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Abstract

In many domains data items are represented by vectors ofs;aaunt data arises for example in bioinformatics or esialgf text
documents represented as word count vectors. Howeven, thigeamount of data available from an interesting data goisrtoo
small to model the data source well. When several data sets/ailable from related sources, exploiting their sinities bytrans-

fer learningcan improve the resulting models compared to modeling ssurdependently. We introduce a Bayesian generative
transfer learning model which represents similarity asi@cument collections bgparse sharing of latent topic®ntrolled by an
Indian Bufet Process. Unlike a prominent previous model, Hierart¢tidodchlet Process (HDP) based multi-task learning, our
model decouples topic sharing probability from topic stybin making sharing of low-strength topics easier. In expents, our
model outperforms the HDP approach both on synthetic datarefirst of the two case studies on text collectioasd achieves
similar performance as the HDP approach in the second cadg st
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1. Introduction the newsgroup that correspond to their business field. &ilyil
a model for articles from a particular conference sectionladio

Traditionally machine learning methods learn models forinterest researchers whose research topic matches wiefiheit
data from a single data source, for example learning a mod%l

i - e onference section. In some cases the task of interest may be
of_news articles posted to a newsgroup or scientific papérs SUa new task (a recent newsgroup or conference track) for which
mitted to a conference track. Learning the model can bed:alle|e$S data is available, and multi-task learning is theniattc
atask In particular, we consider learning models fayunt learn a good model for it.
data, a prominent type of data that arises in bag-of-words rep- ) o )
resentations of text documents, in bioinformatics for egEm When set in the probabilistic modeling framework, transfer

as counts of active genes over pathways, and in other domairl§"ning or multi-task learning approaches typically #uilhi-
Latent structure in count data has often been modeledtogiic erarchical model describing how model parameters vary gmon

modelg1], in domains from document collections [2] to bioin- t@Sks; models for all tasks are then learned simultaneotisey
formatics [3, 4]. success of transfer learning and multi-task learning nsode!

goends on whether the assumed kinds of relationships between

When few training samples are available for the learnin ! i
data sources match the real relationships.

task, methods may overfit or have too little information tiem
complicated models. To gain more information for the learn- In this paper we introduce a multi-task learning (transfer
ing task transfer learnind5] methods transfer knowledge from learning) method for an unsupervised multi-task learniraipp
earlier tasks to a new one, anullti-task learning6] methods  lem, generative modeling of count data in multiple tasksch
learn several tasks together from their respective dasaegt  as bag-of-words text documents from several collections. W
ploiting their underlying relationships. For example, tteta  will model each data source with the topic model family. We
of these related tasks may be articles from other newsgmmups propose a nonparametric extension where both the number of
papers from other tracks in the conference. topics and their strengths are learned from data. To model sh
A particular interesting setting is the case when one task igg of information among tasks, we allow topics to be shared
more interesting than others: in the text data case thiglamrt  among tasks. We use an IndianfB Process (IBP; [7]) to
respond to focusing on creating a model for a particular nRewsmodel how many topics are active overall and which topicbeac
group which could be of strong interest to advertisers ariiady ~ task uses to model its respective documents; we allow agurth
sparsity-inducing step to turnffosome topics from each task.
*Corresponding author Finally we generate the strengths of active topics in eask ta
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Process model (HDP; [8]) which extends the single-taskntate 2.1. Single-task topic model
Dirichlet Allocation model (LDA; [1]) and learns the number

of topics from da_ta by a Dirichlet Process _(DP) p_rior; it is_cal (LDA: [1]) generates a document through activity of lateap-
extended to multi-task problems by modeling topic stresgth ics; to generate a documedt a topic distributionry is drawn

each task as draws_ from an upper-level Dirichlet Process;pri ¢.0m priorso thatrg ~ Dirichlet(a), andthen the words are
we denote the multl-tgsk version by MT'HDPITDA' generated one by onelo generatahe nth word in the doc-
Due to the way topic strengths are hierarchically drawn fromyment, a topic indexy, is drawn from the topic distribution
Dirichlet ProcessesyIT-HDPLDA implicitly assumes that the ¢, thatzgn ~ Multinomial(zg), and the word is then drawn
toplcs_ mqst likely to be shared are also the st_rongest tOPIC$rom a topic-wise word distributionwg, ~ Multinomial(8,, )
(contnbu_tmg most of .the words |n_document§)h|s r)eglects whereg, = {Buihw are probabilities of each wona in the kth
the possibility of sharing weak topicand can make it hard to ¢5ic The available topics are the same for all documeryis: T
learn fUCh weak shared topics from data. Here “weak shargdyy the topic-wise word distributions are drawn from dopr
topics de_notes shareq topics that are eltht_ar weak overall $g, ~ Dirichlet(y), wheren is the topic hyperparameter. A plate
that they in total contribute only few words in documents, Orgiagram for this generative process is presented in Figure 1
topics whose overall strength is moderate but whose stéagt note that in LDA each word is generated independently given
rela}t|},/§ly smallin some subset of task$1e term “weak shared ¢ topjc and the order of the word occurrences does not matte
topic”is used only as an informal description of why HDP may | pa is thus suitable for count data such as bag-of-words rep-

poorly represent sharing of some topics; the above destribgesentations of text, where only the overall occurrencetots
implicit assumption in HDP féects strength and sharing of all o4 diferent word is observed.

topics, and the weaker a shared topic is in some tasks, thethar

The basic single-task topic model Latent Dirichlet Alldoat

it may be to represent it properly in an HDP model. N\
In contrast to MT-HDPLDA, our IBP-based sharing sepa- \[_3/ @

rates the choice of which topics to share from generation of
topic strengths, allowing more flexible sharing betweentimul
ple tasks. In experiments our model outperforms MT-HDPLDA
on several data domains. Another related model is the single
task model in [9], which uses an IBP prior to control which
topics are active in each document and draws strengths of ac- D: Documents
tive topics from Gamma priors. The model in [9] is for single-

task learning only. Our model can be seen as a multi-taskigure 1: Plate diagram for the basic single task topic médatent Dirich-
counterpart, where the “IBFGamma” type generation of topic let Allocation). Topic-to-word distributiong are first sampled from Dirichlet

strengths is used across multiple tasks rather than acoass d priors governed by, then for each document topic proportions (topic proba-
ments in one task bilities) 7y are sampled from another Dirichlet prior governedhyand finally

" _the words in the document are generated by sampling a tgpiand sampling
This paper extends our conference paper [10]; the maighe wordwy  itself from the corresponding topic-to-word distributioDark

changes in this journal version are a comparative analysisro ~ shade denotes that the observed variables are counts of haw times each

proposed model with the multi-task HDP based LDA approach'0rd in the vocabulary appears in a document.

under varying number of total tasks in a simulation study, a

new comparison between the two models on newsgroup data, aGiven a data set of documents, the LDA model can be fitted

discussion of the topics learned by our model for a multitas to the data by maximum a posteriori methods. Note that when

collection of scientific articles, anan extended description of the LDA topic model is learned from a data set, the Dirichlet

the methodncluding detailed equations and derivations for thepriors for the word distribution somewhat mitigate oveiriigt

model inference. when large vocabularies are used, so that words that do not ap
The rest of the paper is organized as follows: Section 2 dePear in the training set are still assigned some probalidity

scribes related earlier models, Section 3 describes ouehnod appear in future documents.

Section 4 details the inference scheme and equationsp8écti ~ The use of Dirichlet priors in LDA stems from convenient

explains the experimental results while Section 7 conclude ~ Properties of the Dirichlet distribution, in particulahias finite
paper. dimensional sfiicient statistics, and is conjugate to the multi-

nomial distribution. These properties allow some of the pa-
rameters to be integrated out analytically when fitting arALD
2. Background model; similarly, we will use these properties of Dirichtés-
tribution in development of inference and parameter estona
In this section we discuss selected prominent earlier modalgorithms for our model in Section 3.
els for count data. We first describe the basic single-tggicto  The LDA model assumes the numbé€rof available topics
model, then describe a nonparametric model where the numb&r be specified in advance. This restriction can be probliemat

OO

Va: Words

K Topics

of available topics is not restricted, and lastly descrileudti-  especially for complicated count data sets, where the nuofbe
task extension of the nonparametric model which we will useactual underlying topics can be large, and expert knowléoige
as a comparison method. choosing the correct number of topics may not be availalble. |



the number of topics is chosen to be too small, fitting the rhodeUsing the Dirichlet process in a topic modellhe HDP based
effectively forces the model to merge some of the real topics irsingle task topic model (HDPLDA; [8]) uses the Dirichlet pro
the data. On the other hand, if the number of topics is chasen tcess to allow a potentially infinite number of topics. Thei@ir
be at least as large as the true number of topics, then thelmodet process (or hierarchical Dirichlet process) merelyayates
can in principle represent the data correctly; howevenitthe  a sequence of probabilities; to have a full generative madel
model by maximum likelihood methods will in practice overfit probabilities must be connected to a generative model df-the
to the limited number of documents and wilfectively split  nally observed variables. In HDPLDA, observed variables ar
some of the real topics according to artifacts in the obskrvecounts of words in documents as usual, but now the topics are
data. no longer chosen from a pre-fixed finite number of choices, in-
stead the topics used in a document are drawn from a Dirichlet

2.2. Nonparametric model for count data: Hierarchical Process.

Dirichlet Process The topics are drawn as the atoms in a Dirichlet process (DP).

. . - . . Each document has its own DP; to allow sharing of the topics
The Hierarchical Dirichlet Process (HDP; [8]) is a BayeS|an(at0mS) among dierent documents, a shared global BRis

hierarchical nonparametric model that can be used to gener laced as a prior over document level DB so that the base
ize LDA to learn the n_umber of topics from _data, and can alsaﬁweasure of each document-level DP is a draw from the global
be used to model multiple document collections (data s®éis). DP. Since the global DP has support (nonzero probability) at

first discuss the mathematical form of the hierarchicaldbilet . : :
) . . ) the points (topicsp = * _, eachGq necessarily has support
process and discuss how it is used to create a single-taik top,, P (topicsp = (Bicy d y PP

. ) o t a subset of these points. Th8mcan be written as:
model. We then discuss the multi-task version in the next sub P e

section. o

Gy ~ DP(20,Go),  Ga = ) maxd,
Preliminary: the (hierarchical) Dirichlet processThe Hier- k=1
archical Dirichlet Process is a nonparametric prior based o k-1 K
Dirichlet processes (DP; [11]). Dirichlet processes anerpr 4, = T4k 1_[(1 ), T~ Beta{(zonk, (zo{l - Z m]]
distributions over probability measures; intuitivelystan infi- =1 =1

nite dimensional generalization of Dirichlet distributioMea- T4 sample a topic for a word in documemtthe probabilities
sures drawn from a Dirichlet process are discrete with jidba ., are used as the topic probabilities. The rest of the model
ity one, meaning that the measure gives nonzero probatility i5 essentially the same as the basic LDA: the observed word
a finite number of discrete choices, but the number of avigilab 5,¢ generated from the topic-to-word distribution of thes#n
choices can dier between dierent draws from the Dirichlet topic. The topic-to-word distribution of each topic is sdeth
process. from a Dirichlet prior; the distribution only needs to be gaded

The Dirichlet process is defined based on a ‘base measurgn|y for those topics that are actually used over the doctimen
and a draw from a Dirichlet processfectively redistributes ¢g|lection.

weight among the choices in the base measure, possibly shut-
ting off some of those choices. The choices in a draw from the 3. Multi-task extension of the HDPLDA model

Dirichlet process are a subset of the choices in the base mea-1no multi-task extension of HDPLDA models several docu-
sure. The draw itself can be used as a base measure for anotl;lﬁém collections (data sets, also denoted as tasks), bygtétie

Dirichlet process. hierarchy of Dirichlet processes one level higher: in sagisk

Formally, a Dirichlet process has two parameters: a basgpp| pA the topics over the document collection were con-
probability measuréd, which defines the mean of draws from 4,16 by an overall DP, but in the multi-task extensionfeac

the process, and a strength parameter 0 that controls the  jocyment collection has its own overall DP, which are in turn
variability aroundH. A draw Go from a DP is represented as grawn from a top-level DP which controls topics over all the
Go ~ DP(y, H) and with probability on&, can be represented document collections.
asGo = iy mkdp, Where thefy are random variables dis-  technically, a data set level DB; ~ DP(ao, Go) is intro-
tributed according t¢1 andd, is an atom gBx. The sequence ;e in the HDP prior: Inside each document collectionadat
of probat_nlltleSn = (m)e, is defined by the stick-breaking set)c, a document level DBg ~ DP(a, Ge) is drawn for each
construction [8, 12] of a DP as follows: document from adata set level DP. The data set level OR,
o0 can in turn be drawn from an overall DP across data sets, with
Go ~ DP(y,H), Gg = Zﬂk% base measurd. The rest of the model is again similar to the
k=1 basic LDA: topic-to-word distributions are drawn for theics
in use, and after drawing a topic the observed word is drawn
k1 from the corresponding topic-to-word distribution. Segufe
i = ﬂﬂn(l—”f)v m, ~ Beta(ly) (1) 2 for the plate diagram of the resulting multitask HDPLDA,
=1 based on the stick-breaking representation.
where @), , are independent sequences of i.i.d. random vari- In this hierarchical generative process topmost DP in the
ables. hierarchy determines which topics are active overall amd th
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Figure 2: Plate diagram for multitask HDPLDA, a nonparainetpic model

for multiple collections. In each document collection kiethe overall topic Figure 3: Plate diagram for our sparse transfer learning toypdel. Notice
distribution is controlled by a task-specific Dirichlet pess, which are in  the parameters, = and hyperparameteeg anda, have a diferent meaning
turn drawn from an overall Dirichlet process controlled Hyase measure H.  that the MT-HDPLDA model. SeeTable 1 for notation and Section f8r
Otherwise the generative process is the same as for thegasit HDPLDA. explanation of the generative process.

<
@ length).

2.4. Single-task topic model with flexible sharing

()
O/
@ @ Recently a single-task model with more flexible topic shar-
ing was proposed [9] using an IndianfBet Process Compound
Dirichlet Process prior which can be seen aspike-and-slab
\O e ° prior [13] over topic strengths. An Indian Biet Process prior
Nd ¢ )=

NV, Words

is placed on binary flags of whether topics are present in doc-
o: Topics J e uments, rather than on the strengths of the topioas of the
\D:_Documents J IBP correspond to documents and columns correspond to top-
ics. The topic strengths are generated separately from Gamma

Figure 4: Plate diagram for the single task model of [9]. Topic-to-talis- variables. In th'? way, _the_mO(_je_I gVOIdS the coupling of ¢opi
tributions B are first sampled from Dirichlet priors governed hythen for ~ Strength and topic sharing implicitin the HDP modEhe plate
each documend, topic proportions (topic probabilities)s are sampled from  diagram for the model is presented in Figure 4.
another Dirichlet prior governed by document level topiesemce; lfg) and Technically, in the HDP based prior the strength of topics wa
global topic strength parameters; ~ Gammay, 1). Otherwise the generative ! . . . .
process is the same as for the single-task LDA. Notice thanpetersy, = and gener_ated at the same time as their sharing, thrPUgh the stic
hyperparametera; anda, have a diferent meaning than in the MT-HDPLDA  breaking construction: topics that occurred later in troeoof
and our model. For details about the model the reader shefdd o [9] the stick breaking process were ||ke|y to get lower Streﬁgm
contrast, in the IBP Compound DP prior the strength of topics
is assigned independently of their order in the IBP prodesst t
generates the binary sharing matrix.

Note that like the HDP based prior, the IBP Compound DP

strengths; lower-level DPs choose among their parent-teve
tive topics, varying their strengths hlifie previously detailed

stick-breaking construction, to yield fring topic distribu- é)rior allows a potentially infinite number of active topigsgt

tions at each branch of the hierarchy. When inferring topic ampling onlv requires finite computationiet. Because the
from data, the topmost DP can activate new topics as well as ping only req P :

: . . Sampling of the IBP matrix is based on a stick-breaking con-
change their strengttand the activated new topics can then : !
; . : struction, the sampled binary IBP vector for each documlent a
be assigned nonzero probability on the next hierarchy terel

each document collectipthe HDP can thus infer the number most surely contains af|_n|te r?“mber Qf act_|v_e topics, hehee t
) . whole document collection will contain a finite number of ac-
of topics from data. See [8] fdurtherdetails.

. . tive topics. The overall prior for strengths of the topica taen
.T.he HDPL[?A model has a p_otentla! pTOb'em due tq an m-y,¢ sampled by sampling a Gamma-distributed strength \ariab
plicit assumption about the topic sharingjince the sharing is

d by the topic st th hi . bability hi for each active topic in the collection. The topic probabili
one by the topic strengt |erarctty>p_|c probability I€rar- yector for each individual document is then sampled by tgni
chy), with the stick-breaking construction the strongest tepic

hich i d " th tlikelv 1o off topics that are inactive in the document according to the IBP
(W Ich generate many words overa ) are the most likely to su and sampling the probabilities of the remaining topics atco
vive in several branches of the hierarchy and thus be sharqd]

) to their strengths in the prior.
across data sets. This property can make the HDPLDA model ag g P
bad fit for multi-task problems with low-strength shareditsp
(topics discussed in many document collections but notestgr it is easy to show that topic weights in the top-level Dirthbrocess are

4




The model of [9] is for single-task learning only, and the IBP record the lengthr® of the stick we just brokefdand recurse
is defined to model the sharing of topics among documents froran this piece. The sequence produces a decreasing ordéring o
a single data source (document collection). It cannot matel latent probabilitesr® which can be used as a prior over un-
lationships between several data sources. When only feav dabounded binary matrices;
are available from each data source, a multi-task soluson i
needed. The model that we propose in the next section is for b ~ Bernoulliz®)  for eachc. (3)
a multi-task scenario, and we will use an IBP based construc-
tion to model sharing of topics among several data sourdes. T In our model, the columns of the IBP correspond to topics and
essential dference between our new model and [9] is then thath€ rows represent fierent tasks. Thus an entry in the matrix
we handle the multi-task learning case, and focus our mogleli indicates which topic contributes to which task.

effort on modeling the sharing between tasks.
Our model: nonparametric transfer learning topic model&as

on the IBP. In our model the rows of the matrB represent dif-
ferent tasks (the number of document collections), themaoki
represent topics, and the individual binary entbg indicate

We present a new hierarchical Bayesian multi-task (transfe!VNether topik is present in task. To draw a topic for a new

learning) model which allows flexible sharing of low-strémg task, the IBP chooses one of the existing topics qccording to
and high-strength topics across multiple data sets, witiikees how many tasks they are already present in, or activates a new
and-slab prior. Learning the model for each data set isctalle topic. Therefore the IBP can choose to increase the number of

task; our model performs transfer learning by learning fs&s tOPiCS_With no upper limit; \{vhen fi_ttin_g a topic model with an
together. IBP prior, the number of active topics is then inferred froated
Note that we use the IBP priorftirently from the single-
Preliminary: the Indian Bgfet Process.In our model, we will ~ task model [9] discussed in Section 2.4; that model used the
draw a binary matrix that indicates which topics are present IBP to draw the presence of topics acros$estent documents
each task. The matrix will be drawn from an Indianfigt Pro-  of the same collection, we use the IBP in a multi-task context
cess (IBP; [7]), which is a nonparametric prior over binag-m to draw the presence of topics acrosetent document collec-
trices. The use of the IBP prior ensures that the number ef togions (tasks)consequently our IBP matrix has only one row per
ics does not need to be fixed and can instead be learned frog@ch task (not one row per document as in [9]).
the data. The IBP prior allows a potentially infinite numbéro  We empirically found that in our setting IBP by itself does
active topics, but each draw from the prior yields some finitenot provide enough sparsity. This is because the IBP matrix
number of active topics. has just one row per task, so the IBP parameters are learned
The IBP prior can be derived by as a limit of finite-sized bi- from few observations (the matrix rows), which leaves the IB
nary matrices: ifK is the number of columns in a binary ma- uncertain about the number of active topics and hence céuses
trix, then the IBP is the limit, whei approaches infinity, of a to activate more topics than really needed. This formutetib
finite C x K binary matrixB whose elements® are distributed  IBP is necessary to decouple topic sharing from topic streng
according to:z® ~ Beta@/K,1) andb®® ~ Bernoulliz®), ~ To combat the unwantedfect of activating too many topics,
where thecth row of B is be. Thex® is probability of turning ~ we incorporated an additional nesparsity-inducing masking

3. New sparse nonparametric topic model for transfer
learning

on an entry in théth column of the matrix. step for each topic in each task, the sparsity inducing masking
In the limit whenK — o thex® has been shown ([14]) to step simply turns i the topic with probabilitye.
obey the following stick-breaking construction: After the two topic selection operations (IBP and the addi-
) tional masking, together denotlP-maskinghave been done,
VORS Beta@, 1) the strength of remaining active topics is drawn from Gamma
K distribution within each task; these strengths define ther pr
2K = Rk n\,(j) (2)  distribution of topic activities within the task. The combi
j=1 nation of the Gamma-distributed topic strengths and the IBP

masking can be seen as an infirsfgke and slakprior, where
The construction can be understood as follows; considétla st the IBP-masking generates the spikes (possibility for &ttap
of |9U9thk1v ateach iteratido= 1,2, ...., we break & a pliece at  pe turned completelyff) and the Gamma distribution acts as a
a pointv relative to the current length of the stigk™>. We  sjab (which generates the strengths of topics that are mudu

off). The use of the independent topic strength variables avoid

: . , the restrictions imposed by the DP construction of Secti8n 2

upper bounded by a monotonously decreasing sequence; ve&aly rewrite it kes inf . d is able t del K topics b
Equation (1) for thekth stick weight astx = m,ix wherer = Hlkgll(l ) it ma eS_ Inference easier and Is able 1o Mo e weak topics by
andn/ are random variables between 0 and 1. We thus have 7 where  decoupling the strength and presence of a topic.
the 7y are a monotonously decreasing sequence, therefore tapirsthe stick When the task-specific topic priors have been generated, the

breaking process (having larggeare likely to get small weights. On the lower : s :
levels of the HDP, the topic weights are sampled using theeufgvel DP as rest of the generative process proceeds within each task as i

a base distribution, and therefore topics with very smalbiveat the top level LDA_: for_ ea(_:h topic that is aCtiV_e_ in any t_aSk- a topic-to-dor
are unlikely to get large weight on the lower levels anymore. distribution is drawn from a Dirichlet prior, and documents




Algorithm 1 Pseudo-code for our multi-task topic model Gibbs samplext &fter symbols’ are comments.
1: for iter = 1to ITERdo
2: for c =1to TOTAL_.TASKS do

3 for d = 1 to TOTAL. DOCUMENTSIN_TASK do

4: for Each wordw, 4 in document do

5: k « z(n) > Get topic assignment
6: Decreasem\(,bc)ﬂn andng),(‘) by 1

7: Decrease(), andn{’ by 1

8: fork=1to TOT%)L_TOPICS+1 do > The+1 is for the inactive topic
9 p(k) « M%g[@% > For expectation use; Eq. (A.11), (A.12) and (A.13)
10: end for > ‘VocabSize’ is the number of ierent words in the vocabulary.
11 k « samplep)

12: zZ(n) « k

13: Increase(y. andn® by 1

14: Increasenf:'?j and nf;k) by 1

15: if k> ACTIVE_TOPICSthen 3

16: p(b¥ = 1) < Eq. (8)

17: p(w¥ = 1) — Eq. (8) by replacind® by y¥ andz® by e

18: Sampler®*® andx*+1° using Eq. (6) and Eq. (7) with details in [14]

19: Samplezp(c'% using Eq. (9)

20: Sampley® using Eq. (10)

21: end if

22 end for

23: end for

24: for all k =1 to TOTAL. TOPICSdo

25: Reinitializeb® andy® as before

26: Sampler® andg® as before

27 end for

28: end for

29: end for

within a task are generated as usual by drawing a topic dis- For each worch = 1,2, ..., Ng in the document

tribution from the task-specific topic prior and then dragvihe (b) Draw the topic index g, ~ Multinomial(6.q)

words for each document. (c) Draw the word termiveqn ~ Multinomial(g,_; )
The notation we use for our model is summarized in Table 1

The full generative scheme for our model (correspondingéo t

plate model in Figure 3) is as follows:
Note that the Dirichlet distribution is defined based on pseu

1. For each topi& = 1,2, ..., draw, docounts, which are hesn elementwisenultiplication of the
(a) topic strength priop® ~ Gammady, a,) binary IBP flagsbe, the additional sparsity-inducing masking
(b) IBP probablility of topic activatiom® from Eq. 2 ¥, and the topic strength&_‘hg any topic WhICh has been turned
(c) topic-to-word distributiong, ~ Dirichlet(y) off by the IBP or the add|t|ongl_mask|r?g gets a zero .pseudo-
count, hence draws from the Dirichlet distribution alwajey
2. For each topik in taskc = 1,2, .., C draw, zero probability for such topics, as desired.

(a) topic strength&gk) ~ Gamma(shape v, scale= 1)

. . . K
(b) IBP topic actlvatlorbﬁ) fromEq. 3 2As a simplification, our model generates the total numbensartis per
(c) additional sparsity masking ~ Bernoulli(e;) task but not how this total is divided among the individuatdments. Essen-
tially this means that fitting the model does not draw infatiorafrom the size
3D he si fth k: | f variation between documents, only from the total size vianabetween tasks.
- Draw the size of the task; total number of word OCCUITeNces,, e plate diagram of Figure 3 we mark the simgg of individual documents
ng‘) ~ NB(>« bﬁ"%@wg‘), %)2 for clarity since they fiect the generation of the document content.
3In our implementation we have thieclause (line no. 15 21) outside the
4. For every document = 1,2, ...D in taskc, for loop over words (I'ine no. 4); }his helps.us speeds up our imphiation..
s . . To cater for the new inactive topics that might emerge forsegbient words;
(a) draw distribution over topic& 4 ~ Dirichlet(bc.¢..¥ ) we sample a series of inactive topic stick parameters befotering thefor

loop.




In the above-described generative procéiss,set of hyper-

parameters aréuw, €, 17, a1, a2} and the unknown model parame-

of (4) is an expectation of the topic probability. How-
ever, that expectation is taken over a complicated posterio

ters arei{z, 0, B, B, y, ¢}. To fit the model to data in a Bayesian distribution of topic probabilities, wher@(fcg4lz\cdn A) o<

fashion, we infer the posterior of the model parametersrglvequﬁC 2be Z P(Bcalyc, be, Pe, 2yc.an) P(Dc, Y, @
Intihood mvolves a combinatorial integration over valuestod

the observed word counts in all documents of all tasks.
ference by sampling, discussed next, fiscgent and only pro-

#°|A).This like-

sparse IBP matrix, but since we only need the posterior for ta

cesses a finite number of topics at each step as is usual in noifg topick, it can be show(refer to equation (A.2) in Appendix

parametric models.

4. Bayesian inference for our model

To infer our model from the multi-task data sets (document

collections), we use a combination of collapsed Gibbs sagpl

and the Metropolis-Hastings algorithm to sample from the-po

terior distribution of the model parameterf. turns out it is
possible to directly integrate out some of the ‘nuisancedaio

parameters; then the posterior of the rest of the variatdas ¢ Mcd.\cdn

be sampled morefciently. We integrate out the topic specific
distribution over wordg, the topic mixture distributio® and

the binary IBP matrixB; sampling is needed only over the re-

maining variables. In the Gibbs sampling we cyclically st&anp
the topic assignmerg the topic strengtlp and the IBP prior
n (stick-breaking parameters) for topic activatioAlgorithm

1 presents the complete pseudocode for the algorithm and i

cludes references to the sampling distributions discuisstt:
following section.

4.1. Samplingzand the stick parameter;

To sample topic assignments within a documeit taskec,
we integrate out the topic distributigl 4 of the document. The
posterior probability that the" word in documentl of taskc
comes from topid is

p(zc,d,n = I(|z\c,d,n, Wed,n» A)
_ p(Wc,d,n|Zc,d,n = k) p(zc,d,n = Iqz\c,d,n) p(z\c,d,n, A)
B P(We.d n, Z\cd,ns A)
o« P(WednlZedn = K)P(Zedn = I(|z\c,d,n, A)

+ 77) fdac,d p(zc,d,n = k|0c,d) p(ac,d|z\c,d,n» A)
(4)

(K)
o (nwcvdvn,\c,d,n

wherezq, denotes the current values of all other topic as-
signments except the one whose probability we are computing

A = {¢2, %, 7, a, €}, and the superscriptdenotes active topics.

A for derivation)that the integrabn the right-hand side of (4)
ultimately simplifies to

(n(k) (k))b(k)l,b(k)

K c,d,\cd, n

E[0¢gZ can Al & E| =5 0,00 ()
Nedicdn T ; be’we’ de

In the above equatiom(, ., - is the number of words in the

document assigned to topicnot counting thenth word, and

is the total number of words in the document not count-
ing thenth word. While not combinatorial, the expectation in
(5) is indficient to evaluate in closed form as we would need
to do so for every wordluring theGibbs sampling. We use
an approximation similar to [9], using 1st order Taylor expa
sion for the three possible cases: topis active in the current
task (data set); topik does not appear in the current task but
iis active in the corpus (all data sets); or topits inactive in
the whole corpus. Details of the approximation are provided
Appendix A.

During the Gibbs sampling (including the above-mentioned
approximation) we must processactive topicsin case the
sampling activates onéhe ability to activate new topics is es-
sential so we can learn the number of topics from data instead
of pre-specifying it. In particular, we must be able to saenpl
the IBP prior (stick-breaking parameters) for both inaetand
active topics. A topic is inactive (denoted by a superscript
if it is never used in the whole corpus, i.the total number of
word occurrences assigned to togidcs n'(")(') = 0, and active
otherwise.Note that a topic without any word occurrences as-
signed to it is considered inactieven ifthe IBP had enabled
the topic for some tasks so tha}, bgk) > 0; for sampling ac-
tive and inactive topics we follow [14]For active topics stick
lengthsry have the conditional distribution;

C c
p(myIB) ~ Beta(z b®, 1+C - Z bgk)] . ©)
c=1 c=1

The first equality follows from the Bayes rule since the word

Wedn ONly depends on the topi g,. The second proportion-
ality follows by explicitly writing out how the (posteriogyord

where B is the current value of the IBP (the binary matiiike
posterior can be sampled directly using Gibbs sampling. To

probability in topick depends on word counts and prior pseu-sample the stick parameters for the inactive topics we viollo

docounts, and by explicitly writing the probability of ch&ing

the semi-ordered stick breaking constructifi#]; considerk ¥

topick as an integral over the posterior of the latent topic probbe an index such that all active topics have inllex K'; thus

ability variablef. 4.
On the right-hand side of (4), we simply hay¢z.q4n =
Kfca) = 0(") which is thekth value of the topic-probability

all topics beyond index ™ have no word occurrences assigned
to them, denote this b3.,..x: = 0. The inactive topics have an
ordering of decreasing stick lengthtste stick length distribu-

vector Ocd, therefore the integral on the right-hand side tion of the inactive topi&, given the stick length of the previous

7



Table 1:Notation used for our model

Parameter Meaning

n index for then™ word token in a document.

We.dn contains the vocabulary index of th® word token in documertd of taskc.

Zcdn topic assignment of the" word token in documertd of taskc.

Ned total no. of words in documeitof taskc.

Ne total no. of words in all document of task

) total no. of words assigned to togkdn the whole corpus.

ni'% total no. of words assigned to togidén the documend of taskec.

n\(}fid_n total no. of times the termy. 4, has been assigned to topiin the documend of taskc.

n(c")d’\c’d,n total no. of words in the document not counting tifeword.

ng,?j,\c,d,n total no. of words in the document assigned to tdpiot counting then' word.

0c.d topic mixture distribution for the documedtof taskc.

B topic specific distribution over words for toplc

n prior for the topic specific distribution ove.

B aC x K binary IBP matrix wher& is the number of tasks an€lis the current number of topics in the IBP matrix,
and the rows and columns index tasks and topics respectively

be a binary vector which is the" row of the IBP matrix and indicates which topics should beéat df in taskc.

7 probability of turning on thé&!" topic in the IBP matrix.

° The superscript denotes active topics; the ones that are currently repted@nthe corpus.

° The superscrigt denotes inactiveunused}opics;their corresponding parameter values are unknown.

¢(ck) strength parameter for toplcin taskc. Strenghts of all topics in taskare together denoted &s.

y® parameter for topi& in the prior for topic strengths; the parameters togethedanoted by and they define
the prior for all¢,.

ai, a hyperparameters for the gamma prior over the topic stremgi: a; is the shape ang, is the scale parameter.
Each topic strength prior parametéf is drawn from the gamma distribution defineddayandas.

1/ sparsity inducing binary masking vector which tells whiopits should be turnediain taskc.

€ probability of turning on a topic in the sparsity inducingaiy vectory..

topic, is of thekth matrix column are needed to sample the stick param-
eter of active topik. For this purpose, the current value of the
P(rylmy_1, Ziwsk: = 0) IBP matrix is reinstantiated based on the known values of the

other parameters, according to
p(bY = 1x®, 6%,y nl9) =

) e (K
wherel(0 < n; < 7, ;) is 1 when the statement inside the t()'_ _'f nzcl,(;) >0 ©

parenthesis is true and 0 otherwigédsing (7), we sample the ”(k) : !f n%kﬁ') =0, W(ck) =0 (8)
stick parameters for the inactive topics by adaptive rejact m o if Neoy = Oyc =1
sampling(ARS) 4 [15]. ARS samples from a distributiop(x) 7o )

by first constructing an envelope function for Ipg)). The  Where on the right-hand side, the topmost choice simply mean
enve'ope function is then used for rejection Samp"ng. Whenthat the tOpiC must be activated for the task if some word-is al
ever a sample is rejected, the envelope function is updated feady assigned to it; the middle choice means that if thetispi

Correspond better to the under'ying density_ The R pach@e unused and moreover the additional masking has turndﬁ, it o
[15] is used to generate samples using ARS. then the activation probability comes from the prior andiibe

tom choice means that if the topic is unused but the additiona
4.2. Reinstantiating the IBP and Bernoulli masking masice masking has not turned itfi then the activation probability

Even though topic assignments can be sampled while intéé derived through t.h(? IBP and the tOFa.I number (.)f words as-
grating over the binary IBP matrix, the IBP matrix is stilliie signed to thé-th topic in taskc. The additional masking vector

orarilv required here for samoling the stick parameterstfe ¥ is initialized by a similar equation as the IBP matrix by in-
porarily requi nping ) terchangind® with ¢ andm, with €
active topics in (6)more precisely, the valu in all rowsc ¢ ¢ K :

N
< exp( Y 117 ) A - )N 10 < <y ()
i=1

4.3. Sampling topic strength parameters

4Multiple samples were generated and an average was usetl adgéter Lastly,to samplehe topic strength par?metewe first com-
approximation. putethe joint probability ofthe strengthbg) of topick in task




¢ and the total number of counts assigned to togidn the oy

task; the joint probability depends on the correspondimpdcto Domain that mostly <HDP Multitask
. k) . (k & contains weak topics,
strength prior paramete/f , the IBP matrix valudy;’, and the : Our model performs better =Our Model
_37

additional masking valu$ék), as follows:

]

®
(¢E:k))7(k)_l e’ -35"

K
P01y, b ) =

Test set predictive log-likelihoods

Domain that mostly
T (fy(k)) B contains strong topics,
c ® ® HDP performs better
Domain that mostly
1—‘(nC + ¢C ) (9) -4 contains strong topics,
HDP performs better
| | (K)y (k) oy NS e FEEREREREEED L T e e
0 bo_q (") g’ 20c7+ne)
cbe” ye’=1

A A i 6 _0.i_25 0.‘25 0.575 . 0‘.5 0._6_25 0.‘75_ O.é75 i
where the rlght-hand side follows because the tOpIC sthangt Location in the domain continuum (mixing coefficient: see text)

has a Gamma prior with parametéf and the total number of
words assigned to thieth tOpiC in thec-th task is distributed Figure 5: Experiment results: test set predictive likeditie for simulated data
. tinuum, error bars showl standard deviation over 10 random datasets.
according tmgk) ~ NB(bg‘)¢£k)l//£k), 1/2). eon '
We use Metropolis-Hastings to compute the postédwg‘).
We sample the prior topic strength paramet&k in a similar ~ 5.1. Experiment 1: Continuum of problem domains

manner from the joint posterior fof¥) andthe topic strengths  \we expect our model to perform well in the case of multi-task

¢E§)3 the resultis problems where some shared topics are strong in all taskewhe
they appear whereas other shared topics are only weaklgmires
p(y(k),¢E§’|n(ck’, b, y¥, a1, ) in several tasks; we build a continuum of multi-task problem
c domains where this situation occurs. At either end of the con
= p(y®|ay, ay) 1_[ p(¢§'§|n2‘),y("),bf:"),lpg")) (10) tinuum, data is generated from a model where shared topics
cb® g1 are strong (they generate many words in all tasks where they

appear); the left end is a simpler case where both models can
work well, and the right end is a complicated case especially
suitable for MT-HDPLDA. Interesting domains lie betweer th

We compare our model to the nearest method HierarchicdWo ends: in these intermediate domains, the topic gewerati

Dirichlet Process based multi-task learning (MT-HDPLDA). mechanisms from either end are mixed together linearljdyie
ing small shared topics from both generators in each indalid

Model Selection.The hyperparameters n,a;,a; anda can  task. We create nine domains across the continuum, idehtifie
have a clearfect on the results. The precise values are listety the mixing coéicient (0 to 1) between the generato8ee

in the Experimentsections that follow, here we briefly discuss Appendix B for a detailed description of the constructiomhaf
their roles; Smaller values af lead to less active topics. In synthetic data continuum.

the experiments we setby a very simple manner accordingto  Each problem domain is a multi-task scenario where each
the average number of documents per task: since the attificiéearning problem has 10 tasks (data sets). We use the setting
data experiments have few documents per task we use the sambere one task is more interesting than others; the integest
moderately large value Q01 in all artificial data runs; since the task has 24 documents with 8 words each, other tasks have 8
real data experiments have more documents per task we uselacuments with 8 words each, all generated from 10 topids wit
smalle value 00001 in all real data runs. The topic distribution a vocabulary of 150 words. We generate 10 such learning prob-
prior controlled byy is also found in MT-HDPLDA and has the lems in each domain and run our method and MT-HDPLDA on
same meaning; smail would yield more specific topics; for each problem. Wanitialize the Gibbs sampler randombigke

a discussion of the parameter see [2] (in that papiercalled 1500 burnin iterations and draw 100 samples 15 iteratioag.ap
B). Our real data experiments (Sections 5.3 and 5.4) areasimil  For setting the hyperparameters we follow [8] for MT-
to the ones used by the authors of MT-HDPLDA in [8], so weHDPLDA and for ours we usa = 5 andy ~ Gamm#5, 0.1)
follow them and use the same valuerofin our simulated data following [9]. We fixede = 0.01 as discussed in the Model
experiments (Sections 5.1 and 5.2) the data size is smalland selection paragraph earlier. In both our model and the MT-
aim to extract fine grained topics; therefore we use a smalleddDPLDA we use a relatively small value gf= 0.00005.

value ofyy. The hyperparameters of our modgl a, anda have The results are evaluated by predictive likelihood on held-

the same meanings as in the IBP compound Dirichlet prior oflocuments from the interesting task using the empiricalilik

[9]; a1 anda, are the ‘shape’ and ‘scale’ hyperparameters forhood based approach [16]. Figure 5 shows that in the interme-
the Gamma distribution of topic strengths (laagdinearly in-  diate domains where weak topics are shared in the integestin
creases mean and variance of topic strenghts; ardieearly  task, we outperform MT-HDPLDA.

increases the mean and quadratically increases variatagiof It should be noted that the horizontal axis in Figure 5 is aver
strenghts), and sets the prior for the stick-breaking in the IBP continuum of very dierent prediction problems, and the scale
(largea decreases the number of active topics). Weaseh,  of results is not intended to be comparable betwedlieraint
anda as in [9]. parts of the continuum: rather, the take-home messagetis tha

5. Empirical results



our method is better at five locations in the middle of the con-
tinuum where weak shared topics are likely to appear in the
interesting task.
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5.2. Experiment 2: Model performance under varying numbe|
of total tasks

In this experiment we evaluate the performance of the twc
models when the total number of tasks are varied. We fix th
location in the intermediate domain continuum at point @25
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Test set predictive log-likelihoods

the mixing codicient (from Figure 5) such that there are weak P -=0ur Model
topics in the data generation and expand it further suchthleat . T T s
total number of tasks is varied fromtb 30. The rest of the Total number of tasks

experimental setting is the same as before. We use the same
evaluation criterion as before, predictive likelihood aidrout Figure 6: Experiment results: test set predictive likelitie for datasets with
documents from the interesting task. Figure 6 shows thétgesy different number of total tasks. The multi-task domain in thiseeinent is
. . . one of the domains in the domain continuum of Experiment fresponding
Ur?der the interesting case when the total number of task$-is I 1o mixture cosiicient 025 in Figure 5. The error bars shoul standard devi-
atively small we outperform MT-HDPLDA. When the number ation over 10 random datasets. Our model outperforms MTAHDP(‘HDP
of tasks grows, performance of both methods increases and tiultitask”) when the number of tasks is small.
methods become comparable at the end of many tasks.
We further investigate theffect of total number of tasks on
the performance of two models at two other points in the do: —3.5r
main continuum, corresponding to mixture @a@ent Q5 and
to mixture codficient 1; for the latter caéicient the data gen-
eration assumptions match those of MT-HDPLDA. The result-
ing predictive likelihoods are plotted in Figure 7 and Fig&r
respectively. In these domains MT-HDPLDA performs better
for a large number of tasks; however, if the number of task:
is small (near the left end of the horizontal axes in the figure
our model performs better than MT-HDPLDA, even in the case
of the domain with mixture cdécient 1 (Figure 8) which was : T 0 13 15 18 30 23 %
expected to favor MT-HDPLDA. The good performance of our Total number of tasks
model on small numbers of tasks is therefore consistent in aIF_ 7 Exoeriment s: test set oredictive likaiits for datasets with
. . . ijgure /. eXperiment results: test set preaictve i or aatasets wi
our SImUIat_ed exp(_arlments (mIXt_ure .25, 0.5 a_md 1)' different number of total tasks. The multi-task domain in thjzeeknent is one
Another interesting factorféecting performance is the num- of the domains in the domain continuum of Experiment 1, poeding to
ber of documents in the task of interest; in many scenari@s thmixture coeficient Q5 in Figure 5. The error bars shawl standard deviation
task of interest may be a newer task with fewer document§'e" 10 random datasets. Our model again outperforms MTHI2R“HDP
. Multitask™) when the number of tasks is small.
available, for example a recently started newsgroup or a re-
cently introduced track in a conference. We study the model
performance with dferent numbers of documents in the task of
interest in the following real data experiments (20newsgso
and NIPS conference articles).

-4k

-0 HDP Multitask
- Our Model

Test set predictive log-likelihoods
o

o

5.3. Experiment 3: 20 newsgroups data

We next compare our method to MT-HDPLDA on a real-life
collection of count data.

We take the computational group of the 20newsgroup:
dat2. This group (often abbreviated asomp is di-
vided into five subgroups; some of the subgroups such a _ ‘ L L L -
comp.sys.ibm.pc.hardwarend comp.sys.mac.hardwareave ) 5 8 10 kS e 0 B 5
closely related topics and therefore tbempgroup may be
well suited for a multitask problem. The data contains 1129Zigure 8: Experiment results: test set predictive likefitie for datasets with
documents. We remove common words léed andyoufrom different number of total tasks. The multi-task domain in thigeginent is

; ; one of the domains in the domain continuum of Experiment fresponding
the whole collection. We choose themp.sys.ibm.pc. hardware to mixture codicient 1 in Figure 5. The error bars sha standard deviation

over 10 random datasets. This multi-task domain was dedigméavor MT-
HDPLDA (“HDP Multitask”), but our model still outperforms AHDPLDA

SWe use the stemmed version of the data downloaded from when the number of tasks is very small.
httpy/web.ist.utl.pt~acardosfatasets

Test set predictive log-likelihoods
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o Value for Value for - Singletask Valule frJrk Valu‘e fork - Singletask
—3r  [singletask= singletask= --HDP Multitask| _ | singletask= | |singletask= o i
e 79.9889 7.05r 28,100 27499 ¢~ HDP Multitask
=-Our model ~ 4 --Our Model
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Documents in task of interest Documents in task of interest

Figure 9: Test set Predictive likelihoods for 20newsgrowpsor bars show1 Figure 10: Test set Predictive likelihoods for the NIPS setaerror bars show
standard deviation over 5 folds. +1 standard deviation over 5 folds.

subgroup as the interesting task. We run our model, MT-

HDPLDA and single-task HDP as a baseline; we follow [8] for

MT-HDPLDA and setp = 0.5 for both models. For our model ) )

we sete = 5,y ~ Gamm45,0.1) and sete = 0.0001 as dis- To |IIustrat_e the topic model our met_hod has learned for the
cussed in the Model Selection paragraph earfer. sampling NIPS collection, we show learned topics for the .problem. set-
we initialize the Gibbs samplers randomly, take 1000 burit-i ting where the number of documents in task of interest is 10
erations, and then draw a total of 10 samples 50 iteratioa.ap @nd €ach supplementary task has 50 documents (second loca-
We learn models for dierent sizes of training data in the inter- ion on the horizontal axis in Figure 10). We extract the top
esting task (5-40 documents) with 50 documents in each othdfn Words from the strongest two topics for each @sé from
task, and use 5-fold cross-validation in each case. Reswdts the weakest shared topicTable 2 lists the top words. The
again evaluated by average predictive log-likelihood dtthe first topic (fir;t column of the table) is the strongest ir_1 dll o
out documents from the interesting task. Figure 9 shows thE1€ tasks; it lists words about general machine learning con
results. Single-task learning naturally works poorly, and ~ CEPtS. The next-to-strongest topics are listed in from molu
model outperforms MT-HDPLDAN scenarios where training two to five: The next-to-strongest topic idl@irent in each task

data is small and hence multi-task learning is most needed. (NIPS section), except that tasks LT and AA (task of intgrest
have the same next-to-strongest topic. Note that thesé-tnex

) strongest” topic are all relatively weak even in their rejpye

5.4. Experiment 4: NIPS data NIPS sections, compared to the strongest topic listed ifirsste
column. Note also that these next-to-strongest topics lace a
used in other tasks (NIPS sections) but to a weaker exteat; th
can be interpreted as concepts encountered in many NIPS pa-
npers and most commonly in the particular section where their

inferred probability was greatest. The strongest topic lzan
a\}nterpreted as general concepts of learning from data diaclu

erage document length 950 words. The most frequent group mg_neural Iear_nin_g (gﬁlrgopriagely forthe N(I:IPS conferelnttm
is "Algorithms and Architecture”, which we choose as the in- {OPIC most active in can be interpreted as general cesicep

teresting task. Like the 20newsgroups experiment we run OLﬁ’f rgimforcement Iea.rning especially.in ro_botics; the tomiost
model, MT-HDPLDA and single-task HDP models and evalu—aCt'Ve_ n '_\IS can be interpreted as _blologl_ca_ll concepts oferie_u
ate performance over the held-out dataset in a 5-fold craiss v learning; in _LT and AAhe most active topic is somewhqt_\@rle
idation setting. The number of documents per tasid the hy- but can be |_nter|c_)reted as general goncep_ts of probgbﬂzadc
perparameters and the other experimental settingghe same kernel learning; in AP the most active topic can be mtemlet.
as the ones used in 20newsgroups experiment. Figure 10 shofis concepts of rules and schedules (for example for learning
the results: single-task learning works poorly as befdigere agents).

is not a large performance improvement for our model against

MT-HDPLDA; however we observe essentially similar shapes The last topic (last column of the table) is another weakdopi
of the peformance curves in both the NIPS and the 20 newswhich is uniformly present in all NIPS tasks. It can be inter-
groups data, and additionally observe consistefiedince in  preted as a mixture of concepts related to the structure afa p
several domains in the artificial continuum, which demaatss  per (words like “discussion” and “conclusion”) and to geader
an overall better predictive performance for our model espeexperimental settings which might appear across seveRSNI
cially under limited tasks and limited numbers of documémts sections like neuroscience and control, navigation anaitey

the task of interest. (words such as “positions”, “recorded” and “threshold”).
11

We compare our model to MT-HDPLDA on another real-life
collection of count data, a collection of scientific artelepre-
sented as bags-of-words.

We take the five most frequent sections of NIPS articles fro
1987 to 1999 (httg/www.gatsby.ucl.ac.ykywteh); in total
they contain 1147 documents with vocabulary size 1321 and



Strongest Topic CNP NS LT and AA AP Weakest Shared Topic

learning control neurons variables rules recorded
network reinforcement neuron kernel coarse side
model robot cortical markov instruction positions
time learned arbors conditional fine discussions
input policy dendritic group schedule technical
neural tangent competition likelihood instructions  conclusions
algorithm interpolation cells face dec scales
data steps axonal database blocks fire
set initial cell generalized rl exploration
system grid modules matrix resolution threshold

Table 2: Top ten words in the strongest topic, four nextttorgyest but relatively weak topicand the weakest shared topior the NIPS article collection. The
NIPS collection is divided into five sections (tasks): CNPon@ol Navigation and Planning, NS - Neuroscience, LT - beag Theory, AA - Algorithms and
Architecture, and AP - Applications. The strongest topiméd out to be the same in every tasks; the top words in that &op listed in the first column. The next
strongest topic is dierent in every task (except the task of interest AA), andoiswords are listed under each task’s name. The weakeststugie is weakly
present in all tasks.

6. Discussion ple, in Figure 8 all topics in the domain are relatively stytyn
present in their respective tasks, thus here the perforenanc
Overall we observe that under limited tasks and docugrease is due to learning strong topics well. The fact that ou
ments our model has better predictive performance than MTmethod outperforms MT-HDPLDA in the intermediate domains

HDPLDA. Our experiments suggest that this happens particyhere shared topics are weakly present in some tasks (see Fig
ularly in data domains where there are weak shared topics ifre 5) suggests our model is useful in such domains.

some tasks. Since the MT-HDPLDA model makes too strong

. . . : X . The continuum of multi-task domains studied in Experiment
assumptions (it couples topic sharing with topic strengtiy

.1 (Figure 5) is not an exhaustive list of all multi-task do-
%nains; although the continuum already showed an advantage
S ) . to our method in domains where some shared topics are weakly
of topics in individual tasks in such settings. present in tasks, even largerffdrences between our method

Our model outperformed MT’HDFLDA in Fig”FeS 9 and and MT-HDPLDA might be available in other multi-task sce-
10 when the number of documents in the task of interest Wag i

. . “narios.
small. One potential reason is that MT-HDPLDA couples topic | di | dth dicti ;
strength with sharing, thus it assumes the topics shardukin t ; nhour Cisef §tu €S Whe eva uatﬁ E) € p;e |fct|ve pe:jorbmance
task of interest are likely to be the ones that are strongen th or the task-of-interest, however the benetit of our modebis

other tasks: then weaker shared features of the task of intef" artifact of the particular newsgro®yiPS section choice that
est (topics that are present in that task and in other tasis pwe used: the artificial experiment shows that our method has a

which are not always strongly present in the tasks where thegdvantage even when average over a large number of mikti-tas

appear) might not be learned well by MT-HDPLDA when few ceknarlgf]. Mr?re sylr(nm%trlc scenarlis (e.g. pred|ct|onél In-a
data are available. In Figures 9 and 10, performance ineseas 25K With within-task and across-tas accuracies) acevaly

for both our model and MT-HDPLDA as the number of data/MmPortant and will be considered in further work. Moreover
in the task of interest grows: this suggests that if fisient in addition to the predictive likelihood we believe it is cial

number of data points is available, MT-HDPLDA may be able© measure the compre_hensibility_ of the extracted topios, f
to learn also weaker topics in the task of interest since ¢ta d €X@MPIe in terms of their semantic coherence. Recently [17]

provides sificient evidence to make them visible in the poste-ha\'e proposed the topic coherence score (a pointwise mutual
fior despite the coupling assumption information score) this can be used in future work as addftio

In theory we expect that in both MT-HDPLDA and in our evaluation criterion for our model and other topic models.
method, learning both strong and weak topics will benefirfro ~ The IBP has a “rich-get-richer” property where new matrix
having more tasks: as more tasks become available, thestopitoWws are likely to use frequently activated old topics rathan
that are shared across most of the tasks can be learned fraftivating new topics; this keeps the IBP matrix sparse. How
more data. In MT-HDPLDA the evidence for topics accumu-€Ver, in our setting there is only one IBP matrix row per task
lates through the HDP hierarchy, and the benefit of many tasklata collection), thus none of the topics can become vety ri
will be greatest for strong shared topics due to the couplgyg  With C tasks, each topic is activated at mGstimes. Then the
sumption of sharing and strength. In our method the evidencéch-get-richer property has only a weaket, and new rows of
of sharing accumulates in the learning of the IBP matrix andhe IBP matrix are likely to activate more topics than needed
the extra sparsity vector, without a tight coupling to léagn ~ keep the topics sparsely used and prevent activating togy man
the topic strengths. Both our model and MT-HDPLDA increasetopics, our model uses an additional sparsity inducing. step
their performance as more tasks become available; for exam- In this paper we set the prior for the additional sparsity by a
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a probable reason is the lack of strong evidence for the peese



very simple manner according to the average number of docweur method in cases where weak shared topics are likely to ex-
ments per task, as described in Section 5 invloelel Selection  ist, and there are not very many documents or tasks to learn th
paragraph. A cross-validation approach or a Bayesian,priomodels from.

could also have been used; however, this simple first chdice a

ready worked well. Additionally, it is possible that a variaf

IBP (e.g. through some variant of Hierarchical Beta Progess 8. Acknowledgments

[18]) could achieve the saméfect as our additional sparsity
step; this would be an interesting direction of future work.

Another recent line of research is on statistic domain adapt Authors belong to the Finnish Centre of Excellence in Com-

tion involving HDP and related models specially in the cahte put?tl(;)rllal Anfe(jrence ]IEQE_Selar((;hd(C_O_IN). Iggg\gg?rk ;\'322352%

of sequential data. In several works time dependence ig-incoP2red by Academy of Finiand decisions - an -

porated to model time evolving topics among documents apl_:mmsh Doctoral Programme in Computational Smencesand!

pearing in a sequence. For instance, the dynamic HDP mod prt by PAS_CALZ.NOE’ ICT 216886. We thank Samugl Kaski
or fruitful discussions and support throughout the projgébe

in [19] and [20] models the time evolution of topics and en- lculati ted ab ; di L USi
. . . D
courages topic sharing among temporally proximal datas&he caicuiations preserted above were pertormedin part usimg ¢
uter resources within the Aalto University School of Scien

models are for a single task setting; in contrast, our mode,rl) _ AR
and MT-HDPLDA consider settings with multiple document Science-IT" project.
collections. The recent single-task topic model of [21]dstu

ies sequential evolution not over time but rather within woc

ments; it uses a two parameter generalization of Dirichlet p

cess prior; a Poisson Dirichlet prior (Pitman-Yor proceds) APPENDIX A
simultaneously models the hierarchical and the sequeapal

structures within subparts (groups of sentences of papagja  As described in Section 4.1, in order to sample the topic as-
of documents. The model is again for a single task Setti”&ignmemzwe wish to approximate the expectation 0g&. In
whereas our model and MT-HDPLDA consider settings withthjs section we describe the approximation; it is an extemsi
multiple document collections. Another interesting agmtvis  of the technique used to approximate the expectation o€ topi
the HDP based evolutionary model in [22], which models themixtured for a single task model in [9].

time evolution of topics both within and across multiple-cor  \yss first rewrite the expectation as

pora. The paper focuses on mixture models rather than topic

models; each document is generated by a mixture component, ® ~0) ~

and strengths of mixture components over time and corpera ar E[6; glz\can A] o f 6c.q P(Ocd, 2\ca.nlA)dbcq

modeled through a HDP construction; evolution is modeléd fo i . . .

lowing a Markovian assumption. In contrast, we focus ondopi o f 08, P(z\c.dnlfcd, A)P(Bc.alA)dOcq

models and unlike HDP we decouple component (here topic)

strength from its sharing. o f 792‘3, P(Ze.d\nlBe.d) P(Z\c.dlfc.ds A) P(BcglA)dBe g

7. Conclusions and approximating(z,c4lfcq, A) ~ p(z,cqlA) which is constant

We have introduced a sparse multi-task topic model that is ¥/ith respect td)(cl,?r we further write
robust and flexible method to model strong and weak sharing
of topics in multiple heterogeneous collections of documents E[G(C'%lz\c,d,n, Al
in an unsupervised mannefhe generative model decouples ) 5
the sharing of topics from the generation of the topic sttiesig o f cd f Z Z P(Zc.d\nlfc.a)
by using a spike-and-slab prior. The proposed non-parémetr P e -1 You¥=1
model outperforms a state of the _art Hierarchical D|r|(_:FHEﬂ- P(@c.alc. be, do)dBeap(@Sly) p(bSln®, @) p(Wele)dgy .
cess based topic model on a simulated data continuum and

In case stud|e§ on real data with small training seits.our Sincep(zc,d\n@qd) is the value of a Multinomial distribution and
real-data experiments (20 newsgroups and NIPS data sets) Obkéc,dh//c, be. #.) is the value of a Dirichlet, their product is pro-
model and the state of .the art MT'H[,)PLDA method are bot ortional to the value of another Dirichlet; we can thenHert
much better than the single-task topic model, and our mod write the equation as

still achieves further improvement: the error bars show wWe

get a consistent improvement over MT-HDPLDA. In particular E[a(k)lz Al

our experiments suggest that our model extraemsk topics dif\edn

better than the previous method, when the number of availabl f dg2 Z Z féf;k()jDir(éc,dmc,d,\c,d,n + ¢)dbeq
tasks and documents per task is low. This shows that our new Jé¢; W o 2

multi-task approach is a promising alternative to the stard o

approach in methods like MT-HDPLDA. Thus we recommend  P(cly)P(bclz®, @) p(ycle)
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and since the integral ovékq simply takes the:th element each Gibbs sampling so we perform an approximation. The
from the mean of the Dirichlet distribution, we finally ariat  E[f(X)|Y] can be approximated by the first order Taylor expan-
sion E[f(X)|Y] ~ f(E[X|Y]). We approximate the expectation

E[6, d|2\cd Ay under the following cases:
— (K i i
(nf!?, can (k)) Case 1: ncd\Cdn 0 andnc()\ndc > 0, i.e. thek-th topic
fd¢c 0 N Z by D0 is active in the task which meangy® = b = 1, Eq (A.8)
be:b=14, W 1 Medcdn becomes:
p(ecly) p(bgln®, @) p(yele) - (A.1) “ “ “ 1
i i i E[6. |Z\cdn A] o« (N + E[
On the right-hand side, the sums over the binary vedipend ealzican Al < (Mg can* @) (C)d cdnt XYL+ Y2
y¢ are only over values whosh entry is 1. This is equivalent ® o o
to taking the sum over all possible g\gectors(k)but multiplyihgt (nc,d,\c,d ntdc)
summed function by the binary flabs’ andy’, and the above 0 Q) N
. . ’ : (N(0)
equation can therefore be rewritten as Medican ™ (,)Z dei|+ 0 % mhyle|+aeandy
165,10 >0 I1G0.0>0
0y 0,0 (A.11)
E[O(Ckélz\c,d,n, Al B ()C’d’\c’dn OMOMONE (A-2) () (k) i i
g ”({,d,\c,d,nJ"Z.bc VASS Case2: n ()\ndc—Oandn \ndc>0|e thek-th topic
i

does not appear in the current task but is active in the corpus

. 0 0 (J) so the expectation in Eq (A.8) is
Let us divide}; be”, y¢ into active topics corresponding to

i
. 1 . . 1
entries ofp inb (these are the topics representfd in the corpus) E[0(k()j|2\cd A o« /90 E
and inactive topics corresponding to elements’in cdmss n(-)d\ anF X Y+ y®
c,a,\c,a,n
(1, () () _ () (1),,(J) 4(J) ;
Z be v de” = Z ¢ + Z be've g’ (A3) « (y¥7Me) /(”i)d cant Z ¢g)}
j j:n(k()_)\ >0 ]n(k())\ =0 )
c()\n c()\n ].ncv(.)v\n>0
=X+Y (A.4)
+ [ Z ayWel 448 4 a/ealaz) (A.12)
We further split the inactive term into two componelisand W oaizk
i Q>0 & 1%
Y, thus:
Zb(j) (OM0) Case 3: n® = 0 implying the topic is inactive in the
e Ve be ()()\ndc L.
. whole corpus. In this case we evaluate the probability of as-
signing any of the infinite number of components:
= 3 604 S0 4 3 Py g0 gning any P
j:ngk)_ >0 jeds j€dz Y.
01 E[0X2,can Al « E z (A.13)
=X+Y1+Y, (A.5) n({,d,\c,d,n+x+Yl+Y2
where: o (aeayay)
Ji S:Jz) "= -0 andn(l))() " >0 (A.6) nf:)d \cdn + { Z ¢(l)} { ()Z ﬂ(j)y(i)e} + aeqq
3 nd . —p A7 i) 1070 IG5 0.0>0
20 a0 = (A7) (A.14)

Thus (A.2) becomes: These cases togetherflce to compute the approximated ex-

(n n® (k))b(k)lﬁ(k) pectation.
E[6%)Z,can Al o< E (jd Aodn © (A.8)
Modycant X+ Y1+ Y2 APPENDIX B
The expectation oY is: In our simulated experiment of Figure 5 we construct a con-

tinuum of synthetic domains. From each domain we generate

E[VIn*, a.y. €] = E[Yiln®, 7. €] + E[Yala, 7. €] (A-9)  several multi-task learning problems: each multi-taskrizg

E[Yin®, v, €] = Z 7y problem consists of several data sets (tasks).
jea, In detail, each learning problem is generated from the model
E[Yale, 7, €] = aaiaze (A.10)  Structure of our model, that is, from a multi-task topic miode

There are 10 active topics across 10 tasks. The overall sum of
Since it is not feasible to evaluate the above expectation ipseudocounts across topics was set to 300 for each task. The
closed form as we would need to evaluate it for every word indivision of pseudocounts across topics in each task was fixed
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according to the continuum as described below. For each tasks]
¢, elements of the vectds, were set to 1 if the correspond-
ing topic had been allocated nonzero pseudocounts, and to 0
otherwise. In order to generate small training data, thicttp 5]
word distributions were generated according to the spagse t
model in [23]. 5
At each intermediate point (domain) in the continuum, the H
prior topic strength vector is generated by linearly mixing

extreme values ap., with a mixing codficientu between zero

i 8
and onegp, = (1- u):))'c-Eft + u¢chght where “Left” and “Right” ]

denote the two extreme choices. The mixingfiicent corre-
sponds to the position in the domain continuum (horizontal a
of Figure 5) so thati = 0 at the left end of the continuum and
u = 1 at the right end, and takes intermediate values between
the two ends.

The first extreme choicéor the topic pseudocount vectors

'c-en in each taslc is as follows. In the task of interest=
1, only the first topic is active (pseudocount 300), all osher [11]
have pseudocount 0. In a supplementary task 1, the first [12]
topic is active with pseudocount 150, and additionally &-tas
specific topic (topic index, same as the task index) is active [13]
with pseudocount 150; all other topics have pseudocoun 0. |
this extreme choice, the first topic is very strong (it is \&eti [14]
in all tasks with high pseudocount) and other topics are also

(10]

strong (active in one task with pseudocount 150). $eeond  [15]
extreme choicdor pseudocount vector¢cleght is as follows. [16]

For each taslc, three randomly picked topics were activated
(their pseudocount was set to 100 each) and other topics were
inactive (pseudocount 0). The overall strength of eachctopi[17]
then depends on how many tasks picked them; all topics active

in at least one task have total pseudocount at least 100. [18]
In both extreme choice¢'geft andq)fIght the active topics

are strongly active in their respective tasks. Howeverstgtef  [19]

which topics are active in which task<fi@irs between the ex-

tremes. In particular, in “Left” the task of interest (TOI3es [20]

only topic 1 so thal;S'T-glft =[300000000000]whereasin

“Right” the task of interest uses arandom three topics stftha

examplepR 9™ = [0 0 100 0 200 0 0 100 0 0]. Then the inter- "

polated weight vector for the task of interest contains ek

ues, for example = 0.1 yields¢q, = (1—u)(1)'-eﬂ+u</)Right = [22]

’ TOI TOI TOI

[270 0 10 0 10 0 0 10 0 Q]. The topic strength vectors of other
tasks also get weak values through the interpolation.

We sample the two extreme choices several times; each tin{é’!
we generate the learning problems for the whole continuom (f
both extreme positions in the continuum, and for each inéerm
diate position by interpolating the pseudocount vectordeas
scribed above).

References

[1] D.M.Blei, A. Y. Ng, M. |. Jordan, J. L&erty, Latent Dirichlet allocation,
Journal of Machine Learning Research 3 (2003) 993-1022.

[2] T. L. Griffiths, M. Steyvers, Finding scientific topics, Proceedingthef
National Academy of Sciences 101 (2004) 5228-5235.

[3] A. Perina, P. Lovato, V. Murino, M. Bicego, Biologicallgware Latent
Dirichlet allocation for the classification of expressiorcroarray, in: In-
ternational Conference on Pattern Recognition in Bioimiatics, 2010.

15

J. Caldas, N. Gehlenborg, E. Kettunen, A. Faisal, M. RoAt Nichol-
son, S. Knuutila, A. Brazma, S. Kaski, Data-driven inforimatretrieval
in heterogeneous collections of transcriptomics dates|BiM2sto ma-
lignant pleural mesothelioma., Bioinformatics 28 (2) (2pi246-i253.
S. Thrun, Is learning the n-th thing any easier than learnhe first, in:
Advances in Neural Information Processing Systems, The Ril@ss,
1996, pp. 640-646.

R. Caruana, Multitask learning, Machine Learning 2892p41—75.

T. Griffiths, Z. Ghahramani, Infinite latent feature models and td&am
buffet process, in: Advances in Neural Information Processiygje®ns
18, MIT Press, 2006, pp. 475-482.

Y. W. Teh, M. I. Jordan, M. J. Beal, D. M. Blei, Hierarchidairichlet pro-
cesses, Journal of the American Statistical Associatidn(4@6) (2006)
1566-1581.

S. Williamson, C. Wang, K. A. Heller, D. M. Blei, The IBP ogound
Dirichlet process and its application to focused topic ntiodein: Pro-
ceedings of the 27th International Conference on Machirsnirg, Om-
nipress, 2010, pp. 1151-1158.

A. Faisal, J. Gillberg, J. Peltonen, G. Leen, S. KaskaiSe nonparamet-
ric topic model for transfer learning, in: Proceedings & #0th European
Symposium on Atrtificial Neural Networks, Computationaléltigence
and Machine Learning, 2012.

T. S. Ferguson, A Bayesian analysis of some nonpar&ngtoblems,
The Annals of Statistics 1 (2) (1973) 209-230.

J. Sethuraman, A constructive definition of Dirichletigps, Statistica
Sinica 4 (1994) 639650.

H. Ishwaran, J. Rao, Spike and slab variable selectfmequentist and
Bayesian strategies, Annals of Statistics 33 (2) (2005)-7328.

Y. W. Teh, Stick-breaking construction for the Indiaunfiet process, in:
Proceedings of the International Conference on Atrtifigiélligence and
Statistics, 2007, pp. 1-10.

W. R. Gilks, P. Wild, Adaptive rejection sampling forldgis sampling,
Applied Statistics 41 (1992) 337-348.

W. Li, A. Mccallum, Pachinko Allocation: DAG-structad mixture mod-
els of topic correlations, in: International ConferenceMechine Learn-
ing, 2006.

D. Newman, E. Bonilla, W. Buntine, Improving topic cakace with reg-
ularized topic models, in: Advances in Neural Informatiomdssing
Systems, The MIT Press, 2011.

R. Thibaux, M. Jordon, Hierarchical Beta processes taedndian buf-
fet process, in: Proceedings of the International Confezem Artificial
Intelligence and Statistics, 2007, pp. 564-571.

L. Ren, D. Dunson, L. Carin, The dynamic hierarchicati€hlet process,
in: Proceedings of the 25th International conference onHif@clearning,
2008, pp. 824-831.

L. Ren, D. Dunson, S. Lindroth, L. Carin, Dynamic norgraetric
Bayesian models for analysis of music, Journal Americatisiital As-
sociation 105 (490) (2010) 458-472.

L. Du, W. Buntine, H. Jin, Modelling sequential text vian adaptive
topic model, in: Empirical Methods in Natural Language Rssing,
2012.

J. Zhang, Y. Song, C. Zhang, S. Liu, Evolutionary hiehécal Dirichlet
processes for multiple correlated time-varying corpona, Rroceedings
of the ACM SIGKDD International Conference on Knowledgecdigery
and data mining, 2010, pp. 1079-1088.

C. Wang, D. M. Blei, Decoupling sparsity and smoothnedke discrete
hierarchical Dirichlet process.



