
1 

 

 
 

Biomarker discovery via dependency analysis 
of multi-view functional genomics data  

 
 
 
 Ali Faisal Riku Louhimo 
 Helsinki Institute for Information Technology HIIT Computational Systems Biology Laboratory 
 Dept. of Information and Computer Science  Genome-scale Biology Research Program 
 Aalto University School of Science, Finland University of Helsinki, Finland  
 ali.faisal@aalto.fi riku.louhimo@helsinki.fi   
 

 Leo Lahti Sampsa Hautaniemi 
 Dept. of Veterinary Bioscience Computational Systems Biology Laboratory  
 University of Helsinki Genome-scale Biology Research Program  
 Finland University of Helsinki, Finland  
 leo.lahti@iki.fi sampsa.hautaniemi@helsinki.fi  

 
Samuel Kaski  

Helsinki Institute for Information Technology HIIT 
Aalto University and University of Helsinki, Finland  

samuel.kaski@hiit.fi 

 

Abstract 

Cancers are complex diseases, characterized by genomic changes at 
multiple levels of regulation. We present an integrative genome-wide approach 
that captures shared patterns from several data sources and extracts 
chromosomal regions predictive of patient survival in glioblastoma multiforme 
(GBM) progression and drug resistance. Our results identify known and 
novel genomic regions that may contribute to GBM progression and drug 
resistance. 

 

1 Introduction  

In the recent decade cancer genomics has focused on the discovery of genetic mutations and 
chromosomal changes that support the cancer phenotype. Though a single mutation may 
relate to a particular phenotype, it is the combination of many different molecular 
mechanisms that disrupt cellular pathways and characterize a cancer [1]-[3]. A major effort 
in this context is the NIH’s Cancer Genome Atlas project (TCGA) [4]. The aim of the 
consortium is to gather both multi-view molecular as well as clinical level characterization 
for patients in more than 20 different cancer subtypes.  

Typically an integrative analysis is used to fuse and capture shared patterns from multiple 
data sources. There has been a considerable amount of research within the machine learning 
community on multi-view data analysis. In this work we extract shared patterns from 
multiple data sources using a machine learning model; specifically we use a Bayesian variant 
of constrained canonical correlation analysis (CCA). CCA is a multivariate statistical 
approach that detects linear dependencies by searching for their maximally correlated low 
dimensional representation. The Bayesian latent variable formulation not only allows us to 
model the noisy biological signals, but also provides a framework where sensible priors can 
be plugged in to encode specific relationships between different data sources.  

The aim of this work is to identify potential regions (or biomarkers) that effectively stratify 
patients in low and high survival groups. We present an approach based on constrained 
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canonical correlation analysis that incorporates suitable priors, well-suited for multi-source 
integrative analysis in cancer genomics. In our study the clinical variable of interest is the 
number of days that respective patients survive. What is special in survival data is that there 
often are patients who survive over the entire study period and there are other patients with 
whom we lose contact. These observations that only contain partial information are termed 
censored data. Survival analysis methods handle censored data and in the study we use some 
of them to test survival association of chromosomal regions identified using the canonical 
correlation analysis. 

Source code is available as an R package from: http://research.ics.tkk.fi/mi/software/daSAr/ 

 

2 Methods  

2 .1  Da ta  

As a case study we selected glioblastoma multiforme (GBM) from TCGA. GBM is one of 
the most aggressive brain tumors; affected patients have a uniformly poor prognosis with 
median survival time of only 15 months over the past 25 years [5]. These tumors are now 
well characterized at genome and transcriptome levels and several studies have demonstrated 
that the combination of these two molecular levels may be advantageous to characterize 
robust signatures that are clinically relevant for GBM [6]-[7]. Three data types; gene-
expression, DNA copy number changes and methylation pre-treatment measurements were 
collected for the available ~ 250 GBM samples. We used Anduril’s GetFromTcga component 
that automatically downloads the latest version of the data from the TCGA database [8]. 

In the analysis we considered a chromosomal continuous data source as one view and gene-
expression as the second view. This resulted in two studies: a) search for dependencies 
between copy-number and gene-expression, and between b) methylation and gene-
expression. The probes for each dataset were matched resulting in ~3480 genes for gene-
expression/copy-number pair and ~ 2530 genes for gene-expression/methylation pair. To 
satisfy the normality assumptions of our model, the data was log2 transformed and the mean 
of signals for each probe was set to zero before the analysis. Besides the molecular profiles 
we included patient’s clinical information such as age, gender and race in the analysis 
pipeline. 

 

2 . 2  Depende ncy  a na ly s i s  

Unsupervised multi-view learning approaches are used to model multi-source datasets. We 
used a recently developed similarity-constrained canonical correlation analysis (simCCA) 
[9]. Canonical correlation analysis is an approach for capturing shared patterns from 
multiple views or data sources. It seeks a low dimensional transformation for the data 
sources such that the correlation in the latent space is maximized. The Bayesian generative 
formulation is as follows: 

 

X ~ N(WxZ,Ψx) 

Y ~ N(WyZ,Ψy) 
 

where the two data sources X  and Y are assumed to stem from the shared Gaussian latent variable 
Z ~ N(0, I) and normally distributed view-specific noise. The projection matrixes Wx and Wy 
encode the relationship between the data sources, and operate on the shared variable. Notice that 
in the classical CCA the projection matrixes operate on the original data (equations not shown). 
Correlation maximization of the classical CCA can be retrieved from the maximum likelihood 
solution of the Bayesian model [10]-[11].  The joint likelihood can be expressed as follows: 

 

P(X,Y,W,Ψ) = ∫P(X,Y,W,Ψ)P(Wy | Wx)P(Wy)P(Ψ)P(Z)dZ 

 

http://research.ics.tkk.fi/mi/software/daSAr/
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where Ψ denotes block diagonal matrix of Ψx and Ψy. The conditional probability P(Wy | Wx) 
encodes the relationship between the data sources X and Y.  It can be parameterized with a 
transformation matrix T such that Wx = TWy. This yields two extremes for the prior; in the 
unconstrained form, the approach reduces to the traditional CCA while setting T = I yields 
identical shared components derived from both the data sources. SimCCA employs specific 
constraints via setting an appropriate prior on the transformation matrix and has been shown 
to outperform other learning methods in cancer genomics [9]. The prior on T can be used to 
make the model focus on searching for specific types of dependencies. We plug in a 
truncated normal distribution prior: P(T) = N+(‖(T−I)‖ |0,σ

2
I), where the variance parameter 

can be used to tune the tradeoff between the two extremes. For all other variables we use 
uninformative priors. For further details see [9]. 

Notice that this prior over T favors positive correlations among the two data sources, which 
is quite sensible in case of gene-expression and copy numbers. However for the case of 
gene-expression and methylation, the relationship is inverse; down-regulation of a gene can 
be due to hyper-methylation (an increase in the epigenetic methylation of cytosine and 
adenosine residues in DNA) and similarly up-regulation of a gene can be due to hypo-
methylation. The inverse relationship is encoded by the prior P(T) = N+(‖(T+I)‖ |0,σ

2
I).  

We implemented the model by defining a chromosomal region via a window that is centered 
at a gene and spans across ten neighboring genes within the chromosomal arm. The window 
was slid across all chromosomal arms and a dependency score and each sample’s 
contribution towards the score for each region was calculated. The dependency score was 
computed as a ratio of strength of shared versus marginal affect: Tr(WW

T
 )/Tr(Ψ), where Tr 

denotes matrix trace. A high score would reveal a correlating expression and corresponding 
chromosomal change; high-scoring regions with q-value < 0.05 were selected for further 
analysis.  The significances of regions were estimated by a permutation test, using the 
observed dependency score as a test statistic. The samples in one of the spaces (gene-
expression) were randomly rearranged removing the relationship with the other space (copy -
number changes). One thousand such random permutations were formed and their 
dependency scores computed. Chromosomal region's significances were then determined as 
the proportion of random scores that were greater than the observed dependency score. For 
each identified region, sample-wise contribution scores were ordered and three groups were 
formed based on the 10th percentile, the 90th percentile and the rest. The same analysis was 
repeated for gene-expression and methylation dataset. 

 

2 . 3  Surv iv a l  a na ly s i s  

In our study the variable of interest corresponds to death of the patient and we wanted to 
check if the stratified patient groups corresponding to each identified region had a 
significant survival association. Survival analysis approaches are commonly used to estimate 
the outcome variable of interest, namely the time until an event occurs.  There are two main 
components in a survival analysis: estimation of survival function given censored data and 
comparison of the functions for multiple groups. The survival function S(t) is the probability 
that an individual survives longer than time t. In our study we used the basic Kaplan-Meier 
(KM) estimator for the survival function given as 

 
Ŝ(t(j-1)) = Ŝ(t(j))P(T ˃ t(j)|T ≥ t(j)) 

 

This gives the probability of surviving past the previous event time t(j-1), multiplied by the 
conditional probability of surviving past current time t(j), given survival to at least time t(j). 
The estimator allows us to draw KM survival curves for each group. The next step is to 
compare and test for their statistical equivalence. We use a log-rank test to compute 
significance for the differences [12].  

Note that even though the KM analysis is used widely it does not model the effect of 
covariates, and hence the significance levels might be biased due to any confounding 
covariates. We checked for a bias using a Fisher contingency table analysis, where one of the 
groupings was induced by a quantile clustering on the sample-wise contribution scores from 
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the simCCA, and the second grouping was formed from any of the binary clinical variables 
considered separately.  In the data we had three clinical factors; age, race and gender for 
each patient sample. These were transformed into the following binary variables; race: 
white/non-white, gender: male/female, and the age we discretized using four binary 
variables: age < 30, <40, >50 and >60 years. 

An alternative model-driven approach to cater for external covariate is the Cox proportional 
hazard model. The Cox model is a regression-based approach which is an extension of the 
Kaplan-Meier analysis. It takes into account the effect of covariates on the given groups and 
adjusts the survival significances accordingly. Here we omit the details of the model for 
brevity and refer interested readers to references [12]-[13] for details. 

The analysis was carried out independently for the gene-expression/copy-number data set, 
and the gene-expression/methylation data set. We searched for data-set specific as well as 
shared survival-associated regions, using both KM and Cox analysis. 

 

3 Results  

The dependency analysis resulted in 281 significantly dependent regions for the gene-
expression/copy number datasets and 313 regions for the gene-expression/methylation 
datasets (q < 0.05). We observed that the histogram for patient contribution scores followed 
a bell shape centered at zero; that is, few patients contribute most to the dependency score; 
Figure 1 shows the histogram for four random regions from the gene-expression/copy-
number datasets.  

 

 

 
Figure 1: Histogram of patient contribution weights for four regions from the gene-

expression/copy-number datasets. The vector Zs[,i] stores the contribution weights for a single 

region i. Samples that have a weights near zero have the least contribution to the dependency 

score. 

 

The high positive and negative weights correspond to patients that contribute the most and 
we treat these as separate groups. The survival curve for each was compared independently 
with the group that did not contribute to the dependency. 
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From the gene-expression/copy-number datasets we found three significant chromosomal 
regions with a stringent cut-off on Kaplan-Meier survival association (q < 0.05): 10p13, 
10q22.1, 10q26.13. Table 1 summarizes these regions. Many corresponding genes had 
expression profiles that correlated with copy number aberrations such as HK1, HKDC1, 
MCM10, DDX21, and SLC29A3. Figure 2 shows a sample KM curve for 10p13; other 
regions had similar curves. Copy number changes in chromosome 10 have been reported for 
brain tumors and specifically the 10q region has been shown to be closely related to 
glioblastoma [14]-[15]. The results from methylation/gene-expression revealed one statistically 
significant Kaplan-Meier-survival associated region (q < 0.05) at 21q22.2. This region, centered at 
ETS2, has both tumor suppressive and promoting properties depending on different tumor types 
[16]-[17]. 

 

 
 

Figure 2: Kaplan-Meier survival curve for the region 10p13 centered at MCM10. Patients with a 

high dependency between copy number alteration and gene expression in the region (“active”) 

have better survival association than patients having low dependency (“inactive”). X-axis: months, 

y-axis: percentage of GBM patients alive, round brackets: number of patients, dotted lines: 95% 

confidence intervals. 

 

The Fisher enrichment test did not show any bias induced from the three external covariates; 
significance levels are reported in Table 1. Finally the integrative analysis of copy-number/gene-
expression and methylation/gene-expression revealed one single shared significant region: 9p24.3 
(p < 0.05) based on Cox analysis. Kaplan-Meier analysis did not find regions shared between the 
two data sets.   
 

Table 1: Survival associated chromosomal regions identified using KM and Cox analysis from 

three different data types: gene-expression (exp), methylation (methy) and DNA copy number 

aberrations (cgh). Significantly enriched clinical factors are shown in red (qval < 0.05). A region 

is centered at the gene shown in bold. 

 

10p13 MCM10 SEC61A2 OPTN CDC123 OLAH RPP38 PRPF18 PTER CAMK1D HSPA14 1 0.186444 1 0.254411 0.005766 1 1

10q22.1 UNC5B CHST3 SUPV3L1 HKDC1 HK1 DDX21 SGPL1 COL13A1 SLC29A3 KIAA1279 0.254411 0.378073 1 1 1 1 9.26078E-05

10q22.1 HNRNPH3 UNC5B SUPV3L1 HKDC1 HK1 DDX21 SGPL1 COL13A1 SLC29A3 KIAA1279 1 1 1 1 0.056428 1 1

10q26.13 SEC23IP PLEKHA1 BCCIP WDR11 PTPRE TACC2 BUB3 FAM175B ACADSB INPP5F 1 1 1 1 1 0.056428 0.811937969

1 1PDCD1LG2 1 1 0.378073 1 1SH3GL2 TEK IFNA8 SNAPC3 NUDT2 KCNV2

0.872796 1 1
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Age > 50 Age > 60
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21q22.2 DOPEY2 ETS2

Enrichment Test (qvals)
Clinical factors

Dataset used Biomarker Genes in the region White Female Male Age < 30 Age < 40
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4 Conclusion  and future work  

We use a combination of existing survival analysis techniques and a recent probabilistic machine 
learning approach to extract survival associated chromosomal regions from multi-view data sets. 
A case study on glioblastoma multiforme showed that with sufficient data, our approach indeed 
finds regions that are known to be actively involved and predictive of patient survival. 

A related approach is genome-wide association analysis (GWAS) that searches the whole genome 
for small variations, called single nucleotide polymorphisms which occur more frequently in 
people with a particular disease than in people without the disease. The approach is however 
limited to a single data source. Our multi-view approach investigates the dependencies between 
different functional layers at the transcriptome and genome levels. This makes it possible to 
discover mechanisms and interactions that are not seen in the individual measurement sources. 

The results highlight the need for advanced algorithms to define context at several levels in order 
to identify genomic regions or transcript profiles that play a key role in cancer progression and 
drug resistance. Typical analyses fall short in dealing with noise and uncertainty common in 
biomedical studies; we use a Bayesian dependency approach that circumvents these and 
incorporates a suitable prior well suited for multi-source analysis in functional genomics. 

There are several fronts at which we can improve the analysis. A sensible extension is to develop 
the constrained CCA framework for more than two views. This basically involves redefining the 
cost function such that it maximizes dependencies among projections for all available data-
sources. It is also meaningful to search for combinations of regions that together are better 
predictors of patient survival. Lastly, it would be very useful to have bigger targeted collections of 
homogenous patient samples e.g. administered with a specific drug, which would make it possible 
to study survival and other relevant variables of interest specific to a cancer treatment. 
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