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Probabilistic analysis of probe reliability in
differential gene expression studies with short
oligonucleotide arrays
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Abstract— Probe defects are a major source of noise in gene Many preprocessing algorithms utilize probe-specific pera
expression studies. While existing approaches detect noisy probesters to obtain probeset-level summaries of gene expresEiese
based on external information such as genomic alignments, jnclyde MBEI/dChip [14], RMA [15], gcRMA [16], FARMS [17],
we introduce and validate a targeted probabilistic method for gMOS [18], and BGX [19]. Despite the importance of probe-

analyzing probe reliability directly from expression data and o ) . .
independently of the noise source. This provides insights into specific effects in gene expression analysis and probe ri¢sjg

the various sources of probe-level noise and gives tools to guide[20], the various sources of probe-level noise are still riyoo
probe design. understood. Only a few studies have systematically andlyze

the factors affecting probe reliability. The existing apgches

typically rely on external information such as genomic ssme

data [8], [9], [11] or physical models [21], [22], [23], andmnot

l. INTRODUCTION reveal probes that are less reliable due to so far unknovaonsa
We introduce and validate a targeted computational tool for

fENEt_exp_ressm_n progl_mlg IS vl\/ldely d%sed o egploret ge?ﬁrobe reliability analysis. In contrast to previous proheliy
2 funclion In various biological conditions, and vast co studies, the proposed model is independent of external-info
lections of microarray data are available in public repos.

Th | le dat : tai luable inf fidoih mation or physical models. This can advance the understgndi
nese farge-scale data sets contain vaiuable informa of the various factors that affect probe reliability. Oupagach
biological and technical aspects of gene expression stidie

. . ) . is closely related to preprocessing methods that utilizeb@r
[2], [3], 4] However_, gene expression data is notoriouslysy. specific parameters to obtain probeset-level summariesné g
A better understanding pf the technical aspects of the measu, - ocsion. A key difference in our work is that we assign an
ment_process cquld ultimately I_ead to enhanced measuremgiilicit probabilistic measure of reliability to each peoland
technlques_ and_ improved :_;malytlcal propedures, providiuge demonstrate how this information can be used to assess probe
accurate biological results in future studies.

. ) ” performance. Explicit estimates and analysis of probeifipe
m()Ssrt]o\:\tiggﬁlotiﬂsoggiearé%?eii’(/-)\gyr;r?)tfri:?(ng]p?artefo(r);es oﬁlggise have been missing in preprocessing studies. The thetho
arrays utilize multiple (typically 10-20) 25-mer probehetso- IS applied to gene expression data sets from two human genome

called probe set, to measure the expression level of eawkctipt arrays, HG-U95A/Av2 and HG-U133A, and the results are vali-

L L dated by comparisons to known probe-level error sourcesrser
target. The probes within an individual probe set are desigo y P P

. in probe-genome alignment, interrogation position of abpron
target th_e same gene, and ideally they should detect the ganes the target sequence, GC-content, and the presence of SNiRs in
expression signal. Use of several probes for each targds lea

more robust estimates of transcript activity, but the keligy of targ'et sequenices of t[he probg s Implem.entatlo.n of the miésho
oo . L available in R at http://www.cis.hut.fi/projects/mi/software/RPA.
individual probes is known to vary and may significantly afftne

results of a microarray study [6]. For example, it has bedited
that a considerable number of probes on short oligonudeoti
arrays do not uniquely match their intended targets [7], [8  The reliability of a probe is ultimately determined by its
Single-nucleotide polymorphisms, alternative splicingd anon- @ability to measure the expression level of the target trapisc
specific hybridization add biological variation in the d4t®], AS the true expression level is unknown in most practical sit
[11]. Other factors in the measurement process that cautepr Uations, the collection of probes measuring the same trighsc
specific effects include RNA extraction and amplificatiomding ¢an provide the ground truth for assessing probe perforenanc

affinities, and experiment-specific variation [12], [13]. (Supplementary Fig. 1). Our model captures the most coheren
signal of the probe set, and the reliability of individuabpes

is estimated with respect to this signal across a large numbe
Technology and Adaptive Informatics Research Centre, Deyeaut of of arrays. We .prowde an eX.pIICIt prObablh.Stlc moglel foope-
Information and Computer Science, Helsinki University of iesiogy, 1€Vel observations, and qer|Ve the posterior .dlstnbuﬂio.n t_he
P.O. Box 5400, FI-02015 TKK, Finland. E-mails: leo.lahti@fk model parameters describing probe reliability and diffided
samuel.kaski@tkk fi. gene expression. While probe-level preprocessing ahyostaim

e L.L.EloandT. Aittokallio are with Department of Mathematitiver- -
sity of Turku, FI-20014 Turku, Finland and Turku Centre fontch- at summarizing probe-level measurements [14], [15], [173],

nology, P.O. Box 123, FI-20521 Turku, Finland. E-mails:éé@utu.fi, [19], we have specifically targeted a more detailed analgsis
teanai@utu.fi.

Index Terms— Applications, Biology and genetics, Parameter
learning, Probabilistic algorithms

II. M ODELING OF PROBE RELIABILITY

e L. Lahti and S. Kaski are with Helsinki Institute for Inforniam

http://www.r-project.org/



TO APPEAR INIEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2

TABLE |

probe reliability. This avoids certain problems encousdein the
GENE EXPRESSION DATA SETS IN THIS STUDY

preprocessing context as discussed in the next section.

Name Platform Arrays  Author
A. Model assumptions ALL-95Av2  HG-U95Av2 37 Yeoh et al. (2002)
Our approach is based on a Gaussian model for probe effects. CEA-9A HG-U%SA - 85 Su etal. (2002)
This is a reasonable starting point for modeling heterogese SPIKE-95Av2  HG-U95Av2 59 Affymetrix
and partially unknown sources of probe-level noise. The fea ~ ALL133A HG-U133A 37 Ross et al. (2003)
sibility of related models has already been demonstrated in CGEA'133A HG-U133A 158 Su et al. (2004)
the preprocessing context [15], [17]. In a nutshell, we aEsu SPIKE-133A  HG-U133A 42 Affymetrix

normally distributed probe effects, and identify probedateility

with its variance over a large number of arrays. In contrast t . . .
Qrobes with erroneous genome alignments has previously bee

many probe-level preprocessing methods, where the medre is . - .
important quantity, we use probe-level observations dédéhtial shown to improve the accuracy and comparability of micrarr
P q Y. P results [8], [9], [11], [26], [31]. A good model for estimat

expression. Then the mean cancels out, and the model cas focu R
S . . probe reliability should detect such erroneous probes.
on estimating the variances (see Methods for details).

. . . 2) Interrogation position on the target sequence: RNA degra-
Variance reflects the noise level of the probe and is the . ; : ) ;
main focus in our analysis. This is different from probeellevrbeatlon’ typically starting from the 5 end of the transcyips

. L AP ffect th Its in mi i .
oreprocessing methods that focus on estimating probe tisfii been reported to affect the results in microarray studi2k [33]

. . Hence, the binding location of the probe on the target sempjen
corresponding to the mean parameter of the Gaussian noi 9 P get S

o . |.%., itsinterrogation position, is likely to affect probe reliability.
model. For example, the probe-specific parameters in MBE] [1 3) GC-content: Various hybridization effects that are based on

and RMA [15] preprocessing models describe probe aﬁimtieﬁwe nucleotide content of the probes have been reported[22]
These are constant shifting factors and as such not infa'mmat[23] [34]. For example, the G/C nucleotides have a highedioig
of probe reliability. Moreover, unidentifiability of proteffinities affin’ity since G-C pair’s form three hydrogen bonds whereas th

is a known problem in preprocessing studies [15], [24]. Th/g-T pairs form two. Therefore the GC-content of a probe is

recently suggested FARMS preprocessing algorithm [17] éhasexpected to affect its reliability.

more complex model for probe effects than RMA and contains 4) SNP associations: Probes that target sequences with com-
implicitly a similar probe-specific varia_nce para_mete_r ag o0 single-nucleotide polymorphims (SNPs) can produce mis
model. However, FARMS does not prowde explicit estlmgt[es ?eading results in microarray studies [10], [35], [36]. Bawobe
the probg-rglgted parameters and is therefore not apfgidab .. easure accurately at most one of the polymorphic target
probe reliability analysis. o .. sequences and therefore gene expression differencesdretwe

We avoid the modeling of unidentifiable probe affinities by, q;iquals can be observed in some probes due to sequence
using probe-level observatlorls of Q|ﬁerent|al gene expien. polymorphism rather than real expression changes. Thiddwou
Probe eﬁe?“‘ are captyred in a single probe-specific V&#1arhqd noise to microarray data. It is expected that SNPs Idcate
parameter in the resulting model. The number of probeefdlatin the central region of the target sequence will have a great

parameters in the _model is halved, and_faster and more rObﬁ‘ﬁfuence on probe reliability than other SNPs due to a larger
inferences concerning the parameters of interest can laénebit impact on probe affinity [21], [37].

Use of a single parameter for probe effects also leads to more
straightforward interpretations of probe reliability. i€ellation of
the probe affinity parameters in our analysis can partlyarpghe o ] ) o
previous observations that calculating differential egsion at 1 he reliability of a probe is ultimately measured by its apil
probe-level improves the analysis of differential generegpion [0 capture the real underlying gene expression signal. nis
[25], [26]. However, these methods differ from our approach unknown in most practical situations, however, and needs to
that they are non-probabilistic preprocessing methodsdbanot be estimated from the probe-level observations. Probabiéli

aim at quantifying the uncertainty in the probes. ity estimates are sensible only if the true signal is estmhat
accurately in our model. To guarantee this, the performance

of the proposed model in estimating relative gene exprassio
changes was compared to four alternative approaches: MJASS5.
The model is applied to six publicly available gene exp@ssi (www.affymetrix.com) and RMA [15] are among the most widely
data sets, including four large-scale studies on human Ilssmpapplied methods for assessing probe set-level signalsckwhi
[27], [28], [29], [30], referred to as ALL and GEA data setada are then used to calculate the expression changes); FARMS
two spike-in data sets from Affymetrix (www.affymetrixier), [17] represents the previously introduced probe-level efgd
referred to as SPIKE data sets (Table 1). The data sets hawel PECA [38] shares the idea of directly utilizing probeele
been measured using two popular human genome arrays, H®pression changes. Note that the other methods do notdgrovi
U95A/Av2 and HG-U133A. To validate our model and to analyzexplicit estimates of probe reliability, while our methobpides
probe reliability on these arrays, we test the overreptasien of only estimates of relative gene expression changes. A gediér
the following probe-level error sources among the leasalbd ference between preprocessing algorithms and our methtatis
probes predicted by our model. preprocessing methods have been designed to summarize- prob
1) Probe-genome alignments: Ideally, each probe has a uniqudevel information, whereas our model is specifically taeglett
sequence match to its target gene. In practice, a numbepbépr estimating certain probe-specific effects that are therd use
do not uniquely match their intended mRNA target. Filterisfy analyze probe reliability.

C. Connection to preprocessing

B. Comparison to known error sources
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I1l. METHODS the inverse Gamma distribution. These parameters are probe
A. Probabilistic model specific and allow incorporation of prior information abquobe
. . o reliability into the analysis.
In the following, we describe a probabilistic model for peob The final model for probe intensities is hence described by

reliability and d|ff_eren_t|al gene expression. In Fhe C*_‘*F"‘””S' two sets of parameters; the vector of underlying diffeadrgene
we use the logarithmized perfect match (PM) intensitieshef texpression signald — [d; ... dy], and the probe-specific variance
Affymetrix arrays, and investigate each probe set Senarateparametersﬁ 2

A ) | . led mi h (MM = [r{...77]. High variancer} would indicate
ffymetrix arrays also contain so-called mismatch (MM) fpes that the probe-level observatian; is strongly deviated from the

that have an altered nucleotide in the middle (13th) IC"mtioestimated true signal. The Bayesian formulation quantifies the

of th'e.pro'be. These were originally designed to measurescroancertaimy in the model parameters, and allows incorporaif
hybridization from unrelated sequences. Some widely used p rior information about probe reliability into the analysiwe

&ter to this procedure @Robust Probabilistic Averaging (RPA).
to the lack of efficient models for utilizing this informatid15]. 3) Implem(fntation' In this paper, we use the ?os?e(rior r)node

1) Conditional likelihood for thelobservatlons: Lgt us consider as a point estimate for the model parameters. This is sedrche
a probe set targeted at measuring the expression Ievelgﬂttarfor by iteratively optimizingd and 2 in Eq. 2. The model is

transcriptg. We m_odel probt_e-level observations as a sum of tl?F’fitialized to give equal prior weight for each probe by weft
true expression signal that is common for all probes, antgro o 2 is searched

o . - i : ) 77 = 1 for each probej. A mode ford, givenr
speC|f!c Gaussian NOISE. A probe-level observation for gyobn for by a standard quasi-Newton optimization method [40]e Th
array i can then be written as;; = g; + u; + €;;. The mean

. . . \g:\riance parametev-?2 follow an inverse Gamma distribution with
parameter:; describes the systematic probe affinity effect, anparameters&- —a+ T andB; = B + (X, (me; — di)? —
the stochastic noise component is distributedtgs~ N (0, 77). (Zt(nlzf—dt))% g2 7R 2T ) !

The variance parametefs?} are of interest in probe reliability “=trir ) givend. The mode is then given b’yj,newi?
analysis. To focus on these parameters we take advantage®of(@;+1). We use non-informative priors with; = 3; = 107".
the fact that the unidentifiable probe affinity parameténg}
cancel out when the signal log-ratio between a randomiyctsle g pata
‘control’ array and the remaining arrays is computed forheac
probe. The differential expression signal between arrays
{1,...,T} and the control array: for probe j is thenm;; =
Stj — Scj = gt — Ge + €t —Ecj = di + €tj — Ecj- Using vector
notation, the differential gene expression profile of prglaeross
the arraygt} is nowm; = d+¢;, where the two noise terms have
been combined into a single variabde. Note that the control-
related noises.; is constant across the comparisons whereas
second noise componesy; depends on the array

Only the common probe sets of the HG-U95A and HG-
U95Av2 platforms were used, referred to as HG-U95A/AvV2.
Probe intensities were quantile-normalized, and the AF&xtrol
sets excluded before the analysis.

1) Leukemia data (ALL): The public ALL data sets from the
microarray studies of Ros$ al. [27] and Yeohet al. [30] contain
t%pression data from patients with various leukemia sidstyp
total of 360 patient samples have been hybridized to HG-W25A
To identify the probe-specific variance parameter, shayeitid arrays and 132 of the same samples are additionally hybddiz

HG-U133A arrays. For our analyses we selected 37 samplés tha

two noise components ia; for each probej, we consider the hvbridized to both d h
control-related noise.; a hidden variable in our model. This can'/ére hybridized to both array types and represent homogsneo

be marginalized out by assuming that the probe-level olhsens pat@ent groups with five distinct leukemia subtypes and mdnt
of the true underlying signadl are independent given the Patients (Table 1). We refer to these two data sets as ALL¥@5A

d ALL-133A, respectively.

2) Gene expression atlas (GEA): The gene expression atlases
of Suet al. [28], [29] cover a diverse set of biological conditions
measured on the human array platforms HG-U95A and HG-
U133A (Table 1). We refer to these two data sets as GEA-95A
P(m|d, %) = H/N(mtj\dt — ecjs T3 )N (€610, 77 )decj and GEA-133A, respectively. Some samples in the HG-U95A dat

tj were ignored because no biological replicates were availab
S (me; — dy)? — [5, (me;—di)])? 1) 3) Affymetrix spike-in data (SPIKE): The Affymetrix HG-
AN eSS U95AV2 and HG-U133A spike-in data sets were downloaded from
the Affymetrix web pages (www.affymetrix.com). We refer to
2) Posterior distribution of the model parameters: The pos- these data sets as SPIKE-95Av2 (59 hybridizations) and BPIK

terior density for the model parameters is computed from tHS3A (42 hybridizations). A total of 14 and 42 genes have been

conditional likelihood of the data (Eq. (1)) and the priocaxding SPiked-in at known concentrations on the HG-U95Av2 and HG-
to Bayes rule: U133A arrays, respectively, and arrayed in a Latin Squamadb.

Recently, it has been demonstrated that 22 additional psete

in the SPIKE-133A data set should also be considered asdspike
[41]. Accordingly, we utilized the extended set of 64 spiledbe

We use a non-informative prior fat, and conjugate priors for sets when evaluating the performance of the different aisly

the variance parameters #? (inverse Gamma distribution, seeapproaches in the SPIKE-133A data.

[39]). Using a standard assumption thatand 2 are indepen-  4) Probe sequence data: Probe sequences and their best-
dent with P(d|72) ~ 1, the prior takes the formP(d,=%) ~ match tables were downloaded from the Affymetrix web pages
I1; invgam(rf;ajﬁj), wherea; and g; are the parameters of (www.affymetrix.com). Other array-wise information onopes

m;
model parameters. Let us also denote the collection of pro
level signals of a probe set iy = {m;}. The likelihood for the
observations is then

2. -T
~ H(?TE'T]' ) Zexp(— 572
J J

P(d,7%|m) ~ P(m|d, 7%)P(d, 72). (2)
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and probe sets, including probe locations on the array, were
acquired from the annotation data packages of the Biocdaoduc

project [42]. Human genomic mRNA sequences were downloaded ~ | m Expected
from Entrez Nucleotide [43] on August 16, 2006, excludingTES B ALL
STS, GSS, working draft and patents sequences, and seguence S gEQ+ALL

with a ‘XM _*' tag, as in [8], [26]. 4
5) Probe-genome alignment: To identify probes having errors

in the genomic alignment, all probes on the HG-U95A and HG-

U133A arrays were aligned to the nucleotide sequences fnrom E

trez Nucleotide, and assigned GenelDs according to theithad

sequence. Perfect matches of the probes to mMRNA sequences we

sought with BLAT v. 26 [44], following the same procedure as i 0w

[8], [26], but using updated genomic sequence data. TheeEntr

MRNA sequences were assigned to GenelD identifiers by using

the 'gene2accession’ conversion file obtained from NCBI ftp o J

server (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA, Augus0,12006). HG-U95A/AV2 HG-U133A

The percentage of probes with no GenelD match was 9.4% and

10.1% for the HG-U95A and HG-U133A arrays, respectively.

Multiple GenelD matches were detected for 4.6% (HG'UQSA:)ig. 1. Genomic alignment and probe reliability. Mistargepedbes that do

and 4.8% (HG-U133A) of the probes. not uniquely match the GenelD target of the probe set weretegui among
6) Single-nuclectide polymorphisms: Information about the the least reliable probep (< 0.05; hypergeometric test). Black bars show the

(pected proportion of mistargeted probes i.e. their ptigroon the whole

probe-SNP associations was provided by the CustomCDF B@ray. Grey bars show the proportion of mistargeted probesagrttte least

Conductor package [10] that contains SNP mapping for theg®0 reliable 1% of the probes detected by our model (dark: ALLhtigGEA;
based on data from the dbSNP database [43]. The mappings halig: combined results).

been used to investigate SNP effects in microarray datacente
studies [36], [45]. To focus on common SNPs, we considered

Proportion (%)
10
1

only SNPs with a minimum population frequency of 5%. target sequence were enriched among the least reliablegrob
the observed counts deviated 73 - 138% from the expectation,
IV. RESULTS depending on the interrogation position (Fig. 2(a); Tab).S1

. . . Enrichment of 5-binding probes was expected due to RNA
The RPA algorithm was applied on gene expression data S%Sgradation starting from this end of the transcript. Emrient

from two commonly used microarray platforms to validate thgf 3’ probes is supported by previous findings of Dai et al.owh

model and to assess the differences between known proéke-ley_.. , . .
. . o . hoticed that 3’-focused probe sets have often increasesenoi
noise sources. First, we compared probe reliability esésm#o

known brobe-level error SoUrces. Second. PreprocesSIman levels [10]. Probes closer to the 3’ end detect, on average, a
. P ) ), prep np igher absolute signal. A higher signal is often associatétl
isons were used to test the preprocessing performance of iéh

. o L er noise in microarray studies [46], which could explaur
and, importantly, to guarantee the vahdn_y of _the probmtﬁ_llty observation. Alternative transcription may also causeéedihces
measures that depend on accurate estimation of the difi@ren

. . between 3’ probes and the other probes [47], [48].
gene expression signal. . X
3) GC-content and probe reliability: GC-rich probe sequences
were enriched among the least reliable probes of our modall in
A. Comparison to known error sources data sets except ALL-95Av2 and GEA-95A (Fig. 2(b); Tab. S1).
1) Probe-genome alignment: Mistargeted probes that did not The observed counts for the different GC contents deviaged 3
uniquely match the GenelD target of the probe set were signii32% from the expectation in the investigated data gets @.05;
cantly enriched < 0.05; hypergeometric test) among the leask”-test). To guarantee the assumptions of tReest, probes with
reliable 1% of the probes detected by our model (Fig. 1; Tal. Smost extreme G/C or A/T contents were combined in the test.
The mistargeted probes were 1.1-1.7 times more common in fB8e explanation for our observation is that high-affinitphmes
HG-U95A/Av2 data sets than expected, and 2.2-3.1 times mdrg&y have higher likelihood of cross-hybridization to nassfic
common in HG-U133A. The enrichment of mistargeted probdargets [21]. This would add noise to the probe-level signal
was the highest for the probes that were consistently @aileli  4) Sngle-nucleotide polymorphisms: Probes whose target se-
in the independent GEA and ALL data sets. On the HG-U133duences have common SNPs were enriched among the least
array, mistargeted probes could explain 20.4% of the ledistale reliable probes on the HG-U133A platform and in the combined
probes while the expected proportion was 6.7%. Consistentlsults from HG-U95A/Av2 platform (Supplementary Fig. 3;
unreliable probes were detected by using the average rankTab. S1). In these data sets, the SNP-associated probes were
the probes obtained in the two experiments. Detection dbgso 1.7 - 1.9 times more common among the least reliable probes
having errors in their genomic alignment was expected mxauhan expectedp(< 0.05; hypergeometric test). It is interesting to
such probes do not necessarily have any correlation withriblee  notice that the association between probe reliability ahP$S
set-level signal. This supports the validity of our model. is observed only when information from the ALL-95Av2 and
2) Interrogation position: The interrogation position of a probe GEA-95A is combined; a similar observation was made with
on the target sequence was significantly associated witheprdhe GC-rich probes. A likely explanation is that the systiéma
reliability (p < 0.05; x>-test). Probes closest to either end of theffects from the SNP-associated, or GC-rich probes are more
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Fig. 2. Probe reliability vs. interrogation position and @@ntent on the HG-U133A platforn{a) Probes that bind to either the 5’ or the 3’ end of the
target transcript were enriched among the least reliable (itbes p < 0.05; x2-test). Probe index indicates the relative interrogatiositon of the probe
on the target sequence, starting from the 5’ end of the trgpis@he grey bars show the proportion for each interragapiosition among the least reliable
probes in the inspected data sets (dark: ALL; light: GEA; tethtombined results). The expectation is illustrated bydashed line. There are 11 probes
per probe set on the HG-U133A arrayb) GC-rich probes were enriched among the least reliable (1%)gs p < 0.001; x2-test). The GC-content of
a probe is indicated by the number of G/C nucleotides on then@6probes. Grey bars show the proportion of each GC-contanh@ the least reliable
probes (dark: ALL; light: GEA; white: combined results). Gistently less reliable probes (GEA+ALL) had the highestia@n from the expectation (black
bars). To guarantee the assumptions of tfetest, we combined probes with most extreme G/C or A/T contentseting. Results for the HG-U95A/Av2
data sets are shown in Supplementary Fig. 2.

effectively observed when the data sets are combined and the
data set specific noise cancels out. In general, the SNRiateh
probes were less reliable than the other probes in all iilgagsd

) i o B Mistargeted
data setsy{ < 0.05;, Wilcoxon test). As expected, probes havinga H 53 position
single SNP in the central 13bp region of the 25-mer probe werg ° S Sﬁ;conte”t

less reliable than probes with a single SNP in either end ef thy
target sequence on HG-U133A k 0.05; Wilcoxon test) but,
interestingly, not on the HG-U95A/Av2 platform.

5) Relative contribution of the known error sources: Probes
that are associated with the investigated noise source3 {3886 g
increase in average variance, detected by RPA, in the studie
data sets except ALL95-Av2 (Fig. 3). Mistargeted probes thad
highest variances on HG-U133A, whereas probes with the most e - — -l ] —
5'/3' interrogation positions had the highest variances H®- fsseEmE o Aus e cEe WAL e
U95A/Av2. High GC-content led to a more moderate increase
in probe-specic variance than the ofher incestigatedcmmr 10, LeCE e s goreme
However, GC-n(;h probes are more common (28'33% of t gnm%nt, most 5'/3’ probés of eacgh prot?e set, GC—ric?“ls, anB—SB?Bociated
probes) than mistargeted probes (6-8%), probes with commg@bes. The variances were estimated by RPA and describeibe lavel of
SNPs (3-3.4%), or probes in the most 5'/3’ positions of thgdar the probes. The results are shown for the individual ALL aritAGlata sets,

sequence (10-18%) and have therefore a remarkable coiuﬁbuta”d for their combined results on both platforms (133A and 982).
to the overall probe-level noise. Interestingly, many 6884) of

the least reliable probes detected by RPA were not assdciate . . . )
with the investigated sources, including many probes tleaeh sets showed almost identical expression profiles (Suppitme

systematically low reliability in independent data sets. Fig. 5), although they are located in_independent _probe sets
and expected to capture uncorrelated signals. The noisipiso

_ o originates in the biological samples that have been hyieition

B. General observations of probe reliability both array types in the ALL-95Av2 and ALL-133A data sets. The
Examples of the least reliable probes in the GEA-95A data ssiecific source of this contamination remains unclear.

are shown in Supplementary Fig. 4. Comparison of the results
from independent ALL and GEA data sets revealed many probes i .
with consistently poor reliability, although the compati&p of C. Preprocessing comparisons
the results was affected by data set-specific effects: B@gar The validity of probe reliability estimates depends on aatzl
correlations of the probe-specific varianc{e,%} between the ALL estimation of the probe set-level signal. We compared RPA to
and GEA data sets were 0.28 (HG-U95A/Av2) and 0.52 (HGother preprocessing methods to test its preprocessingrpeafnce
U133A). Surprisingly, the least reliable probes in the ALatal and to guarantee the validity of probe reliability estinsate

20
|

Relative increas
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1) Spike-in data: In spike-in data sets, the true expressioerrors in genomic alignment, probe interrogation posjtiGC-
changes are known and, hence, the different preprocesging eontent, or common SNPs. However, any single source of error
proaches can be compared in terms of their receiver opgratseems to explain only a fraction of the probes that have sensi
characteristics (ROC). RPA and PECA were more successfahtly poor reliability in independent data sets. Therefiorethods
in detecting the spiked genes than MAS5.0 or RMA (Fig. 4}hat remove probe-level noise based on external informatich
FARMS was found to outperform the other methods when a large genomic alignments are likely to ignore a large number of
number of genes are inspected. The good performance of FARM® least reliable probes. For example, a probe set designed
in the spike-in data may, however, be favoured by the pdaticu measure a certain transcript may additionally detect uwkno
design of the spike-in experiments, in which the expressi@iternatively spliced transcripts which may have différex-
changes always occur in the same genes. This was supportegtession patterns [12], or cross-hybridize with mRNAs hgvi
the observation that, unlike the other methods, FARMS predu closely similar ¢ 18/25 bp) but not perfectly matching sequences
nearly perfect ROC-curves even when replicated samples wgt1]. Various laboratory- and experiment-specific effeats also
compared with each other, although in these comparisons krown to add experimental noise in microarray studies [fi3].
changes should be detected and the gene rankings shouldThe proposed model can detect poorly performing probesatieat
random (Supplementary Fig. 6). susceptible to noise from such sources.

2) Technical replicates:. We also assessed the performance A Gaussian model for probe effects is a reasonable starting
of the different preprocessing methods in real researdingst point for modeling heterogeneous and partially unknowrnrces!
using the ALL and GEA data sets. Since in these data sets tifeprobe-level noise. The feasibility of similar models led®ady
true expression changes were not known, the performandeeof been demonstrated in the preprocessing context. For erampl
different methods was evaluated in terms of their consistenthe RMA preprocessing algorithm [15] has a Gaussian model fo
across replicated measurements for both genes and bialogjarobe effects with probe-specific mean (affinity) paranmsetard
samples. Following the approach of Reveremrl. (2005) [49], a shared variance parameter for the probes. We avoid the esti
we first measured the consistency of the expression changestion of probe affinities and instead focus on estimatiraber
within each data set (Supplementary Fig. 7). Specificalyefich specific variances. The recently suggested FARMS presoaes
GenelD represented by at least two probe sets on an array, algorithm [17] is closely related to our approach but has @#emo
average Pearson correlation of the expression profileseeetw complex model for probe effects. The model can be written as
all the matching probe sets was calculated. Based on oueprob;; = z;\; + u; + ;. Here z; captures the underlying gene
genome alignments, there were 1470 and 3774 such GenelDsegpression, and the model has three parameteys.;,e;;} for
the HG-U95A/HG-U95Av2 and HG-U133A arrays, respectivelyeach of the 10-20 probes in a probe set. In contrast, our model
In each data set, RPA produced the highest correlatipns ( has a single variance parameter for each probe. The use ofea mo
0.05; paired Wilcoxon test), and PECA and RMA also clearlgomplex model in FARMS is justified as it aims at summarizing
outperformed not only MAS5.0 but, notably, also FARMS. the absolute values of logarithmized PM intensities. Téia hard

To further investigate the performance of the methods, wask since large systematic differences are known to egistden
evaluated the consistency of the expression changes atr@ssprobes [14], [46]. We have shown that by computing diffeisgnt
two separate data sets, ALL-95Av2 and ALL-U133A, in whiclgene expression at probe-level avoids the need to estimaten
the same biological samples have been hybridized (Fig. 5¢. Ttifiable probe affinity parameters. Use of a single paramfeter
consistency was measured by the Pearson correlation betwpmbe effects leads to more straightforward interpretatiabout
the pairs of arrays, to which the same sample was hybridizgmobe reliability and makes the model potentially less prom
This indicates the performance of the methods, as the teghnioverfitting. This is supported by the observation that RPA an
replicates are assumed to produce effectively the saméisesu PECA compared favourably with other preprocessing metiods
both array versions. The so-called ‘bestmatch’ tablesyigenl the analysis of differential gene expression. The disisigng
by the array manufacturer (www.affymetrix.com), wereimgitl feature of the two methods is that they compute differemgfeaie
to combine the data across the arrays. The results from tkigression at the probe-level. However, only the protstimIRPA
analysis supported the earlier findings. In particular, R&#A&l estimates probe reliability.

PECA outperformed the other approaches; RMA performeabett While for most probe sets, different preprocessing metlgids
than MAS5.0 and FARMS; and MAS5.0 showed the poorefdrgely consistent results, their differences can be éalhetarge
performance { < 0.05; paired Wilcoxon test). Interestingly, for probe sets containing several inconsistent probd-kigeals.
the simple PECA vyielded better consistency between the datae main contribution of the current study is to introducel an
sets than RPAY( < 0.05). While the main focus of this paperapply a probabilistic model with explicit modeling assurops

is in probe reliability analysis, the preprocessing corigmens to analyze probe reliability on short oligonucleotide gsraAt
confirmed that RPA compares favourably with the other methothe same time the model provides a principled framework for
in estimating differential gene expression. This guamsitéhe incorporating prior information of the probes in differetgene
validity of probe reliability estimates in our model. expression analysis. This is a potential topic for futuredss.

V. DISCUSSION VI. CONCLUSION

Previous probe-level models have focused on preproces$§ing We have introduced a probabilistic framework for analyzing
gene expression data, whereas we have specifically targetethe reliability of individual probes directly from gene e®gsion
more detailed analysis of probe reliability. Enrichmenkaobwn data, and validated the model using gene expression daa set
probe-level error sources among the less reliable obsgmadzbs from two popular human genome arrays. A major advantage of
validates our model; many of the findings were explained hie proposed approach is its capability to detect unraipbbbes
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Fig. 4. Preprocessing performance for spike-in data. RO@esuior the various methods that were used to estimate thel $igeatio: RPA, PECA, RMA,
FARMS, and MAS for the two spike-in data sets (Affymetrix H®&Av2 and HG-U133A). For each curve, the results from thestigated spike-in samples
within the data sets were pooled. The axes have been trehtafecus on the most relevant area. When comparing the cuhesne closest to the upper
left corner shows the best performance.
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