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ABSTRACT
We introduce interactive intent modeling, where the user directs ex-
ploratory search by providing feedback for estimates of search in-
tents. The estimated intents are visualized for interaction on an In-
tent Radar, a novel visual interface that organizes intents onto a ra-
dial layout where relevant intents are close to the center of the visu-
alization and similar intents have similar angles. The user can give
feedback on the visualized intents, from which the system learns
and visualizes improved intent estimates. We systematically evalu-
ated the effect of the interactive intent modeling in a mixed-method
task-based information seeking setting with 30 users, where we
compared two interface variants for interactive intent modeling,
namely intent radar and a simpler list-based interface, to a con-
ventional search system. The results show that interactive intent
modeling significantly improves users’ task performance and the
quality of retrieved information.
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Categories and Subject Descriptors
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1. INTRODUCTION
Studies have estimated that up to 50% of searching is informa-

tional and the corresponding search behavior is fragmented to in-
dividual queries corresponding to evolving information needs [5].
One of the main problems in exploratory search is that it can be
hard, if not impossible, for users to formulate queries precisely,
since information needs evolve throughout the search session as
users gain more information [11]. In a commonly observed ex-
ploratory search strategy, the information seeker issues a quick,
imprecise query, hoping to get into approximately the right part
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of the information space, and then directs the search to obtain the
information of interest around the initial entry-point in the infor-
mation space [2, 10]. Despite existing evidence on such behavior
of the users [5], current methods to support users to explore are ei-
ther based on typed queries, suggesting terms or rephrased queries
[8], facets [13], result visualization and navigation through clusters
[6], or they rely on relevance feedback mechanisms proven to be
tedious to use [7]; or emphasize narrowing down the search within
the initial query scope [13].
Existing techniques are effective for tasks where the user’s goal

is well defined and success is measured based on system response
to well formed queries [6, 13]. In exploratory search the user’s
information needs evolve throughout the course of the search and
her ability to direct the search to solve her task is critical [4, 9].
We introduce interactive intent modeling that lets users direct

exploration via rapid relevance feedback in an interactive model-
based loop where the user’s search intents are estimated and vi-
sualized for interaction. The user iteratively adjusts the model by
relevance feedback on keywords representing the current search in-
tent. In the interface, keywords representing estimated search in-
tents are arranged onto an Intent Radar, as a radial layout where
relevant intents are close and similar intents have similar angles.
To evaluate the effect of interactive intent modeling on ex-

ploratory search we conducted a mixed–method task–based user
experiment with 30 users performing a scientific information seek-
ing task. Two interface variants, Intent Radar and a simpler list-
based interface, were compared to a conventional typed-query sys-
tem that did not support interactive intent modeling. The results
show that interactive intent modeling improves the quality of re-
trieved information, the ability of users to target interactions to di-
rect exploratory search, and the task performance of the users.

2. INTERACTIVE INTENT MODELING
We illustrate interactive intent modeling and the novel Intent

Radar visualization by a walk-through example of an information
seeking task (left side of Figure 1). Imagine the user issues a query
“machine vision”; the system responds with the predicted user in-
tent and projected potential future intents along with a list of docu-
ments.
User interface. Besides a typical query box and article list, the

interface uses a novel Intent Radar visualization, which represents
search intents as relevant keywords corresponding to the predicted
intents. The center of the Intent Radar represents the user. The
inner gray circle represents the current search intent. The outer
grey area represents future intent projections: potential directions
the user may like to follow given the current search intent estimate.



Figure 1: Left: The Intent Radar interface. Search intents are visualized through keywords on a radial layout (A). The orange center
area represents the user: the closer a keyword is to the center the more relevant it is to the estimated intent. The intent model used
for retrieval is visualized as keywords in the inner circle (C); projected future intents are visualized as keywords in the outer circle
(B). Keywords can be inspected with a fisheye lens (D). Right: The Intent List visualization. Users can provide relevance feedback by
clicking keywords in the list and get a new set of documents and keywords by clicking the “Update selected to 1” button.

The radius of keywords represents their relevance: the closer a key-
word is to the center the more relevant it is for the current estimated
search intent. Angles of keywords represent their similarity: similar
angles indicate similar intents. The interface colors keywords based
on a clustering to distinguish topically different search intents from
each other. Keywords with highest relevance in each cluster are
shown with labels to characterize the cluster, other keywords are
shown as dots that can be enlarged with a fisheye lens.
We use a polar coordinate system and radial layout. This lets

the visualization focus on the relation between the intents which
is more important than their exact weights. It also allows users to
select directions through a non-intrusive relevance feedback mech-
anism, where the user pulls keywords closer to the center of the
radar. The radial layout has a good tradeoff between the amount
of shown information and comprehensibility: a simple list of key-
words only uses one degree of freedom and does not show keyword
relationships, whereas higher than two-dimensional visualizations
could make interaction with the visualization more difficult [3].
Interaction and feedback. The user can provide relevance feed-

back for the intents by dragging a keyword on the Intent Radar
(closer to center means higher relevance) or by clicking a keyword
under a document (assigns full relevance). Negative relevance feed-
back is possible by dragging a keyword outside the radar.
In the first iteration no user feedback is available, and docu-

ments and keywords are selected based on pseudo-feedback ac-
quired from the top-ranked documents and visualized for the user.
The user browses the visualization, in our example notices key-
words "infrared" and "cameras", drags them towards the center of
the radar, and clicks the center to retrieve new estimates of intent
and documents. Then the system computes and visualizes new es-
timates for the user’s current and potential future intents.

2.1 Document Retrieval Model
We use the language modeling approach of information retrieval

to estimate the relevance ranking of documents dj given the esti-

mate of the user’s search intent. The intent model yields a keyword
weight vector v̂ having a weight v̂i for each keyword ki. As feed-
back is not available on the first iteration, we start with the typed
query with weight 1 as the intent model. Documents are ranked
by their probability given the intent model. We use a probabilistic
multinomial unigram language model. The v̂ is treated as a (small)
sample of a desired document, and documents dj are ranked by the
probability that v̂ would be observed as a random sample from the
language modelMdj for the document; with maximum likelihood
estimation we get P̂ (v̂|Mdj ) =

∏|v̂|
i=1 v̂iP̂mle(ki|Mdj ), and to

avoid zero probabilities and improve the estimation we then com-
pute a smoothed estimate by Bayesian Dirichlet smoothing so that
P̂mle(ki|Mdj ) =

c(ki|dj)+µp(ki|C)
∑

k c(k|dj)+µ
where c(k|dj) is the count of

keyword k in document dj , p(ki|C) is the occurrence probability
(proportion) of keyword ki in the whole document collection, and
the parameter µ is set to 2000 as suggested in the literature [14].
The documents dj are ranked by αj = P̂ (v̂|Mdj ). We could

just show the top ranked documents, but to expose the user to more
novel documents, we sample a set of documents from the list and
display them in ranked order. This favors documents whose key-
words often received positive user feedback. We use Dirichlet Sam-
pling, where a value fj ∼ Gamma(αj, 1) = f

αj−1
j e−fj/Γ(αj)

is sampled for each document dj , and the documents with high-
est fj are shown to the user. At each iteration, the weight αj is
increased by 1 for documents dj where at least one keyword got
positive user feedback, and the weights are then renormalized.

2.2 Learning the Search Intent
Our model uses two main representations: the current estimate

of search intent, and the alternative future intents that could occur
in response to future feedback of the user; they are visualized in
the inner and outer circle in Figure 1.We represent the current esti-
mated search intent as a relevance vector r̂current over keywords,
and the alternative future intents as a set of the same kind of rele-



vance vectors r̂future,l predicted into the future, called the future
relevance vectors. Each vector r̂future,l, l = 1, . . . , L, is a projec-
tion of the current search intent into the future in response to a set
of L feedback operations the user could potentially use.
The user provides relevance feedback to search intents by giving

relevance scores ri ∈ [0, 1] to a subset of J keywords ki, i =
1, . . . , J . Here ri = 1 denotes keyword ki is highly relevant to the
user and she would like to direct her search in that direction, and
ri = 0 denotes the keyword is of no interest to the user.
Estimating keyword relevances. Let each keyword ki be repre-

sented as a binary n×1 vector ki telling which of the n documents
the keyword appeared in. To boost significance of documents with
rare keywords, we convert the ki into the tf-idf representation.
We assume the relevance score ri of a keyword ki is a random

variable with expected value E[ri] = k
#
i w. The unknown weight

vector w determines the relevance of keywords and it is estimated
based on the relevance feedback given so far in the search session.
Estimating the weight vector. The algorithm maintains an es-

timate ŵ of the vector w which maps keyword features to rele-
vance scores. To estimate w for a given search iteration, we use
the LinRel algorithm [1]. In each search iteration, LinRel yields
an estimate ŵ. Let K be a matrix where each row k

#
i is a feature

representation of one of the keywords ki shown so far, and let the
column vector rfeedback = [r1, r2, . . . , rp]# contain the p rele-
vance scores received so far from the user. LinRel estimates ŵ by
solving the linear regression r

feedback = Kw, and calculates an
estimated relevance score r̂i = k

#
i ŵ for each keyword ki.

Selecting keywords for presentation to the user. At each it-
eration the system might simply pick the keywords with highest
estimated relevance scores, but if ŵ is based on a small set of feed-
back, this exploitative choice could be suboptimal; or the system
could exploratively pick keywords where feedback would improve
accuracy of ŵ. To deal with the exploration-exploitation tradeoff
we select keywords not with the highest relevance score, but with
the largest upper confidence bound for the score. If σi is an up-
per bound on standard deviation of the relevance estimate r̂i, the
upper confidence bound of keyword ki is computed as r̂i + ασi,
where α > 0 is a constant used to adjust the confidence level of
the bound. Let rfeedback again denote the vector of all relevance
scores received from the user. In each iteration, LinRel computes
si = K(K#

K + λI)−1
ki where λ is a regularization parameter,

and the keywords ki that maximize s#i rfeedback + α
2 ‖si‖ are se-

lected for presentation; they represent the estimated current search
intent and are visualised in the inner grey circle of the Intent Radar
visualization (Figure 1). We use LinRel since it allows, at the same
time, to maximize relevance of intent estimates based on user in-
teractions and reduce system uncertainty about the relevant intents
that occurs because of limited and possibly suboptimal feedback.
Estimating alternative future intents. Our approach not only

estimates user’s current intents, but also suggests potential search
directions to the user. At each iteration, based on the current esti-
mated search intent (relevance vector r̂current over keywords), the
system estimates a set of alternative future search intents (future
estimates of the relevance vector). The future search intent is es-
timated for each of L alternative feedbacks l = 1, . . . , L; in each
feedback l, a pseudo-relevance feedback of 1 is given to the lth
keyword in the search intent visualization, the feedback is added to
the feedback from previous search iterations, and LinRel is used to
estimate the future relevance vector r̂future,l for keywords.
Each r̂

future,l provides the user a set of keywords she would
most likely be shown, if she decided to give positive feedback to
the lth currently shown keyword. Thus the user gets a view of L
potential search directions which can be explored in more detail.

Denote the current estimated search intent as r̂
current =

[r̂current
1 , . . . , r̂current

Nkeywords
]#, where r̂current

l is the estimated rel-
evance of the lth keyword. Future intents are estimated as the
Nkeywords × L matrix R̂future, where the element in row i, col-
umn l, is r̂future,li ∈ [0, 1], predicted relevance of the ith keyword
in the next search iteration according to the lth future intent.

2.3 Layout Optimization
We optimize a data-driven layout for the search intent and alter-

native future intents on the Intent Radar interface. We optimize lo-
cations of keywords in the inner circle (representing current intent)
and keywords in the outer circle (representing future intents) by
probabilistic modeling-based nonlinear dimensionality reduction.
Representation of the outer keywords. We lay out the future

potentially relevant keywords into the outer circle, based on their
potential future relevances. Consider the matrix R̂

future of pre-
dicted future keyword relevances across a set of future search in-
tents as discussed in Section 2.2. Each keyword ki in the outer
circle can be characterized by row i of R̂future, that is, by the row
vector r̃i = [r̂future,li , . . . , r̂future,Li ] where r̂future,li ∈ [0, 1] is
the estimated relevance of ki in the lth future search intent.
The norm ||r̃i|| represents overall predicted relevance of key-

word ki across future search intents; we use it as the radius of ki
on the radar. The vector r̄i = r̃i/||r̃i|| then tells which future
search intents make ki most relevant, that is, which direction of fu-
ture intent ki is associated with. We use a radial layout in which
keywords associated with similar future intents have similar angles.
Layout of keywords in the outer circle. Keywords ki and kj

in the outer circle can be called neighbors if their characterizations
r̄i, r̄j are similar: the keywords most similar to ki can be described
as a probabilistic neighbor distribution pi = {p(j|i)} where

p(j|i) = exp(−||r̄i − r̄j ||
2/σ2

i ) · (
∑

j′

exp(−||r̄i − r̄j′ ||
2/σ2

i ))
−1

and the σi are set as in [12]. On the display ki and kj appear similar
in the outer circle if they have close-by directions (angles) ai and
aj ; the keywords that appear most similar to ki in the outer circle
can then be described by neighbor distribution qi = {q(j|i)}where

q(j|i) = exp(−|ai − aj |
2/σ2

i ) ·
∑

j′

exp(−|ai − aj′ ||
2/σ2

i ))
−1 .

The task of the layout algorithm is to place keywords so that neigh-
boring keywords on the display have neighboring characterizations.
To do so, we measure the total Kullback-Leibler divergence DKL

between the neighborhoods of display locations versus characteri-
zations, as (

∑
s DKL(pi, qi) +

∑
s DKL(qi, pi))/2. The total di-

vergence is a function of the angles ai of the keywords in the outer
circle; we optimize the ai by gradient descent to minimize the to-
tal divergence. A similar approach was used to visualize fixed data
sets in [12]. This layout approach can be shown to correspond to
optimizing information retrieval of neighboring keywords from the
display layout (minimizing misses and false positives of such re-
trieval).
Highlighting of keywords in the outer circle. To highlight the

structure in the outer circle layout, we apply a simple agglomera-
tive clustering to angles ai of keywords in the outer circle. In detail,
start a cluster from the keyword with the smallest angle, and itera-
tively add the keyword with the next largest angle into the cluster as
long as the angle difference is below a treshold and the size of the
cluster is smaller than a specified percentage of all keywords in the
outer circle; when either condition fails start the next cluster. We
show clusters with different colors, and show for each cluster the
label of the predicted most relevant keyword (having largest ||r̃i||).



Layout of the keywords in the inner circle. The keywords in
the inner circle represent the current search intent; for each such
keyword kl, its radius naturally represents its current estimated rel-
evance r̂l ∈ [0, 1]. The angles al of keywords in the inner circle
must be placed consistently with the layout of the outer circle (the
keywords of future search intents): since we estimate the alterna-
tive future search intents in response to an interaction with an inner
keyword kl, al should represent which future keywords become
most relevant in the lth future search intent. We thus set al to the
highest weighted mode of angles ai of future keywords ki, where
the angle of each future keyword is weighted by the predicted fu-
ture relevance r̂future,li . The resulting angle al of each keyword
kl in the inner circle indicates which keywords would become rele-
vant by interacting with kl: thus the angles of keywords in the inner
circle indicate directions of future search intent.

3. USER EXPERIMENTS
A task-based user experiment was designed to investigate the

effects of interactive intent modeling on exploratory search. The
advantage of a task-based setting is that it allows us to measure
natural user interaction and task performance, but still retain the
advantages of a controlled experiment. We setup the experiments
to answer the following research questions:
1. User task performance: Does the interaction paradigm lead

to better user responses in the given tasks? 2. Quality of displayed
information: Does the paradigm help users reach high quality in-
formation in response to interactions? 3. Interaction support for
directing exploration: Does the paradigm elicit more interaction
from the user? Is the elicited interaction targeted to relevant in-
teraction options? Does the paradigm let the user explore novel
information more than a conventional system where users might be
constrained by limited interaction capabilities?

3.1 Experimental Design
We chose a 2 × 3 × 5 between-subjects design with two search

tasks, three system setups and five users for each task/system com-
bination. We chose the design to avoid learning effects of users as
each user only used one of the systems and performed a single task.
Three systems were created: two versions of our interactive in-

tent modeling with different extents of intent prediction and visual-
ization, denoted as “Intent Radar” and “Intent List”, and a conven-
tional typed-query based system “Typed Query”.
The two systems with interactive intent modeling are as follows.

Intent Radar implements the full versions of interactive intent mod-
eling with future intent prediction and Intent Radar visualization as
described in previous sections. The implemented system updated
search results and the interface in response to interactions under
three seconds. Intent List implements only intent estimation and
has a simpler interface that visualizes the intent model for the user
as a list. Figure 1 (bottom right) shows a screen shot of this inter-
face. The users interact with the system by typing queries and pro-
viding binary relevance feedback on keywords shown under each
document, as well as on keywords in the list.
The Typed Query system is a query-based system, where neither

intent modeling nor visualization are used. Users express their in-
formation needs only by typing queries. Keywords are visualized
underneath the articles; users can use them as cues for new typed
queries, but cannot directly interact with them.

3.2 Search Tasks
We chose a task type that is complex enough to ensure that some

interaction is necessary for users to acquire the information to ac-
complish the task; is complex enough to allow users to choose the

kind of interaction that best supports solving the task; and is com-
plex enough to reveal exploratory search behavior. The tasks were
defined as scientific writing scenarios, i.e., participants were asked
to prepare materials to write an essay on a given topic. The assign-
ments were (1) to search for relevant articles that they would be
likely to use as reference source in their essay and (2) to answer a
set of predefined questions related to the task topic.
We recruited two post-doctoral researchers to define two infor-

mation seeking tasks. The task fields chosen by the experts were
“semantic search” and “robotics”. The experts wrote task descrip-
tions using this template: “Imagine that you are writing a scientific
essay on the topic. Search scientific documents that you find useful
for this essay”. To provide clear goals for exploration, the experts
provided questions about specific aspects of the topic. The ques-
tions defined by the experts for the robotics tasks were: “What are
the sub-fields, application areas and algorithms commonly used in
the field of robotics”; for the semantic search task the questions
were: “What are the techniques used to acquire semantics, meth-
ods used in practical implementation, organization of results, and
the role of Semantic Web technologies in semantic search”.

3.3 Procedure
We recruited 30 students from two universities to participate in

the study. All the participants were graduate students with a back-
ground in computer science or a related field. In a prior background
survey we ensured that every participant had conducted literature
search before and was neither an expert nor a novice in the topic of
the assigned search task (self-assessment on a scale from 1 to 5; we
selected people who rated themselves between 2 and 4).
The basic protocol for each experiment scenario was the follow-

ing: demonstration of the system (10 min) and performing of the
search task by the participant (30 min). The experiments were per-
formed in an office-like environment using standard equipment The
demonstration of the system was done by the instructor using a sep-
arate computer. All user interactions were logged with timestamps:
typed queries, the documents and keywords presented by the sys-
tem in response to interactions, the keywords the user interacted
with, and the articles the user bookmarked.

3.4 Data
We used a dataset of over 50 million scientific documents from

the Web of Science prepared by THOMSON REUTERS, Inc., and
from the Digital Libraries of the Association of Computing Ma-
chinery (ACM), the Institute of Electrical and Electronics Engi-
neers (IEEE), and Springer. The dataset contains the following in-
formation about each document: title, abstract, keywords, author
names, publication year and publication forum.

3.5 Relevance Assessments
Experts conducted two types of double-blind relevance assess-

ments. For the quality of information displayed, all documents and
keywords that were presented to the participants by any of the three
systems were pooled resulting in a collection of 5612 documents
and 4097 keywords. The experts assessed the articles on binary
scale on three levels: (1) relevance—is this article relevant to the
search topic; (2) obviousness—is this a well-known overview arti-
cle in a given research area; and (3) novelty—is this article an un-
common yet relevant to a given topic or specific subtopic in a given
research area. These assessments constituted the ground truth for
evaluating retrieval performance of the systems. The ground truth
consisted of 3384 relevant documents (731 were obvious and 2653
were novel). Experts also assessed the keywords on three levels:
(1) relevance—is this keyword relevant for the topic; (2) general—



does this keyword describe a relevant subfield, (3) specific—does
this keyword describe a relevant specifier for the subfield? The Co-
hen Kappa test indicated substantial agreement between experts,
Kappa = 0.71, p < 0.001. For the quality of responses of the
users to the tasks, for each question answers of all participants were
pooled and assessed by experts on a 5-point Likert scale.

3.6 Evaluation Aspects and Measures
User task performance was the main measure of success. It

was measured using an averaged score of expert assessments of the
participants’ written answers in response to the tasks. The given
written answers were evaluated by the same experts who wrote
the task descriptions and conducted the article assessments. The
experts scored each answer between 0 (no answer) and 5 (perfect
answer). In addition, we measured the number of bookmarked rel-
evant, obvious, and novel documents the users were displayed in
response to their interactions while completing the tasks.
Quality of displayed information was measured by precision,

recall, and F-measure. The measures were computed both for the
documents displayed for the user, and for the keywords the user
interacted with. These characterize the quality of document users
were able to reach and the quality of keywords users chose to ma-
nipulate. The measures were computed with respect to the different
assessment categories, so that for the documents we considered in
turn either the relevant, or the obvious, or the novel documents as
the ground truth; for the keywords we similarly took the relevant,
general, and specific keywords in turn as the ground truth.
Interaction support for directing exploration was measured

using two separate types of measures. First, we measured the num-
ber and type of interactions (typed query or interaction with the
intent model). Second, we measured the type of information (novel
or obvious) received in response to different types of interactions.
These measures characterize how well a particular type of interac-
tion was able to support each user to direct the search to relevant
information, and in particular characterize the differences of the
interaction types in finding obvious and novel information.

4. RESULTS
The results are summarized in Figure 2 and discussed in detail in

the following sections corresponding to the evaluation aspects.

4.1 Task Performance
The main result of the experiments is that the users of the Intent

Radar system achieve significantly better task performance than the
users in the Intent List and the Typed Query systems. For Intent
Radar users’ responses to the tasks are graded to be significantly
better by experts than the responses of the users of the other systems
as shown in Figure 2 (Task performance). The results are statisti-
cally significant (Friedman test with post-hoc analysis, p < 0.05
for Intent Radar vs. Typed Query, p < 0.05 for Intent Radar vs.
Intent List). Note that, all participants were able to accomplish the
tasks and completed the task in the given timeframe (no significant
time differences between the systems or tasks).

4.2 Quality of Displayed Information
Figure 2 (Quality of displayed information) shows the quality

of displayed articles and the quality of keywords users interacted
with. The two versions of the interactive intent modeling achieve
substantially better performance than the Typed Query compari-
son system. The differences are statistically significant using the
non-parametric McNemar’s test for categorical data with Bonfer-
roni correction to correct for the multiple comparisons (p < 0.001).

The Intent List shows slightly better performance for obvious
documents. A possible explanation is that the less advanced inter-
action capabilities in the Intent List interface, and even more lim-
ited in the Typed Query comparison system, make it more difficult
to move away from the initial query context, thus failing to increase
recall but preserving slightly better precision.
The quality of the keywords the users interacted with is signifi-

cantly better (higher F-measure) for the Intent Radar interface than
for the Intent List interface, for all relevant keywords and for both
subcategories (general and specific keywords). This indicates that
the Intent Radar interface has made it easier to target interactions to
more relevant keywords. Moreover, the significantly higher quality
of the displayed keywords themselves can add to the users’ under-
standing of the information seeking task and is an explanation for
the increased task performance for users of Intent Radar.

4.3 Interaction Support for Exploration
Figure 2 (Interaction support for exploration) shows that users

adopt and make use of interactive intent modeling when offered to
them. In particular, users interacted with the Intent Radar inter-
face twice as much as with the Intent List and nearly four times
more than the Typed Query. Typed queries were used equally in
each interface, and the intent models were interacted with in cycles
in which typed keywords were first issued and then intent models
were used to direct the search. This indicates that users did not
replace the typed queries with interaction with the intent models,
but rather directed their search from the initially issued imprecise
query. The users of the Typed Query system had trouble reach-
ing novel information. A possible explanation is that coming up
with queries was difficult for users of the Typed Query system as
intent models were not available. This was the case even though
they could see the keywords under each document returned by the
system and could use them as cues for typed queries. As noted in
Figure 2 (Quality of displayed information), the keywords users in-
teracted with were highly relevant (high precision in the Relevant
category), for both Intent List and Intent Radar; thus the elicited
interaction with the intent models and the further increased interac-
tion in Intent Radar were targeted to relevant interaction options.
Interestingly, the interactive intent modeling engages users to

move more rapidly in the information space. Users in the Intent
Radar and in the Intent List conditions chose to use typed queries as
a shortcut to a previous view; this is seen in the fact that users repeat
typed queries more with the Intent Radar interface (14% queries
were repeats) and the Intent List interface (20%) than with Typed
Query (4%). Users of the Intent Radar condition repeated fewer
queries than the users of the simpler version, perhaps because the
full interface already allows efficient movement through the visu-
alized current and future search intents.
An important aspect of the interaction support is also whether

the interaction with the predicted intents made it possible for the
users to direct the search and to reach more novel information. The
results in Figure 2 (Interaction support for exploration) show that
users were successful in directing their search with interactive in-
tent modeling. After directing the search via the predicted intents,
users were displayed a significantly larger portion of novel docu-
ments than after typing queries. Conversely, the users were dis-
played a larger portion of obvious documents in response to typed
queries. This suggests that the interaction with the intent model en-
ables users to direct their search and find novel documents that are
not found using the typed queries, but at the same time achieve
more relevant information than conventional search systems. A
similar effect is also present in the documents users bookmarked.
Users bookmarked more novel documents from the results that they



Figure 2: Results of the user experiments divided according to the evaluation aspects: Quality of displayed information, Interaction
support for exploration, and Task performance.

received in response to interactions with the intent models, while
users bookmarked more obvious documents from the results they
obtained using typed queries.
Overall the results suggest that interactive intent modeling, in

particular the Intent Radar interface, which complements future
intent prediction with appropriate visualization, allowed users to
reach the novel documents that were harder to find with the Typed
Query system.

5. CONCLUSIONS
In this paper we introduced interactive intent modeling for di-

recting exploratory search and demonstrated its usefulness in task-
based user experiments. Our results show that interactive intent
modeling, in which visualization is used to allow uses to engage
with directing their search from initial expressions of their infor-
mation needs, can significantly improve users’ performance in ex-
ploratory search tasks. The improvements can be attributed to im-
proved quality of displayed information in response to user interac-
tions, better targeted interaction between the user and the system,
and improved support for directing search to achieve novel infor-
mation. Interaction with intent visualization does not replace the
query-typing interaction, but offers an additional complementary
way to express more specific intents to direct search towards novel,
but still relevant information. The improved quality of informa-
tion, in particular when displayed on the Intent Radar interface,
also transfers to improved task performance. Our findings suggest
that interactive intent modeling can significantly improve the effec-
tiveness of exploratory search.
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