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Abstract— Probe defects are a major source of noise in gene
expression studies. While existing approaches detect noisy probes
based on external information such as genomic alignments,
we introduce and validate a targeted probabilistic method for
analyzing probe reliability directly from expression data and
independently of the noise source. This provides insights into
the various sources of probe-level noise and gives tools to guide
probe design.
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I. I NTRODUCTION

GENE expression profiling is widely used to explore gene
function in various biological conditions, and vast col-

lections of microarray data are available in public repositories.
These large-scale data sets contain valuable information of both
biological and technical aspects of gene expression studies [1],
[2], [3], [4]. However, gene expression data is notoriouslynoisy.
A better understanding of the technical aspects of the measure-
ment process could ultimately lead to enhanced measurement
techniques and improved analytical procedures, providingmore
accurate biological results in future studies.

Short oligonucleotide arrays of Affymetrix [5] are one of the
most widely used gene expression profiling platforms. These
arrays utilize multiple (typically 10-20) 25-mer probes, the so-
called probe set, to measure the expression level of each transcript
target. The probes within an individual probe set are designed to
target the same gene, and ideally they should detect the samegene
expression signal. Use of several probes for each target leads to
more robust estimates of transcript activity, but the reliability of
individual probes is known to vary and may significantly affect the
results of a microarray study [6]. For example, it has been noticed
that a considerable number of probes on short oligonucleotide
arrays do not uniquely match their intended targets [7], [8], [9].
Single-nucleotide polymorphisms, alternative splicing and non-
specific hybridization add biological variation in the data[10],
[11]. Other factors in the measurement process that cause probe-
specific effects include RNA extraction and amplification, binding
affinities, and experiment-specific variation [12], [13].
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Many preprocessing algorithms utilize probe-specific parame-
ters to obtain probeset-level summaries of gene expression. These
include MBEI/dChip [14], RMA [15], gcRMA [16], FARMS [17],
gMOS [18], and BGX [19]. Despite the importance of probe-
specific effects in gene expression analysis and probe design [6],
[20], the various sources of probe-level noise are still poorly
understood. Only a few studies have systematically analyzed
the factors affecting probe reliability. The existing approaches
typically rely on external information such as genomic sequence
data [8], [9], [11] or physical models [21], [22], [23], and cannot
reveal probes that are less reliable due to so far unknown reasons.

We introduce and validate a targeted computational tool for
probe reliability analysis. In contrast to previous probe quality
studies, the proposed model is independent of external infor-
mation or physical models. This can advance the understanding
of the various factors that affect probe reliability. Our approach
is closely related to preprocessing methods that utilize probe-
specific parameters to obtain probeset-level summaries of gene
expression. A key difference in our work is that we assign an
explicit probabilistic measure of reliability to each probe and
demonstrate how this information can be used to assess probe
performance. Explicit estimates and analysis of probe-specific
noise have been missing in preprocessing studies. The method
is applied to gene expression data sets from two human genome
arrays, HG-U95A/Av2 and HG-U133A, and the results are vali-
dated by comparisons to known probe-level error sources: errors
in probe-genome alignment, interrogation position of a probe on
the target sequence, GC-content, and the presence of SNPs inthe
target sequences of the probes. Implementation of the method is
available in R1 at http://www.cis.hut.fi/projects/mi/software/RPA.

II. M ODELING OF PROBE RELIABILITY

The reliability of a probe is ultimately determined by its
ability to measure the expression level of the target transcript.
As the true expression level is unknown in most practical sit-
uations, the collection of probes measuring the same transcript
can provide the ground truth for assessing probe performance
(Supplementary Fig. 1). Our model captures the most coherent
signal of the probe set, and the reliability of individual probes
is estimated with respect to this signal across a large number
of arrays. We provide an explicit probabilistic model for probe-
level observations, and derive the posterior distributionfor the
model parameters describing probe reliability and differential
gene expression. While probe-level preprocessing algorithms aim
at summarizing probe-level measurements [14], [15], [17],[18],
[19], we have specifically targeted a more detailed analysisof

1http://www.r-project.org/
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probe reliability. This avoids certain problems encountered in the
preprocessing context as discussed in the next section.

A. Model assumptions

Our approach is based on a Gaussian model for probe effects.
This is a reasonable starting point for modeling heterogeneous
and partially unknown sources of probe-level noise. The fea-
sibility of related models has already been demonstrated in
the preprocessing context [15], [17]. In a nutshell, we assume
normally distributed probe effects, and identify probe reliability
with its variance over a large number of arrays. In contrast to
many probe-level preprocessing methods, where the mean is the
important quantity, we use probe-level observations of differential
expression. Then the mean cancels out, and the model can focus
on estimating the variances (see Methods for details).

Variance reflects the noise level of the probe and is the
main focus in our analysis. This is different from probe-level
preprocessing methods that focus on estimating probe affinities,
corresponding to the mean parameter of the Gaussian noise
model. For example, the probe-specific parameters in MBEI [14]
and RMA [15] preprocessing models describe probe affinities.
These are constant shifting factors and as such not informative
of probe reliability. Moreover, unidentifiability of probeaffinities
is a known problem in preprocessing studies [15], [24]. The
recently suggested FARMS preprocessing algorithm [17] hasa
more complex model for probe effects than RMA and contains
implicitly a similar probe-specific variance parameter as our
model. However, FARMS does not provide explicit estimates of
the probe-related parameters and is therefore not applicable to
probe reliability analysis.

We avoid the modeling of unidentifiable probe affinities by
using probe-level observations of differential gene expression.
Probe effects are captured in a single probe-specific variance
parameter in the resulting model. The number of probe-related
parameters in the model is halved, and faster and more robust
inferences concerning the parameters of interest can be obtained.
Use of a single parameter for probe effects also leads to more
straightforward interpretations of probe reliability. Cancellation of
the probe affinity parameters in our analysis can partly explain the
previous observations that calculating differential expression at
probe-level improves the analysis of differential gene expression
[25], [26]. However, these methods differ from our approachin
that they are non-probabilistic preprocessing methods that do not
aim at quantifying the uncertainty in the probes.

B. Comparison to known error sources

The model is applied to six publicly available gene expression
data sets, including four large-scale studies on human samples
[27], [28], [29], [30], referred to as ALL and GEA data sets, and
two spike-in data sets from Affymetrix (www.affymetrix.com),
referred to as SPIKE data sets (Table 1). The data sets have
been measured using two popular human genome arrays, HG-
U95A/Av2 and HG-U133A. To validate our model and to analyze
probe reliability on these arrays, we test the overrepresentation of
the following probe-level error sources among the least reliable
probes predicted by our model.

1) Probe-genome alignments: Ideally, each probe has a unique
sequence match to its target gene. In practice, a number of probes
do not uniquely match their intended mRNA target. Filteringof

TABLE I

GENE EXPRESSION DATA SETS IN THIS STUDY

Name Platform Arrays Author

ALL-95Av2 HG-U95Av2 37 Yeoh et al. (2002)

GEA-95A HG-U95A 85 Su et al. (2002)

SPIKE-95Av2 HG-U95Av2 59 Affymetrix

ALL-133A HG-U133A 37 Ross et al. (2003)

GEA-133A HG-U133A 158 Su et al. (2004)

SPIKE-133A HG-U133A 42 Affymetrix

probes with erroneous genome alignments has previously been
shown to improve the accuracy and comparability of microarray
results [8], [9], [11], [26], [31]. A good model for estimating
probe reliability should detect such erroneous probes.

2) Interrogation position on the target sequence: RNA degra-
dation, typically starting from the 5’ end of the transcript, has
been reported to affect the results in microarray studies [32], [33].
Hence, the binding location of the probe on the target sequence,
i.e., its interrogation position, is likely to affect probe reliability.

3) GC-content: Various hybridization effects that are based on
the nucleotide content of the probes have been reported [21], [22],
[23], [34]. For example, the G/C nucleotides have a higher binding
affinity since G-C pairs form three hydrogen bonds whereas the
A-T pairs form two. Therefore the GC-content of a probe is
expected to affect its reliability.

4) SNP associations: Probes that target sequences with com-
mon single-nucleotide polymorphims (SNPs) can produce mis-
leading results in microarray studies [10], [35], [36]. Each probe
can measure accurately at most one of the polymorphic target
sequences and therefore gene expression differences between two
individuals can be observed in some probes due to sequence
polymorphism rather than real expression changes. This would
add noise to microarray data. It is expected that SNPs located
in the central region of the target sequence will have a greater
influence on probe reliability than other SNPs due to a larger
impact on probe affinity [21], [37].

C. Connection to preprocessing

The reliability of a probe is ultimately measured by its ability
to capture the real underlying gene expression signal. Thisis
unknown in most practical situations, however, and needs to
be estimated from the probe-level observations. Probe reliabil-
ity estimates are sensible only if the true signal is estimated
accurately in our model. To guarantee this, the performance
of the proposed model in estimating relative gene expression
changes was compared to four alternative approaches: MAS5.0
(www.affymetrix.com) and RMA [15] are among the most widely
applied methods for assessing probe set-level signals (which
are then used to calculate the expression changes); FARMS
[17] represents the previously introduced probe-level models;
and PECA [38] shares the idea of directly utilizing probe-level
expression changes. Note that the other methods do not provide
explicit estimates of probe reliability, while our method provides
only estimates of relative gene expression changes. A general dif-
ference between preprocessing algorithms and our method isthat
preprocessing methods have been designed to summarize probe-
level information, whereas our model is specifically targeted at
estimating certain probe-specific effects that are then used to
analyze probe reliability.
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III. M ETHODS

A. Probabilistic model

In the following, we describe a probabilistic model for probe
reliability and differential gene expression. In the calculations,
we use the logarithmized perfect match (PM) intensities of the
Affymetrix arrays, and investigate each probe set separately.
Affymetrix arrays also contain so-called mismatch (MM) probes
that have an altered nucleotide in the middle (13th) position
of the probe. These were originally designed to measure cross-
hybridization from unrelated sequences. Some widely used pre-
processing algorithms, such as RMA, ignore the MM probes due
to the lack of efficient models for utilizing this information [15].

1) Conditional likelihood for the observations: Let us consider
a probe set targeted at measuring the expression level of target
transcriptg. We model probe-level observations as a sum of the
true expression signal that is common for all probes, and probe-
specific Gaussian noise. A probe-level observation for probe j on
array i can then be written assij = gi + µj + εij . The mean
parameterµj describes the systematic probe affinity effect, and
the stochastic noise component is distributed asεij ∼ N(0, τ2

j ).
The variance parameters{τ2

j } are of interest in probe reliability
analysis. To focus on these parameters we take advantage of
the fact that the unidentifiable probe affinity parameters{µj}

cancel out when the signal log-ratio between a randomly selected
’control’ array and the remaining arrays is computed for each
probe. The differential expression signal between arrayst =

{1, . . . , T} and the control arrayc for probe j is then mtj =

stj − scj = gt − gc + εtj − εcj = dt + εtj − εcj . Using vector
notation, the differential gene expression profile of probej across
the arrays{t} is nowmj = d+εj , where the two noise terms have
been combined into a single variableεj . Note that the control-
related noiseεcj is constant across the comparisons whereas the
second noise componentεtj depends on the arrayt.

To identify the probe-specific variance parameter, shared by the
two noise components inεj for each probej, we consider the
control-related noiseεcj a hidden variable in our model. This can
be marginalized out by assuming that the probe-level observations
mj of the true underlying signald are independent given the
model parameters. Let us also denote the collection of probe-
level signals of a probe set bym = {mj}. The likelihood for the
observations is then

P (m|d, τ 2) =
Y

tj

Z

N(mtj |dt − εcj , τ
2
j )N(εcj |0, τ2

j )dεcj

∼
Y

j

(2πτ2
j )−

T
2 exp(−

P

t(mtj − dt)
2 −

[
P

t(mtj−dt)]
2

T+1

2τ2
j

).

(1)

2) Posterior distribution of the model parameters: The pos-
terior density for the model parameters is computed from the
conditional likelihood of the data (Eq. (1)) and the prior according
to Bayes rule:

P (d, τ 2|m) ∼ P (m|d, τ 2)P (d, τ 2). (2)

We use a non-informative prior ford, and conjugate priors for
the variance parameters inτ 2 (inverse Gamma distribution, see
[39]). Using a standard assumption thatd and τ

2 are indepen-
dent with P (d|τ 2) ∼ 1, the prior takes the formP (d, τ 2) ∼
Q

j invgam(τ2
j ; αj , βj), whereαj and βj are the parameters of

the inverse Gamma distribution. These parameters are probe-
specific and allow incorporation of prior information aboutprobe
reliability into the analysis.

The final model for probe intensities is hence described by
two sets of parameters; the vector of underlying differential gene
expression signalsd = [d1 . . . dT ], and the probe-specific variance
parametersτ 2 = [τ2

1 . . . τ2
J ]. High varianceτ2

j would indicate
that the probe-level observationmj is strongly deviated from the
estimated true signald. The Bayesian formulation quantifies the
uncertainty in the model parameters, and allows incorporation of
prior information about probe reliability into the analysis. We
refer to this procedure asRobust Probabilistic Averaging (RPA).

3) Implementation: In this paper, we use the posterior mode
as a point estimate for the model parameters. This is searched
for by iteratively optimizingd and τ

2 in Eq. 2. The model is
initialized to give equal prior weight for each probe by setting
τ2
j = 1 for each probej. A mode ford, given τ

2, is searched
for by a standard quasi-Newton optimization method [40]. The
variance parametersτ2

j follow an inverse Gamma distribution with
parameterŝαj = αj + T

2 and β̂j = βj + 1
2 (

P

t(mtj − dt)
2 −

(
P

t(mtj−dt))
2

T+1 )) given d. The mode is then given byτ2
j,new :=

β̂j/(α̂j+1). We use non-informative priors withαj = βj = 10−5.

B. Data

Only the common probe sets of the HG-U95A and HG-
U95Av2 platforms were used, referred to as HG-U95A/Av2.
Probe intensities were quantile-normalized, and the AFFX control
sets excluded before the analysis.

1) Leukemia data (ALL): The public ALL data sets from the
microarray studies of Rosset al. [27] and Yeohet al. [30] contain
expression data from patients with various leukemia subtypes. A
total of 360 patient samples have been hybridized to HG-U95Av2
arrays and 132 of the same samples are additionally hybridized to
HG-U133A arrays. For our analyses we selected 37 samples that
were hybridized to both array types and represent homogeneous
patient groups with five distinct leukemia subtypes and control
patients (Table 1). We refer to these two data sets as ALL-95Av2
and ALL-133A, respectively.

2) Gene expression atlas (GEA): The gene expression atlases
of Su et al. [28], [29] cover a diverse set of biological conditions
measured on the human array platforms HG-U95A and HG-
U133A (Table 1). We refer to these two data sets as GEA-95A
and GEA-133A, respectively. Some samples in the HG-U95A data
were ignored because no biological replicates were available.

3) Affymetrix spike-in data (SPIKE): The Affymetrix HG-
U95Av2 and HG-U133A spike-in data sets were downloaded from
the Affymetrix web pages (www.affymetrix.com). We refer to
these data sets as SPIKE-95Av2 (59 hybridizations) and SPIKE-
133A (42 hybridizations). A total of 14 and 42 genes have been
spiked-in at known concentrations on the HG-U95Av2 and HG-
U133A arrays, respectively, and arrayed in a Latin Square format.
Recently, it has been demonstrated that 22 additional probesets
in the SPIKE-133A data set should also be considered as spiked
[41]. Accordingly, we utilized the extended set of 64 spikedprobe
sets when evaluating the performance of the different analysis
approaches in the SPIKE-133A data.

4) Probe sequence data: Probe sequences and their best-
match tables were downloaded from the Affymetrix web pages
(www.affymetrix.com). Other array-wise information on probes
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and probe sets, including probe locations on the array, were
acquired from the annotation data packages of the Bioconductor
project [42]. Human genomic mRNA sequences were downloaded
from Entrez Nucleotide [43] on August 16, 2006, excluding EST,
STS, GSS, working draft and patents sequences, and sequences
with a ‘XM *’ tag, as in [8], [26].

5) Probe-genome alignment: To identify probes having errors
in the genomic alignment, all probes on the HG-U95A and HG-
U133A arrays were aligned to the nucleotide sequences from En-
trez Nucleotide, and assigned GeneIDs according to their matched
sequence. Perfect matches of the probes to mRNA sequences were
sought with BLAT v. 26 [44], following the same procedure as in
[8], [26], but using updated genomic sequence data. The Entrez
mRNA sequences were assigned to GeneID identifiers by using
the ’gene2accession’ conversion file obtained from NCBI ftp
server (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA, August 10, 2006).
The percentage of probes with no GeneID match was 9.4% and
10.1% for the HG-U95A and HG-U133A arrays, respectively.
Multiple GeneID matches were detected for 4.6% (HG-U95A)
and 4.8% (HG-U133A) of the probes.

6) Single-nucleotide polymorphisms: Information about the
probe-SNP associations was provided by the CustomCDF Bio-
Conductor package [10] that contains SNP mapping for the probes
based on data from the dbSNP database [43]. The mappings have
been used to investigate SNP effects in microarray data in recent
studies [36], [45]. To focus on common SNPs, we considered
only SNPs with a minimum population frequency of 5%.

IV. RESULTS

The RPA algorithm was applied on gene expression data sets
from two commonly used microarray platforms to validate the
model and to assess the differences between known probe-level
noise sources. First, we compared probe reliability estimates to
known probe-level error sources. Second, preprocessing compar-
isons were used to test the preprocessing performance of RPA
and, importantly, to guarantee the validity of the probe reliability
measures that depend on accurate estimation of the differential
gene expression signal.

A. Comparison to known error sources

1) Probe-genome alignment: Mistargeted probes that did not
uniquely match the GeneID target of the probe set were signifi-
cantly enriched (p < 0.05; hypergeometric test) among the least
reliable 1% of the probes detected by our model (Fig. 1; Tab. S1).
The mistargeted probes were 1.1-1.7 times more common in the
HG-U95A/Av2 data sets than expected, and 2.2-3.1 times more
common in HG-U133A. The enrichment of mistargeted probes
was the highest for the probes that were consistently unreliable
in the independent GEA and ALL data sets. On the HG-U133A
array, mistargeted probes could explain 20.4% of the least reliable
probes while the expected proportion was 6.7%. Consistently
unreliable probes were detected by using the average rank of
the probes obtained in the two experiments. Detection of probes
having errors in their genomic alignment was expected because
such probes do not necessarily have any correlation with theprobe
set-level signal. This supports the validity of our model.

2) Interrogation position: The interrogation position of a probe
on the target sequence was significantly associated with probe
reliability (p < 0.05; χ2-test). Probes closest to either end of the

HG−U95A/Av2 HG−U133A
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Fig. 1. Genomic alignment and probe reliability. Mistargetedprobes that do
not uniquely match the GeneID target of the probe set were enriched among
the least reliable probes (p < 0.05; hypergeometric test). Black bars show the
expected proportion of mistargeted probes i.e. their proportion on the whole
array. Grey bars show the proportion of mistargeted probes among the least
reliable 1% of the probes detected by our model (dark: ALL; light: GEA;
white: combined results).

target sequence were enriched among the least reliable probes;
the observed counts deviated 73 - 138% from the expectation,
depending on the interrogation position (Fig. 2(a); Tab. S1).
Enrichment of 5’-binding probes was expected due to RNA
degradation starting from this end of the transcript. Enrichment
of 3’ probes is supported by previous findings of Dai et al., who
noticed that 3’-focused probe sets have often increased noise
levels [10]. Probes closer to the 3’ end detect, on average, a
higher absolute signal. A higher signal is often associatedwith
higher noise in microarray studies [46], which could explain our
observation. Alternative transcription may also cause differences
between 3’ probes and the other probes [47], [48].

3) GC-content and probe reliability: GC-rich probe sequences
were enriched among the least reliable probes of our model inall
data sets except ALL-95Av2 and GEA-95A (Fig. 2(b); Tab. S1).
The observed counts for the different GC contents deviated 39-
132% from the expectation in the investigated data sets (p < 0.05;
χ2-test). To guarantee the assumptions of theχ2-test, probes with
most extreme G/C or A/T contents were combined in the test.
One explanation for our observation is that high-affinity probes
may have higher likelihood of cross-hybridization to nonspecific
targets [21]. This would add noise to the probe-level signal.

4) Single-nucleotide polymorphisms: Probes whose target se-
quences have common SNPs were enriched among the least
reliable probes on the HG-U133A platform and in the combined
results from HG-U95A/Av2 platform (Supplementary Fig. 3;
Tab. S1). In these data sets, the SNP-associated probes were
1.7 - 1.9 times more common among the least reliable probes
than expected (p < 0.05; hypergeometric test). It is interesting to
notice that the association between probe reliability and SNPs
is observed only when information from the ALL-95Av2 and
GEA-95A is combined; a similar observation was made with
the GC-rich probes. A likely explanation is that the systematic
effects from the SNP-associated, or GC-rich probes are more
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Fig. 2. Probe reliability vs. interrogation position and GC-content on the HG-U133A platform.(a) Probes that bind to either the 5’ or the 3’ end of the
target transcript were enriched among the least reliable (1%) probes (p < 0.05; χ2-test). Probe index indicates the relative interrogation position of the probe
on the target sequence, starting from the 5’ end of the transcript. The grey bars show the proportion for each interrogation position among the least reliable
probes in the inspected data sets (dark: ALL; light: GEA; white: combined results). The expectation is illustrated by thedashed line. There are 11 probes
per probe set on the HG-U133A arrays.(b) GC-rich probes were enriched among the least reliable (1%) probes (p < 0.001; χ2-test). The GC-content of
a probe is indicated by the number of G/C nucleotides on the 25-mer probes. Grey bars show the proportion of each GC-content among the least reliable
probes (dark: ALL; light: GEA; white: combined results). Consistently less reliable probes (GEA+ALL) had the highest deviation from the expectation (black
bars). To guarantee the assumptions of theχ2-test, we combined probes with most extreme G/C or A/T contents for testing. Results for the HG-U95A/Av2
data sets are shown in Supplementary Fig. 2.

effectively observed when the data sets are combined and the
data set specific noise cancels out. In general, the SNP-associated
probes were less reliable than the other probes in all investigated
data sets (p < 0.05; Wilcoxon test). As expected, probes having a
single SNP in the central 13bp region of the 25-mer probe were
less reliable than probes with a single SNP in either end of the
target sequence on HG-U133A (p < 0.05; Wilcoxon test) but,
interestingly, not on the HG-U95A/Av2 platform.

5) Relative contribution of the known error sources: Probes
that are associated with the investigated noise sources had7-39%
increase in average variance, detected by RPA, in the studied
data sets except ALL95-Av2 (Fig. 3). Mistargeted probes hadthe
highest variances on HG-U133A, whereas probes with the most
5’/3’ interrogation positions had the highest variances onHG-
U95A/Av2. High GC-content led to a more moderate increase
in probe-specific variance than the other investigated sources.
However, GC-rich probes are more common (28-33% of the
probes) than mistargeted probes (6-8%), probes with common
SNPs (3-3.4%), or probes in the most 5’/3’ positions of the target
sequence (10-18%) and have therefore a remarkable contribution
to the overall probe-level noise. Interestingly, many (35-60%) of
the least reliable probes detected by RPA were not associated
with the investigated sources, including many probes that have
systematically low reliability in independent data sets.

B. General observations of probe reliability

Examples of the least reliable probes in the GEA-95A data set
are shown in Supplementary Fig. 4. Comparison of the results
from independent ALL and GEA data sets revealed many probes
with consistently poor reliability, although the comparability of
the results was affected by data set-specific effects: Spearman
correlations of the probe-specific variances{τ2

j } between the ALL
and GEA data sets were 0.28 (HG-U95A/Av2) and 0.52 (HG-
U133A). Surprisingly, the least reliable probes in the ALL data
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Fig. 3. Increase in the average variance of the probes associated with the
investigated noise sources: mistargeted probes having errors in the genomic
alignment, most 5’/3’ probes of each probe set, GC-rich, and SNP-associated
probes. The variances were estimated by RPA and describe the noise level of
the probes. The results are shown for the individual ALL and GEA data sets,
and for their combined results on both platforms (133A and 95A/Av2).

sets showed almost identical expression profiles (Supplementary
Fig. 5), although they are located in independent probe sets
and expected to capture uncorrelated signals. The noise probably
originates in the biological samples that have been hybridized on
both array types in the ALL-95Av2 and ALL-133A data sets. The
specific source of this contamination remains unclear.

C. Preprocessing comparisons

The validity of probe reliability estimates depends on accurate
estimation of the probe set-level signal. We compared RPA to
other preprocessing methods to test its preprocessing performance
and to guarantee the validity of probe reliability estimates.
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1) Spike-in data: In spike-in data sets, the true expression
changes are known and, hence, the different preprocessing ap-
proaches can be compared in terms of their receiver operating
characteristics (ROC). RPA and PECA were more successful
in detecting the spiked genes than MAS5.0 or RMA (Fig. 4).
FARMS was found to outperform the other methods when a large
number of genes are inspected. The good performance of FARMS
in the spike-in data may, however, be favoured by the particular
design of the spike-in experiments, in which the expression
changes always occur in the same genes. This was supported by
the observation that, unlike the other methods, FARMS produced
nearly perfect ROC-curves even when replicated samples were
compared with each other, although in these comparisons no
changes should be detected and the gene rankings should be
random (Supplementary Fig. 6).

2) Technical replicates: We also assessed the performance
of the different preprocessing methods in real research settings
using the ALL and GEA data sets. Since in these data sets the
true expression changes were not known, the performance of the
different methods was evaluated in terms of their consistency
across replicated measurements for both genes and biological
samples. Following the approach of Reverteret al. (2005) [49],
we first measured the consistency of the expression changes
within each data set (Supplementary Fig. 7). Specifically, for each
GeneID represented by at least two probe sets on an array, the
average Pearson correlation of the expression profiles between
all the matching probe sets was calculated. Based on our probe-
genome alignments, there were 1470 and 3774 such GeneIDs on
the HG-U95A/HG-U95Av2 and HG-U133A arrays, respectively.
In each data set, RPA produced the highest correlations (p <

0.05; paired Wilcoxon test), and PECA and RMA also clearly
outperformed not only MAS5.0 but, notably, also FARMS.

To further investigate the performance of the methods, we
evaluated the consistency of the expression changes acrossthe
two separate data sets, ALL-95Av2 and ALL-U133A, in which
the same biological samples have been hybridized (Fig. 5). The
consistency was measured by the Pearson correlation between
the pairs of arrays, to which the same sample was hybridized.
This indicates the performance of the methods, as the technical
replicates are assumed to produce effectively the same results on
both array versions. The so-called ‘bestmatch’ tables, provided
by the array manufacturer (www.affymetrix.com), were utilized
to combine the data across the arrays. The results from this
analysis supported the earlier findings. In particular, RPAand
PECA outperformed the other approaches; RMA performed better
than MAS5.0 and FARMS; and MAS5.0 showed the poorest
performance (p < 0.05; paired Wilcoxon test). Interestingly,
the simple PECA yielded better consistency between the data
sets than RPA (p < 0.05). While the main focus of this paper
is in probe reliability analysis, the preprocessing comparisons
confirmed that RPA compares favourably with the other methods
in estimating differential gene expression. This guarantees the
validity of probe reliability estimates in our model.

V. D ISCUSSION

Previous probe-level models have focused on preprocessingof
gene expression data, whereas we have specifically targeteda
more detailed analysis of probe reliability. Enrichment ofknown
probe-level error sources among the less reliable observedprobes
validates our model; many of the findings were explained by

errors in genomic alignment, probe interrogation position, GC-
content, or common SNPs. However, any single source of error
seems to explain only a fraction of the probes that have consis-
tently poor reliability in independent data sets. Therefore methods
that remove probe-level noise based on external information such
as genomic alignments are likely to ignore a large number of
the least reliable probes. For example, a probe set designedto
measure a certain transcript may additionally detect unknown
alternatively spliced transcripts which may have different ex-
pression patterns [12], or cross-hybridize with mRNAs having
closely similar (> 18/25 bp) but not perfectly matching sequences
[11]. Various laboratory- and experiment-specific effectsare also
known to add experimental noise in microarray studies [12],[13].
The proposed model can detect poorly performing probes thatare
susceptible to noise from such sources.

A Gaussian model for probe effects is a reasonable starting
point for modeling heterogeneous and partially unknown sources
of probe-level noise. The feasibility of similar models hasalready
been demonstrated in the preprocessing context. For example,
the RMA preprocessing algorithm [15] has a Gaussian model for
probe effects with probe-specific mean (affinity) parameters and
a shared variance parameter for the probes. We avoid the esti-
mation of probe affinities and instead focus on estimating probe-
specific variances. The recently suggested FARMS preprocessing
algorithm [17] is closely related to our approach but has a more
complex model for probe effects. The model can be written as
sij = ziλj + µj + εij . Here zi captures the underlying gene
expression, and the model has three parameters{λj , µj , εij} for
each of the 10-20 probes in a probe set. In contrast, our model
has a single variance parameter for each probe. The use of a more
complex model in FARMS is justified as it aims at summarizing
the absolute values of logarithmized PM intensities. This is a hard
task since large systematic differences are known to exist between
probes [14], [46]. We have shown that by computing differential
gene expression at probe-level avoids the need to estimate uniden-
tifiable probe affinity parameters. Use of a single parameterfor
probe effects leads to more straightforward interpretations about
probe reliability and makes the model potentially less prone to
overfitting. This is supported by the observation that RPA and
PECA compared favourably with other preprocessing methodsin
the analysis of differential gene expression. The distinguishing
feature of the two methods is that they compute differentialgene
expression at the probe-level. However, only the probabilistic RPA
estimates probe reliability.

While for most probe sets, different preprocessing methodsgive
largely consistent results, their differences can be especially large
for probe sets containing several inconsistent probe-level signals.
The main contribution of the current study is to introduce and
apply a probabilistic model with explicit modeling assumptions
to analyze probe reliability on short oligonucleotide arrays. At
the same time the model provides a principled framework for
incorporating prior information of the probes in differential gene
expression analysis. This is a potential topic for future studies.

VI. CONCLUSION

We have introduced a probabilistic framework for analyzing
the reliability of individual probes directly from gene expression
data, and validated the model using gene expression data sets
from two popular human genome arrays. A major advantage of
the proposed approach is its capability to detect unreliable probes
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Fig. 4. Preprocessing performance for spike-in data. ROC curves for the various methods that were used to estimate the signal log-ratio: RPA, PECA, RMA,
FARMS, and MAS for the two spike-in data sets (Affymetrix HG-U95Av2 and HG-U133A). For each curve, the results from the investigated spike-in samples
within the data sets were pooled. The axes have been truncated to focus on the most relevant area. When comparing the curves, the one closest to the upper
left corner shows the best performance.

independently of physical models or external, constantly updated
information such as genomic sequence data. Probe reliability in-
formation can be useful in many applications, including evaluation
of the end results of gene expression analysis, and recognition of
potentially unknown probe-level error sources. It can be used to
quantify the uncertainty in the measurements and in designing
the probes, and is also utilized by our model to provide robust
estimates of differential gene expression. A better understanding
of the various probe-level error sources could advance probe
design and contribute to reducing probe-related noise in the future
generations of gene expression arrays.
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Fig. 5. Reproducibility of signal estimates in real data setsbetween the
technical replicates, i.e., the best match probe sets between the HG-U95Av2
and HG-U133A platforms. The consistency was measured by the Pearson
correlation between the pairs of arrays, to which the same sample was
hybridized.
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