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ABSTRACT

Motivation: Analysis of variance (ANOVA)-type methods are the
default tool for the analysis of data with multiple covariates. These
tools have been generalized to the multivariate analysis of high-
throughput biological datasets, where the main challenge is the
problem of small samplesize and high dimensionality. However,
the existing multi-way analysis methods are not designed for
the currently increasingly important experiments where data is
obtained from multiple sources. Common examples of such settings
include integrated analysis of metabolic and gene expression
profiles, or metabolic profiles from several tissues in our case, in
a controlled multi-way experimental setup where disease status,
medical treatment, gender and time-series are usual covariates.
Results: We extend the applicability area of multivariate, multi-way
ANOVA-type methods to multi-source cases by introducing a novel
Bayesian model. The method is capable of finding covariate-related
dependencies between the sources. It assumes the measurements
consist of groups of similarly behaving variables, and estimates the
multivariate covariate effects and their interaction effects for the
discovered groups of variables. In particular, the method partitions
the effects to those shared between the sources and to source-
specific ones. The method is specifically designed for datasets with
small sample sizes and high dimensionality.

We apply the method to a lipidomics dataset from a lung cancer
study with two-way experimental setup, where measurements
from several tissues with mostly distinct lipids have been taken.
The method is also directly applicable to gene expression and
proteomics.

Availability: An R-implementation is available at http://www.cis.hut
fi/projects/mi/software/multiWayCCA/
Contact: ilkka.huopaniemi@tkk.fi; samuel.kaski@tkk.fi

1 INTRODUCTION

Data from experiments with multiple covariates are usually analyzed
with multi-way analysis of variance (ANOVA)-type methods. A
typical one-way analysis setup in experiments looking for potential
biomarkers for disease is the diseased—healthy differential analysis.
Biological experiments often contain additional covariates, such
as drug treatment groups, gender or time-series, resulting in a
multi-way experimental setup.

The traditional methods for multi-way analysis are univariate
multi-way ANOVA, and its multivariate generalization MANOVA.
In the two-way case, to explain the covariate-related variation of the
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data in one data source, say X, the following linear model is usually
assumed:

x=p" +ay+ B+ (@B),+€. 1

Here the a and b (a=0,...,A and b=0,...,B) are the two
independent covariates, and the main effects ey and B3 and the
interaction effect (o8 )fz ;, model the variation from the baseline level
(grand mean) u*. The € is a noise term.

A recurring problem in ‘omics’ measurements, in particular in
gene expression and metabolomics, is the small number of samples
versus high dimensionality; the traditional multivariate methods
break down due to the singularity of the covariance matrix. A
further disadvantage of MANOVA is that it gives only a P-value
describing the statistical significance of the effects, and the location
(which variables) and direction (up/down) of the effects have to be
deduced afterwards separately by other methods, such as ¢-tests. The
latter holds for ANOVA as well. Dealing with the small sample size
problem is currently an active research topic, and has already led to
working solutions.

Multi-way, multivariate ANOVA-type analysis can be done in the
small sample size cases with simple two-step approaches relying
on a prior principal component analysis (PCA) dimension reduction
(Langsrud, 2002; Smilde et al., 2005). Another approach is forming
sparse latent factors (West, 2003), where some of the variables but
not all are associated with each factor. In this approach, covariate
information is used for factor regression and the model has been
extended with univariate ANOVA models with a joint sparsity prior
(Carvalho et al., 2008; Lucas et al., 2009; Seo et al., 2007).

We have recently introduced a unified Bayesian machine
learning model (Huopaniemi et al., 2009) especially designed for
metabolomic experiments with a two-way setup and small sample
size. This approach assumes similarly behaving correlated groups
of variables, a valid assumption for metabolites, and models the
multi-way covariate-related variation for the groups. The model
is an extension of a factor analyzer and models the statistical
significance of multivariate covariate effects on the low-dimensional
factor space, representing the discovered clusters of variables.

However, the multi-way data analysis problem becomes
complicated when heterogeneous data with multiple covariates
are integrated from multiple sources. Different data sources
usually have distinct, unmatched variable spaces with different
dimensionalities; this becomes evident when considering integration
of transcriptomics and metabolomics data, or metabolic profiles
from different tissues which usually have different metabolites.

If the variable spaces were the same, one might want to consider
the ‘source’ as an additional covariate in a standard ANOVA-type
analysis. However, this is usually impossible since variable spaces
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are in general distinct and unmatched, and covariate effects shared
between the sources cannot be defined a priori.

The desired goal would be to write a linear model for the sources
x and y in the two-source, two-way case as

x=p +ag+ B+ @)y +og+ B+ (@B), +e,
y=u)'+aa+ﬂ;,+(<¥ﬂ)ab+“2vﬁ'ﬂi+(°‘ﬂ)ib+€’ @

where, in addition to the source-specific effects denoted by
superscripts * and ”, there are effects shared between the sources: e,
B and (af),p. Unfortunately, since x and y have distinct variable
spaces, a model including shared effects cannot be defined as simply
as in Equation (2).

It turns out that the problem is accessible under the additional
assumption that the observations x and y from the two different
sources come in pairs (co-occur). Then, we can include into the
model an unknown functional mapping f* and f” from the shared
effects to each source, and estimate it from data. The complete model
reads

x=pw + (g +Bp+@B)ap)
+f (o + B+ (@B, e,
y=w +fY (g +Bp+(@B)up)
2 o+ B, + (@B +e. 3

The model allows decomposing the effects to shared and source-
specific ones, although they are in different variable spaces, which
has not been possible with existing ANOVA-type methods.

This article concentrates on the multivariate analysis of multi-way,
multi-source datasets. The focus is on cases where two or more data
sources have been measured from each biological sample (paired
samples), but no a priori known matching of the variables in different
sources needs to be assumed and sources can have different numbers
of variables.

No methods currently exist for the analysis of data from multi-
way, multi-source experimental setups. Since the focus of biological
research has moved toward multi-source experiments, there is a need
for multi-way, multi-source analysis methods.

In order to connect different kinds of sources we need paired
samples. Setups with paired samples are becoming increasingly
relevant as experiments that use two or more measurement
techniques for each patient, or study a set of tissues of each
patient, are becoming more and more common. When for example
a metabolomic and a gene expression (or proteomic) profile have
been measured from each patient, the samples (profiles) of the two
sources are paired, allowing for modeling of dependencies between
them.

A widely known classical statistical method for finding
dependencies between datasets is canonical correlation analysis
[CCA; Hotelling, 1936], for which there exist recent sparse
variants (Archambeau and Bach, 2009; Parkhomenko er al.,
2007; Waaijenborg and Zwinderman, 2007; Witten and Tibshirani,
2009). The CCA-type two-source analysis does not take covariate
information into account and has therefore evolved as a separate
field from ANOVA-type methods, although both are equally based
on traditional multivariate statistics. In the CCA, there are at least
two data-sources, X and y, with paired samples and distinct variable
spaces, and the task is to find canonical latent variables in each
source such that the dependency is maximized. The relationship of
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Fig. 1. (top) Multi-way analysis studies datasets with two or more covariates
for each sample. The task is to find the effects of the covariates in the data.
(middle) Multi-source analysis studies dependencies between two or more
datasets with paired samples without covariate information. (bottom) Multi-
way, multi-source analysis combines both tasks. The task is to find shared
and source-specific covariate effects. In the data matrices, rows represent
samples, and columns represent variables.

these two analysis setups and our new task, multi-way, multi-source
analysis, is illustrated in Figure 1.

An initial step for utilizing covariate information in multi-source
analysis was taken in a sparse supervised CCA method (Witten and
Tibshirani, 2009). The method can handle multi-source setups with
one-way covariate information approximately by a simple two-step
approach where a coarse dimension reduction for each data source is
first performed by choosing variables with a high enough univariate
correlation with the outcome variable, and then performing sparse
CCA.

Common data integration methods also include partial least
squares-based classification (Webb-Robertson er al., 2009) and
regression (Le Cao et al., 2009) studies. It is very promising that
integrating multiple sources has been shown (Girolami and Zhong,
2007) to increase classification accuracy compared to using a single
source. Here, we extend from classification studies to actual latent
effect models.
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In this article, we present a unified Bayesian machine learning
method that can solve the multi-way, multi-source analysis task in a
single model. The multiple sources with different variable spaces are
integrated by an extended Bayesian CCA that solves the multi-way
analysis in a space shared by the sources. The method solves the
problem of high dimensionality and small sample size by finding
groups of similarly behaving variables and estimating the main
covariate effects and the interaction effects in a low-dimensional
latent-variable space representing the clusters found. Furthermore,
the method partitions these effects to shared effects between the
sources and to source-specific effects. Correlations between the
groups of variables between and within sources are detected as well.
The method also finds groups of variables behaving similarly in each
source, but not responding to the external covariates and determines
whether they have a dependency shared between the sources.

The method is specifically designed for small sample size, high-
dimensional datasets. Given the Bayesian treatment, a rigorous
estimate for the uncertainty of the effects is inherently obtained.
In addition to estimating the significance of the shared and source-
specific multi-way effects, the method directly pinpoints (in contrast
to MANOVA) which group(s) of features are up/downregulated.

We demonstrate the method on simulated data, and show how it
finds shared and source-specific two-way effects even with small
sample sizes. We then apply the method on a lipidomics lung cancer
dataset where lipidomic profiles have been measured from several
tissues with mostly distinct lipids. In addition to the diseased—
healthy division, half of both populations have been given a test
anticancer drug.

The method is not restricted to metabolomics; it is generally
applicable when the variables can be assumed to form mutually
correlated groups, for instance in gene expression and proteomics.

2 METHODS

We formulate the new model for the multivariate analysis of multi-way,
multi-source datasets under the so-called ‘large p, small n’ conditions (high
dimensionality p, small number of observations n) as a hierarchical Bayesian
machine learning model.

To solve the modeling task, we need three components: (i) regularized
dimension reduction, (ii) combination of different data sources, and
(iii) multi-way analysis. Following the basic idea of hierarchical Bayesian
modeling, these components are formulated as parts of an overall generative
model that is assumed to have generated the observed data x and y. The model
parameters are learned jointly with Gibbs sampling; the Gibbs-formulas are
presented in Section 2.6. We will first summarize the main components of
the model shown in Figure 2, and then describe each part in detail.

To deal with the small sample size (n<<p) problem, we reduce the
dimensionality of the data x and y from the two sources into their respective
latent variables x/“ and y**. This is done with factor analyzers (FA), which
are additionally regularized by assuming that the variables come in groups
and each group comes from one factor only. This is a strongly regularizing
assumption effective for solving the ‘large p, small n’ problem. The clustering
assumption is particularly sensible under the assumption that metabolomics
data, our main application, contains strongly correlated groups of variables
(Steuer, 2006) associated to the same biochemical networks.

The second necessary element is search for components shared by the two
different sources x/“ and y’, needed for finding shared multi-way effects.
Given paired data, this is a task for Bayesian CCA (BCCA; Archambeau
and Bach, 2009; Klami and Kaski, 2007; Wang, 2007), which introduces a
new hierarchy level where a latent variable z captures the shared variation
between the sources.

ANOVA

CC

FA

5O
@)
G

Fig. 2. Plate diagram of the graphical model.

The third necessary element, the ANOVA-type multi-way analysis, is
supplemented by assigning the effect terms describing the linear ANOVA
model as priors on the latent variables z. The observed covariates a and b
choose the correct effects for each sample.

In effect, the model consists of two FA, where the loadings assume cluster
memberships (multiplied with scales), a CCA-type generative model for
combining the sources, and population-specific priors on z that assume
ANOVA-type multi-way structure. The details of the model are now
presented for the two-way, two-source case for simplicity of presentation;
generalization to multiple ‘ways’ and sources is straightforward.

2.1 Dimension reduction by FA

Dimension reduction is done by a FA (analogous to PCA), one for each
source, X and y. Factor analysis assumes that the high-dimensional data
spaces x and y have been generated by low-dimensional latent variable spaces
x4t and x4, respectively.

To overcome the n < p problem, the FA are regularized by clustering. We
assume similarly behaving groups of variables and search for them in the
Gibbs sampling. Each factor now represents one cluster of variables. All this
is done in a single unified model.

2.1.1 Factor analysis model The factor analysis model (Roweis and
Ghahramani, 1999) for n exchangeable replicates is

X;at ’\’N(O, ‘I,)C)’
Xj"'N([LX—‘erX]l-m,AX). (4)

Here V* is the projection matrix that is assumed to generate the data
vector X; from the latent variable x_;“’, whose elements are known as factor
scores. The V*x/“ models such common variance of the data around the
variable means p* that can be explained by factors common to all or many
variables, effectively estimated based on the sample covariance matrix of the
dataset. The sample covariance becomes decomposed into 2 =VVT LAY,
where A” is a diagonal residual-variance matrix with diagonal elements O‘l-z
modeling the variable-specific noise not explained by the latent factors. The
covariance matrix of x/¥_  W* comes here from the Bayesian CCA. Note
that the baseline means of variables u* are estimated directly in the x-space,
whereas the ANOVA effects will be estimated in the shared latent variable
z-space, higher in the hierarchy.
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At this point, when n <p, V* cannot be estimated due to the singularity
of the sample covariance matrix. To overcome the n < p problem, we now
restrict V* to a non-singular clustering matrix, suitable for data containing
groups of similarly behaving variables.

2.1.2  Projection matrix that assumes grouped variables We make the
assumption that there are correlated groups of variables in the data, and
restrict the projection matrix V* to a clustering-type of matrix, where each
variable comes from exactly one factor. This means that in the model the
generated values within the whole cluster are being governed by one latent
variable. The projection matrix V* is positive-valued, each row having one
non-zero element corresponding to the cluster assignment of the variable,
multiplied by the variable-specific scale A;:

A 0 0
0 0 A

N IR

V= 0 A 0 | ®
0 Air1 O

The location of the only non-zero value, A; on row i, is denoted by
v;. It follows a multinomial distribution with one observation, with an
uninformative prior distribution ;. The 7; could also be used to encode
prior information on the known grouping of variables. The variation of each
variable within a cluster is assumed to be modeled by the same latent variable,
but the scales A; may differ. Estimating the A; is explained in Section 2.5.
The variable-specific residual variances aiz, that are the diagonal elements
of A¥, follow a scaled Inv- XZ with an uninformative prior.

The information in each high-dimensional sample is now represented by
a low-dimensional latent variable corresponding to a vector of factor scores,
one score for each cluster. The integration of the data sources including the
decomposition into shared and source-specific effects is now done in the
low-dimensional latent variable space.

2.2 Integrating the sources by Bayesian CCA

When modeling dependencies between datasets, CCA searches the variation
shared between the datasets and separates it from the dataset-specific
variation. In the probabilistic Bayesian formulation of CCA (BCCA; Bach
and Jordan, 2005; Klami and Kaski, 2007), common variation is modelled
by a latent variable z; common to both sources. Note that modelling
dependencies by a shared low-dimensional latent variable z; for each sample
Jj allows to correctly utilize the pairing information and model dependencies
between the sources, crucial in integrating the data-sources.

The z now model dependencies between the low-dimensional latent
variable spaces x/ and y'.

The generative model of CCA has been formulated (Bach and Jordan,
2005; Klami and Kaski, 2007) for sample j as

2 ~N(0,1),
X~ N(Wz;, W), (6)

and likewise for y. Here, we have assumed no mean parameter since the mean
of the data is estimated in the factor analysis part. The W* is a projection
matrix from the latent variables z;, and W* is a matrix of marginal variances.
The crucial thing is that the latent variables z are shared between the two
datasets, while everything else is independent. The prior distributions for the
Bayesian CCA were chosen (Klami and Kaski, 2007) as

w;~N(0, BiI),
Bi~1G(ao, Bo)s
\l/x,\l/y’\'IW(S(),V()). (7)

Here, w; denotes the /th column of W, and IG and IW are shorthand
notations for the inverse Gamma and inverse Wishart distributions. The priors

Fig. 3. The plate diagram for the decomposition of the covariate effects into
shared and source-specific components.

for the covariance matrices W* and WY are conventional conjugate priors,
and the prior for the projection matrices is the so-called automatic
relevance determination (ARD) prior used for example in Bayesian principal
component analysis (Bishop, 1999).

2.3 Estimating the multivariate, two-way ANOVA-type
effects

The linear model for the two-way covariate effects is set on the shared latent
variables z;, in order to have access to effects shared between both spaces
x" and y*' . In the K,-dimensional latent variable space we then have

zj:aa+ﬂb+(aﬁ)ab+ej» (8)

where o, and 8, are the shared main effects, (e¢f8),, is the shared interaction
effect and €; is a noise term. The effects are modeled as population priors
on the latent variables, which in turn are given Gaussian priors &,, B,
(@B)as ~N(0,D).

Note that the baselines (grand means) u* and u” are estimated in the
lower level of hierarchy, that is, directly in the x and y spaces, and do not
appear here.

To simplify the interpretation of the effects we center the grand means to
the mean of one control population. A similar choice of baseline has been
done successfully in other ANOVA studies (Lucas et al., 2009; Seo et al.,
2007), and it does not significantly sacrifice generality. We set the parameter
vector u*, describing variable-specific means, to the mean of the control
group. One group, denoted by (a,b)=(0,0), now becomes the baseline to
which other classes are compared by adding main and interaction effects.

Due to the new centering, the terms &, By, (@B)oo, (@B)o» and (af)a0
become zero and are not estimated. The differences between the populations
are now modeled directly with x/* and y*, and hierarchically by the main
effects a4, B, (@B)ap, a,b>0.

In our case study, the factors a (healthy diseased) and b (untreated treated)
have only two levels and we have populations (a,b)=(0,0),(1,0),(0,1),
(1,1), and there are hence three terms & (disease), §; (treatment) and (af8)1;
(interaction), that model the difference to the control population (a,b)=
(0,0). The subscripts ; and 11 will be dropped in the results section. In this
case study, the healthy untreated is the natural choice for an intuitive control
population.

2.4 Decomposition into shared and source-specific
effects

The decomposition of the effects into shared and source-specific effects is
illustrated in Figure 3. The variation of the data in the latent variable spaces
x4t and yl‘” is modeled by a common term z; and, in addition, the source-

specific terms z;‘ and z; model the variation that cannot be explained by the
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shared term. The model now decomposes to

Zj:da+ﬂb+(‘xﬂ)ah+€js (9)
' =al+ By +(@B), +e, (10)
x]['(“ N'/\/’(vaharedzj +W’S‘p60iﬁczf’ wh). an

The o, and B} are the source-specific main effects, (¢f), is the source-
specific interaction effect, €; and e;‘ are noise terms and Wifhared and
wgpeciﬁc are the shared and specific components of the projection matrix
W*, respectively. The equations are analogous for y. In practice, the
decomposition is implemented by restricting a column of W* in Equation.
(6) be zero for the y-specific components and vice versa for x.

In summary, the complete hierarchical model of Figure 2 is

a9 =0,B(=0,(@B)a0 =0,(@B)o» =0
aq, By, (@B)ab, ey, By (@B e, ~N(0,T)
Zj|jca,b ~N(atq+ By + (@B)ap, 1)

Z} |jca,b ~ N(oty + By + (@B D)

x/l'at ~N (W)s{haredzj +W’srpeciﬁcz;’ )
X~ N (" + VX[ AY). 12)

2.5 Data preprocessing and model complexity selection

For simplicity and to reduce the number of parameters of the model, the
data are preprocessed such that for each variable the mean of the control
population (a=0, b=0) is subtracted and the variable is scaled by the SD of
the control population. This fixes the scales A; to one and the u* and p” to
zero. The factor analysis part now models correlations of the variables. The
possible covariate effects are now comparable with the control population
as discussed in Chapter 2.3.

Model complexity, that is, the number of clusters and latent variables, is
chosen separately for both x/* and y"’ by predictive likelihood in 10-fold
cross-validation as in Huopaniemi et al. (2009).

2.6 Gibbs-formulas

Let us index samples by j=1,...,n, variables by i=1,...,p, and clusters by
k=1,...,K. The Gibbs sampling formulas for the model are as follows:

L~ NG5 ), (13)

where )
=2 (WU o+ By +(@Bav), (14)
=W 'w4n! (15)

Here V,l-“’:[le-“’;yjl.”’], W=[W"WY] and ¥=[¥* 0; 0 ¥]. In this

. y
Subsection, we denote o, =[0o4; & oty . For X,

X~ N 5, (16)
where Nt

A =2 (VO (A g+ W), (17
£ (VT ATV ) (18)

1 1
0~ N gz,—ﬂ,,/—(aﬁ)ah,-),mn, (19)

1
By~ NG j%;(z,-faq,f(aﬁ)a,b),ml), (20)

1 1
(@B)ab NN(M,EZM,(Z] et =By D). @1

and similarly for y. Here n,, np and ng, denote the number of samples
belonging to group a, b, and both a and b, respectively. Finally, the

regularized projection matrix, or clustering matrix V* is sampled one row at
time. The cluster assignment of variable i, v;, is the location of the non-zero
scale parameter A;. The formula is

7k Tp(x;i \MX}Z’,G,')

pvi=k) (22)

S HjP(X/ilMX_,I-Z’,Gi) '

o ~Inv-x (n, j(x;i — Al )?). (23)

Sampling of the CCA-projection matrices is explained in Klami and Kaski
(2007).

2.7 Study design

The sample series corresponds to 28 mice divided into four groups. For the
two tumor-bearing groups, Lewis lung cancer cell suspension containing
8106 cells in 0.2ml saline was injected subcutaneously. The other two
groups were non-tumor bearing normal mice. Twenty-four hours after tumor
inoculation, 100mg/kg/d Rh2 in 0.5% sodium carboxymethyl cellulose
(CMC-Na) was given by gavage to one tumor-bearing group (TR, diseased
treated) and one non-tumor bearing group (NR, healthy treated). The other
two groups were given blank CMC-Na as controls, they are named group
NS for healthy-untreated and TS diseased-untreated for non-tumor bearing
and tumor-bearing groups, respectively. Both Rh2 and CMC-Na groups were
treated daily for 21 days. By the end of experiment, blood was collected from
the orbital sinus and animals were killed by cervical dislocation. The brain,
heart, lung, liver, spleen, thymus and tumor were collected and frozen in
liquid nitrogen immediately.

Samples were analyzed by ultra performance liquid chromatography
(UPLC)/Mass Spectrometry (MS) as described previously (Kotronen et al.,
2010), and the raw data was preprocessed by MZmine (Katajamaa et al.,
2006). Lipids were then identified according to RT and m/z values, resulting
in 168 lipids in blood plasma, 68 in lung and 58 in heart.

3 RESULTS

We first demonstrate the functioning of the method on simulated
data, focusing on how the generated effects are found when the
sample size is small. We then apply the method to a lung cancer
study where lipidomic profiles have been measured from several
tissues of model mouse samples, under a two-way experimental
setup (disease and treatment). Different tissues have distinct lipids.
Finally, the method is compared with a standard (one-source)
MANOVA-approach including dimension reduction with PCA.

3.1 Simulated data

We generate data having known effects, and then study how well the
model finds the effects as a function of the number of measurements.
There are three generated effects, in «, 87 and (B)".

Each of the three effects has strength +2, the x4 and yl“’ are
both 3D, and the x and y are 200D. The marginal covariance
matrices W* and WY have diagonal variance of magnitude 5 and
off-diagonal covariance of magnitude 4. The o; =1 for each variable
i in x and y, and p(v;=k) is uniform for each i and k. The

_ _ y _
w)schared =[1,0,~1], W)scpeciﬁc =[0,1,0], Wshared =[1,0,~1] and
wY =[0,1,0]. Three components are estimated, one shared and

specific
twopsource-speciﬁc components. The model is computed by Gibbs
sampling, discarding 1000 burn-in samples, and collecting 1000
samples for inference. To fix the sign of the effects without affecting
the results, each posterior distribution is mirrored, if necessary, to
have a positive mean, i.e. multiplied by the sign of the posterior
mean.
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Fig. 4. The method finds the generated effects « =+2, 8 =42 and ()" =
+2, encircled by the thick black boxes. The dots show posterior mean and
the thin lines include 95% of posterior mass, at each number of observations.
A consistently non-zero posterior distribution implies a found effect.

The method finds the three generated effects, shown with black
boxes in Figure 4. The uncertainty decreases with increasing number
of observations. Note that the shared effect is found with much less
uncertainty since there is evidence from both sources. With low
numbers of samples, there is considerable uncertainty in the effects
for source-specific components, which can be interpreted as follows:
with such a low number of samples, there is not enough evidence for
the effect. In typical bioinformatics applications there may be 20-50
samples. The model also found the correct clusters of variables (data
not shown).

3.2 Lung cancer study

We then study data from a two-way, two-source, n<<p, so far
unpublished lung cancer mouse model experiment. The diseased
mice are compared with healthy control samples and, in addition,
some mice from both groups have been given a test anticancer drug
treatment. There are thus healthy untreated (=9 mice), diseased
untreated (n="7), healthy treated (n=6) and diseased treated (n =6)
samples. Lipidomic profiles have been measured by UPLC/MS. The
study has a two-way experimental setup, such that the disease effect
«, treatment effect B and an interaction effect («f) on lipid groups
are to be estimated. The high-dimensional lipidomic profiles have
been measured from several tissues of each mouse; the tissues have
partly different lipids that have not been matched, and even the roles
of the matched lipids may be different in different tissues. Hence, the
tissues have different feature spaces with paired samples, implying
a two-source study. We specifically focused on the relationship
between blood and lung tissue profiles. This is particularly relevant
for drug efficacy and safety studies in non-clinical and particularly
in clinical studies, given that plasma samples can be easily collected
in such investigations.

3.2.1 Experiment 1: effects shared by blood and disease tissue
Blood plasma (168 lipids) and lung tissue (68 lipids) were integrated
with the method. The optimal number of clusters for plasma
was six and for lung five, found based on predictive likelihood.
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Fig. 5. In Experiment 1 (left), the method finds a disease effect & and a
treatment effect 8 shared between the two sources, plasma (x) and lung (y)
tissues. In Experiment 2 (right), the method finds only source-specific effects
in plasma (x) when integrating with the heart tissue (y). No effects are found
in heart. The boxplots show quartiles and 95% intervals of posterior mass of
the effects; a consistently non-zero posterior distribution implies an effect is
found.

Three components are learned, one shared and two source-specific.
The method finds (Fig. 5, left) a disease effect & and treatment effect
B shared by both sources; the shared interaction effect is close but
not significant (95% confidence).

The results imply that a cluster of 12 lipids in lung and a cluster
of 20 lipids in blood are mutually coherently upregulated due to
disease, and additionally upregulated by the treatment. Another
cluster of 13 lipids in lung was found to be downregulated due
to the disease and additionally downregulated due to treatment. The
lipids of the downregulated cluster are thus negatively correlated
with the upregulated clusters. The results indicate that there might
be a shared interaction effect («f) with opposite direction, that might
indicate a cure for the disease. However, the effect is not significant
using the common 95% rule. The 28 samples used in the analysis
thus do not give enough evidence for this effect being consistent,
and there is no confirmation that the treatment would cure the cancer
effects. This confirms our prior concern that the specific treatment
might not be efficient. The treatment does, however, affect the same
groups of lipids as the disease, so investigating it as a potential cure
was not a far-fetched hypothesis.

The effects are traced back to the metabolite groups, by first
identifying the responsible row of W* and hence component of
x4 and then the lipid cluster from the V* corresponding to the
x! component.

The upregulated cluster of plasma contains abundant triacylglyce-
rols known to be coregulated (Kotronen et al., 2009), the up-
regulated cluster of lung contains lipotoxic ceramides (Summers,
2006) and proinflammatory lysophosphatidylcholines (Mehta,
2005), while the downregulated cluster of lung contains ether
lipids, known as endogenous antioxidants (Brites et al., 2004). Our
analysis reveals that the drug treatment enhances, not diminishes,
the proinflammatory lipid profile found in the disease. Our findings
thus indicate that the tissue-specific changes due to cancer can be
monitored by specific plasma lipids. Clearly more studies are needed
to establish a mechanistic link between the plasma triacylglycerols
and the observed inflammatory changes in the lung.

3.2.2 Experiment 2: when integrated with a non-diseased tissue,
only source-specific effects are found We then integrate plasma x
with another tissue, heart (58 lipids) y. The results in Figure 5 (right),
show that the disease effect and the treatment effect are found only
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Table 1. The comparison method finds only one effect from the real dataset

Experiment 1
Plasma and lung

Experiment 2
Plasma and heart

o B of o B o

0.02 0.82 0.67 0.01 0.78 0.28

P-value from two-way 50-50 MANOVA where lipidomics profile from the tissues
have been integrated by naive concatenation. The bold values indicate a statistically
significant effect (P <0.05).

in the source-specific component of plasma. This implies that there
is no evidence of shared effects between plasma and heart, and in
fact no consistent effects are found for the heart tissue. The method
finds, however, the same effects, disease « and treatment S in the
plasma as in Experiment 1 and for the same cluster of lipids, which
signifies that the method works well.

In summary, Experiments 1 and 2 combined provide strong
evidence towards the validity of the model: shared effects were
found between tissues having a functional link (plasma and tissue
containing tumor), whereas no link was found when there was a more
remote functional link (between plasma and some other tissue). Then
disease effects were only found in plasma. The specific found effects
need to be studied further.

3.3 Comparison to existing ANOVA-type methods

No earlier multi-way ANOVA-type method can be properly used
to analyze data from multi-way, multi-source experiments; they do
not allow access to shared multi-way effects and therefore cannot
be used for decomposing covariate effects into shared and source-
specific ones. Three imperfect workarounds are possible, presented
below in the two-way, two-source case:

(1) Separate single-source two-way analysis for each source.

(2) Concatenation of the datavectors x and y from the different
sources to a longer vector, followed by a single-source
two-way MANOVA (with PCA dimension reduction). Such
standard MANOVA naturally cannot separate the source-
specific effects from the shared ones at all.

(3) In the rare special case, where the variables between the
sources X and y have the same dimensionality and the
variables of the two sources have a full, a priori known
matching, a naive alternative is to ignore the pairing and
consider the source as a covariate in a three-way MANOVA,
as in Equation 2. This is not possible in our case study since
variable spaces are different.

We compare our method to concatenating the sources and
performing a two-way 50-50 MANOVA (Langsrud, 2002),
MANOVA based on a PCA-dimension reduction, with the real
lipidomics data and with simulated data.

3.3.1 Comparison with real lipidomics data The lipidomic
dataset, with results presented in Figure 5, was analyzed by
concatenating the two data sources and performing 50-50
MANOVA.

The results in Table 1 point out several interesting differences
to the results obtained with our proposed method (Fig. 5). First, the
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Fig. 6. The proposed new method finds the main effects already with 32
samples and the interaction effect from 64 samples. The comparison method,
50-50 MANOVA for concatenated data sources, does not find the effects
reliably for less than 200 samples. The comparison method naturally cannot
distinguish in which data sources the effects are. Results are from the
simulated data of Figure 4 as a function of number of samples. The lines
mark the P=0.05 threshold; the effects below the threshold are considered
statistically significant.

P-values of the covariate effects are given to the overall contatenated
sources, and the method has no means of differentiating shared and
source-specific components. Single-source or univariate analyses
would need to be done for the specific components, but they would
lose the access to dependencies between the sources and therefore
to the shared effects. Second, as a result of using the unoptimal
PCA-dimension reduction, only the disease effect « is found in
each experiment, and the treatment effect 8 is not found. This
demonstrates the superior behavior of the multi-way, multi-source
analysis method that includes a dimension reduction as an integrated
clustering of similarly behaving variables. Third, MANOVA gives
only a P-value, and the locations (which variables) and direction
(up/down) of the effects have to be deduced by other methods, such
as univariate ANOVA and 7-tests.

3.3.2 Comparison with simulated data We compare the
simulated data presented in Figure 4 with 50-50 MANOVA analysis
with concatenated data sources as a function of sample size. The
confidences for the effects, shown as distributions in Figure 4,
are converted to a numerical confidence value comparable with
the P-values given by MANOVA; a distribution above or below
zero with 95% confidence is considered significant. In addition,
the decomposition to shared and source-specific effects is ignored
since MANOVA is unable to perform it. The comparison results are
shown in Figure 6. The proposed method outperforms MANOVA,
especially with small sample sizes, which is the case of interest. The
proposed method finds the main effects with 32 samples and the
interaction effect with 64 samples, whereas the comparison method
needs 256 samples to reliably find all the effects from the data.

4 DISCUSSION

We have generalized ANOVA-type multi-way analysis to cases
where measurements from multiple sources are available for samples
having a multi-way experimental setup. Furthermore, the method
is able to decompose the covariate effects to shared and source-
specific effects, unlike any existing methods. The problem is solved
by a hierarchical latent variable model that extends the generative
model of Bayesian CCA to model multi-way covariate information
of samples, by assigning population-specific priors on the shared
latent variable of CCA.

The method is designed for cases with high dimensionality
and small sample size, common in bioinformatics applications.
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The small sample size problem was solved by assuming that the
variables come in similarly behaving groups, which is reasonable
for the ‘omics’ applications such as metabolomics in this article. An
alternative approach could be using sparse approaches, for instance
Li-regularization or point-mass mixture priors (West, 2003), in
applications where the clustering assumption is unrealistic.

The modeling task is extremely difficult due to the complexity of
the task and small sample size. Hence, it was striking that the method
was capable of finding covariate effects in a real-world lipidomic
multi-way, multi-source dataset.

In practice, the model is applicable for finding disease- or other
covariate-related effects across multiple paired measurements, from
different sources having different variables, which is an increasingly
common and important data-analysis task. The key assumption
needed for connecting different types of measurements is sample
pairing, which allows formulating shared latent variables between
the sources.

The study on lung cancer showed that the model is capable of
separating effects shared by the sources from effects in one source
only. When integrating metabolic profiles from two tissues (blood
and lung) which both had disease and treatment effects, the model
was able to model these effects as shared disease and treatment
effects, establishing a covariate-related dependency between the
tissues.

When the same blood tissue was integrated with heart tissue not
expected to show disease or treatment effects, the method found no
significant shared effects but modeled the effects in blood as source-
specific disease and treatment effects. This result provides evidence
in support of the method and its modeling assumptions.

In the case of simulated data, the generated shared and source-
specific covariate effects were found with relatively small sample
sizes, clearly outperforming the alternative MANOVA approach.
The shared effect was found already with considerably smaller
number of samples, since there is evidence from both sources.

For simplicity, the method was presented in the two-way, two-
source case. Generalization to multiple ‘ways’ is straightforward
by adding more main and interaction terms to Equation 8, and to
multiple sources by adding sources (x,y,...) to Equation 6. Both
generalizations have been tested with simulated data (details not
reported here) where effects were found equally well.

Finally, the method is not restricted to metabolomics; it is
generally applicable to other data types and especially well suited for
combinations of heterogeneous data sources, whenever the variables
can be assumed to form similarly behaving functional groups, such
as in gene expression and proteomics.

As more and more biological multi-source datasets with paired
samples integrating data from different measurement techniques
and/or tissues are becoming available, we expect the method to find
wide applicability.
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