. (ii) We can combine the kernels with multiple

kernel learning as explained in the following.
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Figure 3: Flowchart of kernelized matrix factorization with multiple kernel learning. From
each of the side information data types for drugs illustrated in Figure 2, a pairwise similarity
matrix (kernel) between all the drugs in the training data set is computed (KX,1...KX,PX

;
left border of image). The model produces a low-dimensional representation of drugs
GX,1...GX,PX

, obtained from each kernel utilizing a common projection matrix AX (kernel-
based nonlinear dimensionality reduction, see text). A weighted combination of the matrices
GX,1...GX,PX

parameterized by the weight vector eX (one weight coefficient per kernel) yields
the composite component matrix HX (multiple kernel learning, see text). In the same way, a
composite component matrix HZ is obtained from kernels between cell lines, depicted on the
right half of the figure. The output matrix Y (here, containing drug responses) is calculated
as a matrix product of HX and HZ (matrix factorization, see text). The grey shaded nodes
are given by the training data, the green nodes are the parameters to be learned, and the
blue nodes are the latent representations used by the model. See main text for more details.

Multiple Kernel Learning. This part is responsible for combining the kernel-specific

(i.e., view-specific) components linearly to obtain the composite components

Hx =
∑Px

m=1 ex,mGx,m, where the kernel weights can take arbitrary values ex ∈ RPx . The

multiple kernel learning property of this formulation can easily be seen from the following

equivalence:

Px∑
m=1

ex,m (A>xKx,m)︸ ︷︷ ︸
Gx,m

= A>x

(
Px∑
m=1

ex,mKx,m

)
︸ ︷︷ ︸
combined kernel

where we need to have a shared projection matrix to obtain a valid linear combination of

the kernels.

Matrix Factorization. In this part, the low-dimensional representations of objects in

the unified subspace, namely, Hx and Hz, are used to calculate the output matrix Y = H>x Hz.
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Figure 4: Graphical model of Kernelized Bayesian Matrix Factorization (KBMF) with mul-
tiple kernel learning. The figure demonstrates the latent variables with their priors. In
particular, Λ(.) denotes the matrices of priors for the entries of the projection matrices A(.).
η(.,.) represents vectors of priors for the kernel weights e(.,.). See text for more details on
distributional assumptions.

This corresponds to factorizing the outputs into two low-rank matrices.

Kernelized Bayesian Matrix Factorization (KBMF) is a probabilistic model formulated

to solve this prediction task. It has two key properties that enable us to perform efficient

inference: (i) The kernel-specific and composite components are modeled explicitly by intro-

ducing them as latent variables. (ii) Kernel weights are assumed to be normally distributed

without enforcing any constraints (e.g., non-negativity) on them.

Figure 4 shows the graphical model of KBMF with the latent variables and their pri-

ors. There are some additions to the notation described earlier: The Nx × R and Nz × R

matrices of priors for the entries of the projection matrices Ax and Az are denoted by Λx

and Λz, respectively. The Px × 1 and Pz × 1 vectors of priors for the kernel weights ex and

ez are denoted by ηx and ηz, respectively. The standard deviations for the kernel-specific

components, composite components, and target outputs are σg, σh, and σy, respectively;

these hyperparameters are not shown for clarity.

Next we specify the distributional assumptions of the model. The central assumptions

are normal distribution of the noise, and the dependencies shown in Figure 4; the other

assumptions are technical details made for analytical and computational convenience, and

can be replaced if needed. As the goal is to predict, these assumptions ultimately become
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validated by prediction performances on the test data, see Results section. In the equations

matrices are denoted by capital letters, with the subscript x or z indicating the data domain

(drugs or cells, respectively); matrix entries are denoted by non-capital letters, with the row

index as superscript and the column index as the last subscript (i.e., aix,s denotes the entry

at (row i, column s) of matrix Ax).

The distributional assumptions of the dimensionality reduction part are

λix,s ∼ G(λix,s;αλ, βλ) ∀(i, s)

aix,s|λix,s ∼ N (aix,s; 0, (λix,s)
−1) ∀(i, s)

gsx,m,i|ax,s, kx,m,i ∼ N (gsx,m,i; a
>
x,skx,m,i, σ

2
g) ∀(m, s, i),

where N (·;µ,Σ) is the normal distribution with mean vector µ (here scalar) and covariance

matrix Σ (here scalar), and G(·;α, β) denotes the gamma distribution with shape parameter

α and scale parameter β. The multiple kernel learning part has the following distributional

assumptions:

ηx,m ∼ G(ηx,m;αη, βη) ∀m

ex,m|ηx,m ∼ N (ex,m; 0, η−1x,m) ∀m

hsx,i|{ex,m, gsx,m,i}Px

m=1 ∼ N

(
hsx,i;

Px∑
m=1

ex,mg
s
x,m,i, σ

2
h

)
∀(s, i),

where kernel-level sparsity can be tuned by changing the hyperparameters (αη, βη). Setting

the gamma priors to induce sparsity, e.g., (αη, βη) = (0.001, 1000), produces results analo-

gous to using the `1-norm on the kernel weights, whereas using uninformative priors, e.g.,

(αη, βη) = (1, 1), resembles using the `2-norm. The matrix factorization part calculates the

target outputs using the inner products between the low-dimensional representations of the
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object pairs:

yij|hx,i, hz,j ∼ N (yij;h
>
x,ihz,j, σ

2
y) ∀(i, j) ∈ I,

where I is the index set that contains the indices of observed entries in Y .

Exact inference for the model is intractable, and among the two readily available approx-

imative alternatives, Gibbs sampling and variational approximation, we choose the latter for

computational efficiency28. Variational methods optimize a lower bound on the marginal

likelihood, which involves a factorized approximation of the posterior, to find the joint pa-

rameter distribution30.

The source code of the method is available as a Matlab package at http://research.

ics.aalto.fi/mi/software/kbmf/ .

Benchmark QSAR Data sets

A total of eight standard QSAR data sets were used in the benchmark study22. The data sets

include (1) angiotensin converting enzyme inhibitors (ACE data set), (2) acetylcholinesterase

inhibitors (AchE), (3) benzodiazepine receptor ligands (BZR), (4) cyclooxygenase-2 in-

hibitors (COX2), (5) dihydrofolate reductase inhibitors (DHFR), (6) inhibitors of glycogen

phosphorylase b (GPB), (7) thermolysin inhibitors (THER), and (8) thrombin inhibitors

(THR). The details on these data sets including the number of compounds and the utilized

2.5D descriptors are presented in Table-S1 under the given acronyms (see Supporting In-

formation). The data sets were downloaded from the supplementary material provided by

Sutherland et al.22.

Drug Response Data

We used the data from the Genomics of Drug Sensitivity in Cancer project1,7 by Wellcome

Trust Sanger Institute (version release 2.0 July 2012) consisting of 138 drugs and a panel of
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790 cancer cell lines. Drug sensitivity measurements were summarized by log-transformed

IC50 values (the drug concentration yielding 50% response, given as natural log of µM).

In addition, cell lines were characterized by a set of genomic features. We selected the

650 cell lines for which both drug response data and complete genomic characterization were

available. Furthermore, we focused on the 116 drugs for which SDF or MDL format (encoding

the chemical structure of the drugs) were available from the NCBI PubChem Repository,31

to be able to compute chemical drug descriptors. The resulting drug response matrix of 116

drugs by 650 cell lines has 75,400 entries, out of which 19,781 (26%) are missing. The used

data and value range were chosen to be consistent with earlier publications1,4.

Drug Features

As the KBMF model can incorporate multiple types of side information, we computed sev-

eral types of chemical descriptors for the drugs. First we computed PubChem finger print

descriptors using the PaDEL software32,33(v2.17, downloaded from the project website),

capturing occurrence of fragments in the 2D structure. In addition we calculated the 1&2D

descriptors available in PaDEL software, using default settings. The 1D descriptors are

summaries of compositional or constitutional molecular properties, e.g., atom count, bond

count, and molecular weight. The 2D descriptors encode different quantitative properties of

the topology32,33. Lastly we considered two types of 3D descriptors focusing on spatial and

physiochemical properties of the drugs, namely Vsurf and GRIND/GRIND2. The 2D struc-

tures were converted into 3D structures using the LigPrep module of the Schrödinger Maestro

software package (Version 2.5, Schrödinger, LLC, New York, NY, 2012). A few inorganic

substances were not successfully converted due to missing molecular parameters. A full set

of Vsurf descriptors was calculated from the 3D molecular database using Molecular Oper-

ating Environment software (MOE, Version 2012.10)34. Vsurf descriptors are generally used

to describe the molecular size and the shape of hydrophilic and hydrophobic regions. The

Pentacle software (version 1.0.6. Molecular Discovery Ltd. 215 Marsh Road, Pinner, Mid-
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dlesex, UK) was applied to calculate GRIND and GRIND2 descriptors35–37. First, 3D maps

of interaction energies between the molecule and chemical probes were calculated. Second,

these 3D interaction maps were further converted into GRIND and GRIND2 descriptors,

which do not require alignment of compounds. In a preprocessing step, we removed all fea-

tures with constant values across all drugs, obtaining the final set of features for each type

listed in Table S-3 (Supporting Information). In addition to these chemical and structural

descriptors, we obtained drug target information from the Genomics of Drug Sensitivity in

Cancer project7 and encoded it as a binary drug versus target matrix. In addition to indi-

vidual target proteins, target families and effector pathways were included. For each type of

drug features, a kernel matrix was computed, containing pairwise similarities of drugs with

respect to the specific feature type. For the binary features (targets and finger prints), the

Jaccard coefficient was used; for all other feature types a Gaussian kernel was computed.

Cell Line Features

Three types of genomic profiles were included in the Genomics of Drug Sensitivity in Cancer

project1 to characterize the cell lines: gene expression, copy number and mutation profiles.

Gene expression profiles quantize the transcript levels of genes, whereas copy number pro-

files measure the amplification or deletion of genes in the DNA, and mutation profiles state

changes in the sequence of a gene. While the gene expression and copy number profiles

are genome-wide, the mutation data focus on cancer gene mutations and relate to somatic

mutations frequently occurring in tumours. In the Genomics of Drug Sensitivity in Can-

cer project1, the gene expression measurements were made using HT-HGU122A Affymetrix

whole genome array, copy number variants were obtained through SNP6.0 microarrays, and

cancer gene mutations were determined using the capillary sequencing technique. We in-

cluded all three data types in our analysis, using the same data as the elastic net analysis in

the pilot study, accessible from Genomics of Drug Sensitivity in Cancer project’s website7.

Analogously to the preprocessing of drug features, we removed the features with constant
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values across all cell lines. The number of features for each type is given in Supporting

Information, Table S-4. To obtain a kernel representation, the Jaccard similarity coefficient

was used for mutation data and Gaussian kernels for gene expression and copy number data.

Results and Discussion

Performance Evaluation on Benchmark QSAR Data sets

We started by verifying that in the standard QSAR task, where the new approaches do not

have a competitive advantage, the performance of the new KBMF method was comparable

to state-of-the-art QSAR methods. We evaluated the methods using the eight benchmark

data sets with training data, test data and descriptors provided by Sutherland et al.22 in

their comparison study. During training, a nested cross-validation experiment was performed

to select the optimal number of components for KBMF, which was subsequently used for

predictions on the test set. Details can be found in Supporting Information (Text, Table

S-2). Table 1 lists the performance on the test sets, using the same evaluation criteria

as reported in the earlier benchmark experiment22, coefficient of determination (R2
test) and

standard error of predictions (stest). Additionally, we provide error statistics for KBMF.

Regarding the summary performance measures, the KBMF method achieves the best results

among all methods in five out of eight data sets, showing that KBMF performance matches

the state of the art. Like the other methods, KBMF achieves the best prediction performance

for the data sets ACE and DFHR, and in both cases it has better performance values than

the other methods. For the BZR data set, KBMF and GFA-l have comparable performance,

following NN and NN-ens. Sutherland et al.22 reported the presence of outlier compounds in

this data set. Removing outliers as described there, the R2
test and stest improved to 0.49 and

0.67, respectively, outperforming NN and NN-ens. In the THER data set, the performance

of KBMF is comparable to PLS but lower than for the remaining methods. One potential

reason for the better performance of the other methods on this specific data set is that
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they pre-select relevant features. Feature selection is necessary for the feasibility of GFA

and traditional NN type of models, whereas deep and recursive NN, PLS and KBMF can

operate on the full data with high dimensionality. It is plausible that performance of KBMF

could also improve with suitable feature selection but this investigation is left to future work.

Table 1: KBMF test set performance comparison against state-of-the-art QSAR methods
using benchmark QSAR data sets. Performance indicators of Partial Least Squares (PLS),
Genetics Function Approximation (GFA), GFA with linear terms (GFA-l), GFA ensemble
models with linear terms (GFA-l-ens), GFA with nonlinear terms (GFA-nl), GFA ensemble
models with nonlinear terms (GFA-nl-ens), PLS models with descriptor selection via GFA
(GPLS), ensemble of PLS models with descriptor selection via GFA (GPLS-ens), Neural
Networks (NN), and ensemble of Neural Network models (NN-ens) were taken from the
work by Sutherland et al.22 their Table 5. The KBMF method used the same training and
test sets as the others. The best result for each data set is marked in bold. Additionally, we
provide the pooled mean squared error with standard error of the mean (SEM) and standard
deviation (in brackets). For the comparison methods detailed statistics are not available and
we computed only MSE from the stest value.

Data set KBMF PLS GFA-l GFA-l-ens GFA-nl GFA-nl-ens GPLS GPLS-ens NN NN-ens
ACE R2

test 0.57 0.51 0.49 0.50 0.39 0.32 0.45 0.43 0.39 0.51
stest 1.40 1.50 1.53 1.51 1.68 1.77 1.60 1.62 1.68 1.51

MSE±SEM (std) 1.12±0.42 (1.58) 2.22 2.31 2.25 2.80 3.11 2.53 2.60 2.80 2.25
AchE R2

test 0.31 0.16 0.16 0.22 0.29 0.40 0.13 0.14 -0.04 0.21
stest 1.10 1.20 1.20 1.15 1.10 1.01 1.22 1.21 1.34 1.16

MSE±SEM (std) 1.16±0.26 (1.63) 1.41 1.41 1.30 1.18 0.99 1.46 1.44 1.77 1.32
BZR R2

test 0.22 0.20 0.22 0.21 0.20 0.20 0.20 0.18 0.39 0.34
stest 0.86 0.87 0.86 0.86 0.87 0.87 0.87 0.88 0.76 0.79

MSE±SEM (std) 0.68±0.17 (1.18) 0.74 0.72 0.72 0.74 0.74 0.74 0.75 0.56 0.60
COX2 R2

test 0.33 0.27 0.28 0.25 0.12 0.13 0.28 0.26 0.31 0.32
stest 1.20 1.25 1.24 1.27 1.37 1.37 1.24 1.26 1.22 1.21

MSE±SEM (std) 1.13±0.24 (2.34) 1.55 1.53 1.60 1.87 1.87 1.53 1.58 1.48 1.45
DHFR R2

test 0.57 0.49 0.46 0.48 0.50 0.53 0.49 0.53 0.42 0.54
stest 0.91 0.99 1.01 1.00 0.98 0.95 0.99 0.94 1.05 0.94

MSE±SEM (std) 0.84±0.11 (1.19) 0.97 1.01 0.99 0.95 0.89 0.97 0.88 1.09 0.88
GPB R2

test 0.42 0.04 -0.02 0.15 -0.08 0.14 0.04 0.01 0.28 0.25
stest 0.94 1.20 1.25 1.14 1.28 1.14 1.21 1.23 1.05 1.07

MSE±SEM (std) 0.86±0.26 (1.22) 1.39 1.52 1.25 1.59 1.25 1.42 1.47 1.06 1.10
THER R2

test 0.07 0.07 0.20 0.30 0.16 0.21 0.33 0.33 0.16 0.19
stest 2.20 2.24 2.08 1.95 2.13 2.07 1.91 1.90 2.13 2.10

MSE±SEM (std) 4.97±0.45 (2.24) 4.98 4.29 3.76 4.50 4.24 3.61 3.57 4.50 4.37
THR R2

test 0.36 0.28 0.13 0.27 0.11 0.12 0.11 0.16 0.26 0.23
stest 0.91 0.96 1.06 0.97 1.07 1.07 1.08 1.04 0.98 1.00

MSE±SEM (std) 0.80±0.24 (1.27) 0.89 1.09 0.91 1.11 1.11 1.13 1.05 0.93 0.97

Integrative QSAR Prediction of Drug Responses across Multiple

Cancer Cell lines

We next present an integrative QSAR analysis on the drug response data from the “Genomics

of Drug Sensitivity in Cancer” (GDSC) project7. Unlike the benchmark QSAR applications,
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which have a single output variable, the drug sensitivity study investigates the efficacy of

compounds across a set of different cell lines and cancer types. Rather than looking at

each cell line one by one, a natural extension of QSAR analysis considers all cell lines

simultaneously in one unified model, which is implemented by the KBMF method. We

utilized 1D, 2D, and 3D drug descriptors for predicting the response of left-out drugs (eight-

fold cross validation). The number of components in the KBMF method was fixed to 45 for all

experiments on the GDSC data, which corresponds to a dimensionality reduction of about

sixty percent relative to the smaller dimension of the response matrix (here, the number

of drugs). Three different evaluation measures are reported on the test data: (1) the mean

squared error (MSE), (2) the coefficient of determination R2 and (3) Pearson correlation RP .

We complement the MSE value with estimates of standard errors and standard deviations.

The cross-validation statistics for these evaluation measures can be found in the Supporting

Information (Table S-5).

Improved Performance by Incorporating Biological Information

In addition to the 1D, 2D, and 3D chemical and structural descriptors of drugs, we incorpo-

rated biological features into the model, in the form of (1) target information for the drugs

and (2) genomic properties of cell lines, both provided by the “Genomics of Drug Sensitivity

in Cancer” project7. Neither of the two types of biological feature information is used in

traditional QSAR approaches. We note that integrating the target information is easy in all

QSAR approaches. However, simultaneous integration of genomic information has not been

reported with any state-of-the-art QSAR methods for this prediction task. Our analysis

shows that providing biological information to the model increases the prediction perfor-

mance (see Table 2, and Supporting Information Table S-5 for cross-validation statistics).

The predictive performance of the method KBMFDD+TR+CF is significantly higher than the

other methods with a p-value < 0.01 (Supporting Information Tables S6 and S7). In terms

of absolute performance, R2 and Rp are at moderate levels but significantly better than
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Table 2: Predicting responses to new drugs for a panel of known cell lines, applying KBMF
with different feature sets. MSE values with standard error of the mean (SEM) and standard
deviations (in brackets) are shown. The subscript denotes the combination of feature types
used in each of the experiments: DD=Drug Descriptors, TR=Targets, CF=Cell Features.
The best result for each performance measure is marked in bold. The results indicate that
biological features improve drug response prediction. Biological features can be either target
information or genomic measurement data (neither are used in traditional QSAR analysis,
but the former is easy to integrate into existing QSAR approaches).

Method MSE±SEM (std) R2 Rp

KBMFDD 0.83±0.0053 (1.24) 0.21 0.47
KBMFDD+TR 0.72±0.0045 (1.07) 0.31 0.56
KBMFDD+CF 0.80±0.0051 (1.21) 0.23 0.49
KBMFDD+TR+CF 0.69±0.0043 (1.01) 0.32 0.57
Baseline1 (cell line-wise mean prediction) 1.03±0.0061 (1.50) 0.00 0.03
Baseline2 (overall mean prediction) 1.04±0.0064 (1.52) 0.00 0.10

baseline methods that take the mean of the training data as the prediction for a new drug

(Baseline1: cell line-specific mean, Baseline2: overall mean). Therefore, we can conclude

that KBMF is appropriate to address the novel and challenging task of predicting responses

to new drugs for a panel of cell lines.
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Relative Importance of Individual Drug Descriptor Types for Predicting Drug

Responses

We investigated the contribution of each drug feature type to the task of predicting responses

for test drugs left out from the training data. KBMF learns relevance weights ex,m for

the different feature types. Figure 5 shows the average relevance weights across the eight

models from cross-validation. The target information obtained the largest weight and the

GRIND/GRIND2 descriptors the lowest weight. Remarkably, the relative ranking of feature

types is conserved in all eight models (see Supporting Information, Figure S-1), indicating

robustness of this relevance ordering. To analyze whether already a subset of feature types

gives sufficient predictive power, we tested the performance of different combinations, adding

feature types in the order of their learned weights (Table 3). While target information alone

already achieves a considerable fraction of the overall performance, further performance gains

are achieved by adding the other feature types, with the best result being obtained by the

combination of all feature types (see Table 3, and Supporting Information Table S-8 for

cross-validation statistics). Even though, the differences in performances are quite small,

the predictive performance obtained by the combination of all feature types is found to be

significantly higher than the others with a p-value < 0.01 (Supporting Information Tables

S-9 and S-10).

Table 3: Prediction results with different combinations of feature types. MSE values with
standard error of the mean (SEM) and standard deviations (in brackets) are shown. Inte-
gration of all drug feature types gives the best result.

Feature Type MSE±SEM (std) R2 Rp

Targets 0.71±0.0048 (1.13) 0.30 0.55
Targets and fingerprints 0.73±0.0045 (1.07) 0.30 0.56
Targets, fingerprints and 1&2D 0.72±0.0045 (1.06) 0.31 0.56
Targets, fingerprints, 1&2D and Vsurf 0.72±0.0045 (1.06) 0.31 0.56
Targets, fingerprints, 1&2D, Vsurf and GRIND/GRIND2 0.69±0.0043 (1.01) 0.32 0.57
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Figure 5: Relevance weights learned by the KBMF method for the different drug feature
types, averaged across the eight models from the cross-validation experiment. The ranking
of feature types is conserved in the individual models (Figure S-1 Supporting Information).

A Global Map of Drug Responses in Cancer

We will next discuss the global map of drug response in cancer, produced by predicting miss-

ing values from the data. In the observed data, 26% of the measurements are missing, and

we used KBMF to predict these missing values. We will begin by validating the performance

of the method on missing value prediction, and then, for more detailed analysis we pick a set

of therapeutically interesting drugs with reliable predictions. Therapeutic interestingness of

the drugs is judged based on the selectivity of responses, and reliability was estimated by

cross-validation on the existing measurements.

Performance on Missing Value Prediction

Up to now in this paper, we have investigated performances in predicting responses to

previously unseen drugs. In practice, also the following prediction task is relevant: given

response measurements for a drug in a subset of cell lines, predict drug responses on the

remaining cell lines. In the context of recommender systems, this is called a warm-start

prediction task because it can use partially known response values. We tested two warm-

start prediction scenarios. In the blockwise approach, the same set of cell lines is missing for
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all drugs in the set of test drugs, whereas in the entrywise approach scattered drug-cell line

combinations are predicted (Table 4, and Supporting Information Table S-11). In both cases

the prediction performance is much better than when response values to the test drug are

unknown for all cell lines (cf. Table 2). That is, the method is able to exploit the additional

available information to improve predictions. For our further analysis in the next section,

we consider on the drugs based on the reliability of their predictions, as measured by MSE,

focusing on the drugs with lower-than-average MSE in the entrywise prediction benchmark

experiment.

Table 4: Performance on missing entry prediction (a warm-start prediction task) using the
KBMF method. Two different variants of the task are evaluated, predicting entries of a
missing block (blockwise) and predicting scattered entries (entrywise). MSE values with
standard error of the mean (SEM) and standard deviations (in brackets) are shown. Com-
paring to Table 2, note the additional performance gain when including known sensitivity
measurements of the test drug on some cell lines into the model (and predicting for the
remaining cell lines).

Method MSE±SEM (std) R2 Rp

KBMFblockwise 0.26±0.0020 (0.47) 0.74 0.86
KBMFentrywise 0.21±0.0016 (0.37) 0.78 0.89

Insights from Novel Predictions

Using the method validated in the previous subsection, we trained a model on all available

data and used it to predict the missing responses in the Sanger data set. We will next discuss

insights from these predictions, for the subset of drugs whose predictions are reliable (chosen

as discussed in the previous subsection), exhibit tissue-selectivity of response (as evaluated

by ANOVA), and being new findings (based on newly predicted values instead of existing

data). In practice, we selected drugs with at least 20 newly predicted values, grouped cell

lines based on their tissue origin and measured selectivity of response by a one-way ANOVA

test for each drug against these groups, retaining drugs with p-value < 0.05, and analyzing

their tissue-specific effects. Effects are calculated as the difference between group mean and

grand mean (effect=group mean − grand mean); smaller values correspond to sensitive tissue
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types, larger values to resistant tissue types.

Figure 6 summarizes the tissue-specific effects of the selected drugs. In the figure, the drugs

have been categorized into three groups of response patterns. Group 1 consists of drugs

that are more effective on blood cancer than on lung cancer. This pattern is exhibited by

nutlin-3a, palbociclib, nilotinib, SB590885, olaparib, veliparib and bosutinib. According to

the database at National Cancer Institute (NCI)38, bosutinib has been approved for a certain

type of blood cancer. Group 2 shows the reverse pattern of group 1, being more effective in

lung than in blood cancer, and includes the drugs BI-D1870, ZM-447439, vorinostat, PD-

173074 and BX-795. Group 3 contains drugs that are effective in more than one cancer

types, namely lapatinib, saracatinib, BMS-509744, WZ-1-84 and crizotinib. Lapatinib is

approved for breast cancers but additionally seems to have strong response in upper aerodi-

gestive cancers. As another example, crizotinib is approved for lung cancers but appears to

have some selective activities in CNS, upper aerodigestive, and GI tract cancers. Supporting

Information Figures S-2 and S-3 shows the heatmaps of the predicted response values for

these selected drugs across cell lines from the seven major tissue types.

Finally we discuss properties of the full response data, containing both the observed data and

the newly predicted values for unobserved drug-cell line combinations (focusing on the seven

major tissue types from Figure 6), giving a global view on treatment potential as shown in

the Figure 7 (and Supporting Information Figure S-4). We observe that the drugs camp-

tothecin, doxorubicin, docetaxel, paclitaxel, vinorelbine, vinblastine, epothilone-B, borte-

zomib and thapsigargin show efficacy across many cell lines, spanning many cancer tissue

types. This is in line with the known evidence about these drugs in NCI database, as many

of them have been approved for several types of cancers and, importantly, they are gen-

eral cytotoxic or anti-mitotic drugs and therefore affect many, if not all, cancer cell lines

(in particular doxorubicin, docetaxel, paclitaxel, vinblastine, and vinorelbine). On the other

hand, all cancer types are resistant to the drugs cyclopamine, GDC-0449, LFM-A13, AICAR,

metformin, WZ-1-84, NSC-87877, KIN001-135, KU-55933, lenalidomide, ABT-888, DMOG,
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Figure 6: Tissue effects from one-way ANOVA for a set of potentially therapeutic drugs.
Each column shows all the tissue effects for one drug. The color represents the cancer tissue
type. The size of the circle denotes the number of missing values in the original data, for
which response values have now been computationally predicted. Effects are calculated as
the difference between group mean and grand mean; smaller values correspond to sensitive
tissue types, larger values to resistant tissue types. Three visually clear interesting groups
of drugs have been denoted by Groups 1, 2 and 3.

JNK-Inhibitor-VIII, and BIRB-0796. Some aspects of drug activity become only visible in

the map that includes the newly predicted values; they were not evident from the observed

data only. One example is the finding that the strongest response of the drug AZ628 is

achieved in a large set of skin cancer cell lines. The efficacy of this drug on melanoma, a

type of skin cancer, is known from the literature39. Another interesting observation from the

global map is that dasatinib and WH-4-023 show in large parts similar response patterns,

and strong efficacy for a small number of blood cell lines, which is consistent with the NCI

annotation of dasatinib. The two drugs have some structural similarities on the 2D level
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and share certain targets (SRC family and ABL). Bosutinib also hits these targets, and has

similar but weaker response patterns. Mitomycin-C exhibits activity spanning various tissue

types and has been approved for GI tract and pancreatic cancers.

The fully predicted drug response map can be used as a resource for generating new hypothe-

ses on cancer drug treatment and repositioning of drugs, suggesting targeted experiments for

further studies. For instance, the reddish vertical stripes seen for several drugs suggest wide

effective responses and broad applicability, whereas small red patches exhibit more localized

responses and applicability for specific types of cancer (e.g., blood).
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Figure 7: A global drug response map showing responses of 482 cancer cell lines from seven
tissue types to 116 drugs. The map was compiled from predicted missing data(25.4 %) and
observed data. The annotation bar (left) represents the cell line tissue type. The color key
(top) shows the range of the logIC50 responses.



The Novel Task of Personalized QSAR Analysis

Finally, we address the novel task of predicting responses to new drugs for new cell lines.

This can be considered as personalized QSAR analysis, i.e., finding suitable drugs for new

cancer cell line(s) or patient(s) (see Figure 2). When predicting values for combinations

of held-out drugs and held-out cell lines, KBMF achieved MSE, R2, and RP values of

0.78±0.012(0.92), 0.20 and 0.52, respectively. Since this prediction task is very challenging,

the performance is lower than for the task where the set of cell lines is known beforehand

(cf. Table 2). However, when the cell line is new the approach is significantly better (with

a p-value < 0.01; Supporting Information Table S-13 and S-14) than what is available as

baseline; predicting the mean of the training data yields an MSE of 1.08±0.015(1.24).

As this is a new task, we cannot compare to existing approaches and we quantify the quality

of personalized QSAR predictions by using the easier prediction tasks above as a yardstick.

We chose the missing value predictions (i.e., warm start) as the reference and checked the

fraction of residuals (observed value minus predicted value) falling into percentiles around

the mean of the warm start distribution (Figure 8). About 60% of the personalized QSAR

prediction residuals and 55% of the baseline residuals are covered by the whole range of

missing value prediction residuals, whereas at the 60% quantile, 20% of personalized QSAR

prediction residuals and 10% of baseline residuals are covered. In summary, while a larger

amount of available information increases the prediction accuracy, the proposed KBMF

method outperforms the available baseline in the challenging de-novo prediction task.

To further support our findings, we additionally compared the distribution of entry-wise

residuals with the residual distributions from other prediction tasks (Supporting Information

Figure S-5) . The missing value prediction task where both the cell line and the drug

have been observed earlier (but not in combination) has the narrowest residual distribution,

peaking at zero. The other prediction tasks yield much more wide-spread distributions,

differing less from each other than from the missing value prediction scenario.

These results show that it is possible to tackle the new personalized QSAR prediction task
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with machine learning approaches. It would be possible to adapt some of the other recent

methods4 to the task as well, and assessing the relative merits and clinical impact will

naturally need further studies.
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Figure 8: Percentage of prediction residuals (y-axis) falling into percentiles around the mean
of missing value prediction residuals (x-axis). The bars around the points denote the standard
deviation at a particular percentile. Personalized QSAR (blue color): predicting responses
to new drugs and new cell lines using KBMF approach. Baseline (red color); predicting
the mean of the training data. The KBMF method outperforms the baseline approach in
the challenging task of predicting personalized QSAR responses. Full residual distributions
of the baseline, the personalized QSAR prediction and the missing value prediction can be
found in Supporting Information Figure S-5.
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Conclusion

We presented an extended QSAR analysis approach using Kernelized Bayesian Matrix Fac-

torization (KBMF). Our two main conceptual contributions are: (i) an integrative QSAR

approach predicting responses to new drugs for a panel of known cell lines and (ii) a per-

sonalized QSAR approach predicting responses to new drugs for new cell lines. Earlier

methods have not been available for the personalized QSAR task and in the simpler tasks

our experiments have shown that KBMF was at least as good as the existing methods. A

case study on the large Sanger cancer drug response data set demonstrated the feasibility

of these prediction scenarios and showed that the use of multiple side information sources

for both drugs and cell lines simultaneously improved the prediction performance. In par-

ticular, combining chemical and structural drug properties, target information, and genomic

properties yielded more powerful drug response predictions than drug descriptors or targets

alone. Furthermore, KBMF achieved high accuracy in predicting missing drug responses,

allowing to construct a complete drug response map covering 116 drugs and 482 cell lines

from seven tissue types. The described method is able to tackle various relevant prediction

tasks related to drug response analysis, and other kinds of quantitative matrix prediction

from side information. It will help in further studies to suggest targeted experiments for

potential therapies.
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