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Abstract. We study ways of automatically inferring the level of atten-
tion a user is paying to auditory content, with applications for example
in automatic podcast highlighting and auto-pause, as well as in a se-
lection mechanism in auditory interfaces. In particular, we demonstrate
how the level of attention can be inferred in an unsupervised fashion,
without requiring any labeled training data. The approach is based on
measuring the (generalized) correlation or synchrony between the audi-
tory content and physiological signals reflecting the state of the user.
We hypothesize that the synchrony is higher when the user is paying
attention to the content, and show empirically that the level of atten-
tion can indeed be inferred based on the correlation. In particular, we
demonstrate that the novel method of time-varying Bayesian canonical
correlation analysis gives unsupervised prediction accuracy comparable
to having trained a supervised Gaussian process regression with labeled
training data recorded from other users.

Keywords: Affective computing, Auditory attention, Canonical corre-
lation analysis.

1 Introduction

Attention to external stimulation is a central element in human cognition. By
selectively focusing on specific aspects of the stimulation we can control the infor-
mation gain, to maximally utilize the limited information channels. In Human-
Computer Interaction (HCI), attention plays several roles: Information in the
user interface should be structured to capture users attention by making it
salient when it needs attention [22], but it is also possible to use the atten-
tion of the user as a form of implicit input. For visual attention, eye-tracking
devices provide a direct interface for measuring attention; they have been used
in a range of attentive interfaces, starting from eye tracking based zooming of
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windows (for a review of attentive interfaces see [25]) to using eye tracking for
estimating aspects such as topical relevance in information retrieval [15,20].

Here we venture beyond visual attention to auditory attention. For vision the
eye-tracking devices provide relatively direct access to the target of the attention,
which has enabled the extensive works on utilizing the attention target as part
of the interface design. For auditory attention, however, detecting even where
the user is paying attention is largely an open issue, and no simple hardware
solutions exist for recording it. In particular, the best current methods are based
on direct recording of neuronal activity using functional MRI [16,19] and MEG
[12], which are by no means feasible for human-computer interaction, or full-
scalp EEG (see [11] for an early example) which is also impractical. For a good
overview of auditory attention and extensive list of references, see [7].

In this work we will discuss machine learning approaches useful for creating
more portable auditory attention detection devices. Due to the general difficulty
of the task, we will consider the simplified task of estimating how much a person
is attending to particular auditory content. The approach could be directly gen-
eralized to the task of estimating to which of multiple parallel auditory streams
the user is focusing on, by comparing the level of attention paid to each of the
streams, but to simplify the experimental setup we consider explicitly only the
task of measuring the amount of attention for a single source.

While specific hardware focusing on auditory attention is lacking, we revert to
the choice of using a combination of available physiological sensors for recording
the state of the user. We record neuronal activity with an easy-to-wear single-
channel EEG, the amount of body movement with an accelerometer, and eye
movements with an eye-tracker. While these sensors are clearly not optimal for
detecting auditory attention, they still provide multivariate signals that represent
the activity of the individual user while she is listening to some auditory content.
The field of affective computing studies the use of such signals for inferring
various cognitive and affective properties of the user, and relatively good success
has been demonstrated for instance in inferring emotional valence and arousal
[5,18], specific emotions [13], and mental workload [28]. Hence, it is a reasonable
assumption that we could get a handle on the attention with similar sensors as
well. In fact, [17] has already demonstrated success in discovering loss of auditory
attention due to external interruptions by monitoring the galvanic skin response.

Given the sensory signals, the task of detecting auditory attention is, in prin-
ciple, a straightforward learning task. We merely need to obtain ground truth
training labels and train a classifier or a regression model for inferring the labels
from the signals. For a classifier, the labels would be high vs. low attention, and
for a regression model the actual level of attention. However, it is extremely
challenging to collect training labels for the task of inferring the level of atten-
tion. For example, if the subject is listening to a music piece, we cannot ask him
to continuously rate his level of attention since providing that feedback would
change his behavior; needing to provide the evaluation would prevent him from
naturally attending to the music. It is also unreasonable to expect that people
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would be able to quantify their level of attention to arbitrary auditory contents
after the experiment with high accuracy.

The only remaining way of collecting the training labels is to conduct a lab-
oratory experiment where the labels stem from a controlled experiment. In this
work, we present a simple experiment of that sort, using an additional visual task
of varying complexity to control the level of attention remaining for an auditory
listening task. While such a procedure gives training labels, it is important to
realize that it will only provide them for the users who took part in the particu-
lar laboratory experiment; it still remains infeasible to obtain any training data
whatsoever for the eventual users of an auditory attention detector. This obser-
vation implies that any model inferring the level of attention from the sensory
signals must be user-independent. Such models, in turn, are known to be of rel-
atively poor accuracy due to considerable user-specific variation in the sensory
signals. Nevertheless, in this work we demonstrate that we can infer the level
of auditory attention with reasonable accuracy using user-independent super-
vised models, by applying two state-of-art probabilistic kernel-based regressors:
Gaussian process regression [21] and Relevance Vector Machines [23].

Our main contribution, however, is an alternative way of inferring the level of
attention that does not require any training labels whatsoever. Instead, we make
a hypothesis that the amount of synchrony or correlation between the physiolog-
ical signals and the auditory content is modulated by the level of attention. That
is, we assume that any signals recorded from a user not paying attention to the
audio will be independent of the audio signal, whereas high degree of attention
is reflected as increased correlation between some of the physiological signals
and the audio content. Assuming the hypothesis holds, we can directly detect
auditory attention as correlation between the two signals, without needing any
training data. To further illustrate the approach and its relationship with the
supervised one, the analysis pipelines for both are depicted in Figure 1.

We measure the correlation with canonical correlation analysis (CCA) and its
Bayesian re-formulation as a latent variable model [2,27]. Using the Bayesian for-
mulation not only helps with limited amount of data, but enables encoding prior
knowledge on the underlying signals into the model. In this work we utilize the
fact that the measurements are time series, and introduce a novel time-dependent
Bayesian CCA model by encoding time-dependent interactions in the generative
description.We learn themodel from the coupled physiological signals and features
computed for the audio content, and then measure the amount of correlation to
represent the level of attention. We demonstrate that the correlation reveals the
level of attention with accuracy comparable to the user-independent supervised
models. The empirical experiments hence demonstrate that we can infer the level
of attention from physiological signals, and more importantly that we can do it
without requiring any labeled training data at all.

We start the rest of the paper by first introducing some prototypical applica-
tion scenarios for auditory attention detection, providing a context and motiva-
tion for the more technical sections.We then proceed to explain the computational
models needed both for supervised user-independent inference of attention and for
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Fig. 1. Illustration of the two modeling pipelines for estimating the level of attention
from the biosensors. The unsupervised approach evaluates the correlation between the
sensor data and the audio content, and uses the inverse correlation as a predictor for
the level of attention. The supervised approach uses only the sensor data, and applies
a model learned from other users for predicting the level of attention.

measuring the amount of correlation between the physiological signals and the au-
ditory content. After describing the models we explain the empirical experiment
conducted for recording data to train and evaluate the models, and then show the
empirical results demonstrating the accuracy of the proposed methods.

2 Application Overview

Albeit we here consider the task of inferring the level of auditory attention pri-
marily as a basic research question, it has several direct application possibilities
that are worth highlighting. A simple example would be an auto-pause tool for
audio players; the attention recognizer would be running continuously on the
background and whenever it recognizes that the level of attention is particularly
low it pauses the audio automatically so that the user can continue listening for
the audio after the interfering concurrent task is over. Alternatively, the tool can
simply keep track of the moments with low attention, allowing the user to easily
return to them later (for a practical example, see [17]), for example to re-cap
details of a technical description in a podcast they might have missed during the
first listening.

There are also applications where storing the moments with the highest at-
tention could be useful. Such an automatic highlighting tool could capture, for
example, the moments when the user most enjoyed a piece of music. Those pieces
could even serve as a query to a music retrieval engine; the user could carry out
a search for other songs similar to the most enjoyable parts of the song he just
listened. Besides static content, such as music or podcasts, the tool could also
be used for highlighting more dynamic content. For example, it could be used to
summarize a meeting as a combination of the moments where reasonable amount
of attention was paid to the discussion.

In another application scenario the goal is to detect the attention target. In
an environment with multiple overlapping auditory streams, we can measure the
amount of correlation with respect to each of the sources and detect the target of
primary attention as the one with the highest correlation. This enables building
for instance auditory interfaces where attention is used to implicitly select one
out of multiple alternatives.
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3 Modeling Dependencies

We first describe the classical method for estimating the amount of multivariate
correlation between two data sources, the canonical correlation analysis (CCA).
We then proceed to describe the Bayesian variant of CCA, following the formu-
lation in [27], which makes CCA applicable for high-dimensional data and al-
lows various extensions. Finally, we introduce the novel time-dependent Bayesian
CCA model that explicitly models continuity in time-series data.

3.1 CCA

Given two data matrices, X ∈ R
N×Dx and Y ∈ R

N×Dy , with N samples (rows)
and Dx and Dy features (columns), the CCA finds linear projection weights
u ∈ R

1×Dx and v ∈ R
1×Dy such that the Pearson correlation

ρ = cor(XuT ,YvT )

is maximized. Since correlation is invariant to the scale, the norms of u and
v can be fixed to unity. The above formulation defines the most correlating
one-dimensional subspace; further components indexed by a subscript can be
obtained by adding an orthogonality constraint cor(XuT

k ,XuT
l ) = 0 for all k

and l (and similarly for Y). In practice, we can readily compute min(Dx, Dy)
canonical correlations ρk and the associated projections (uk,vk) by solving a
single generalized eigenvalue problem (see for, instance, [10] for details).

While CCA is typically used for gaining an understanding of the correlations
between the two data sets (by interpreting u and v), it readily provides a measure
for the amount of dependency between them. We summarize the dependency
with the quantity

I(X,Y) = −1

2

min(Dx,Dy)∑

k=1

log
(
1− ρ2k

)
,

which corresponds to the mutual information between the two sources if they
are jointly multivariate normal. For non-normal data the quantity does not cor-
respond to the mutual information, but is still a good estimate of the total
dependency, summarizing all correlations into a single number.

In our application, the task is to measure the amount of correlation for a
subset of the samples. We do this by first learning the model to maximize the
correlation over the whole available data. Given the model (the projections), we
then evaluate the correlation for any subset L of the samples by simply esti-
mating the correlations (and the above mutual information summary) between
XLu

T
k and YLv

T
k .

3.2 Bayesian CCA (BCCA)

While CCA is a straightforward method with guaranteed convergence to a global
optimum, it has a number of shortcomings that can be addressed by switching
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to the probabilistic framework. First of all, CCA is prone to overfitting to high-
dimensional data, and especially for N < min(Dx, Dy) necessarily returns cor-
relations of exactly one due to linear dependency of the features. For preventing
this we need proper regularization, which we implement through priors and vari-
ational inference in the Bayesian framework. This particular choice gives us also
another advantage: It allows extending the model by making slight changes to
the generative model of CCA (see for instance [1,8,26] for examples). After recap-
ping the model, we will in the next section show how the Bayesian treatment of
CCA enables incorporating time-dependencies between the samples, a property
that would not be easy to add in the original linear algebraic formulation.

The Bayesian CCA builds upon the probabilistic interpretation of CCA by [2].
The basic idea is that the two data sources are generated from a common latent
representation with a linear transformation, with arbitrary additive Gaussian
noise independent of the other source. More formally,

z ∼ N (0, I)

x ∼ N (Wxz,Ψx) (1)

y ∼ N (Wyz,Ψy),

where z ∈ R
1×K is a K-dimensional latent signal and Wx ∈ R

Dx×K and Wy ∈
R

Dy×K are projections mapping the latent signals to the observations. The noise
covariances Ψx and Ψy model the variation independent of the other sources. In
practice, especially for high-dimensional data, we need to assume low-rank noise
covariances Ψx and Ψy to prevent needing to make inference over the Dx ×Dx

and Dy×Dy covariance matrices, which leads to the Bayesian CCA formulation
of [27]:

z ∼ N (0, I)

[x;y] ∼ N (Wz,Σ),

where Σ is a block-diagonal matrix Σ = [σ2
xI,0;0, σ

2
yI]. By making W group-

wise sparse with the sparsity-inducing prior

βxk ∼ G(α0, β0)

βyk ∼ G(α0, β0)

p(W) =

K∏

k=1

(
N (Wx(k)|0, β−1

xk I)N (Wy(k)|0, β−1
yk I)

)
,

where G(α0, β0) is a flat Gamma distribution (α0 = β0 = 10−14), we will get
projections W that factorize as

W =

[
Wx Vx 0
Wy 0 Vy

]
.

After marginalizing out the latent components corresponding to the columns of
W having a zero block for either data source, induced by the group-wise sparsity
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prior, the above model becomes equivalent to (1) with ΨX = VxV
T
X + σ2

xI and
Ψy = VyV

T
y + σ2

yI. In summary, the resulting model implements the Bayesian
CCA model with a low-rank assumption for the noise covariances within each
data source, but does not require specifying the rank of either the correlating
subspace or the noise covariances in advance. Instead, they will all be learned
automatically from the data.

We do the inference using a variational approximation, assuming the posterior
p(Θ|X,Y) = p(σ2

x, σ
2
y , βx, βy,Z,W|X,Y) can be approximated by a factorized

distribution

Q(Θ) = q(σ2
x)q(σ

2
y)

K∏

k=1

q(βxk)q(βyk)

N∏

i=1

q(zi)

D∏

d=1

q(Wd.),

and minimizing the Kullback-Leibler divergence between Q(Θ) and p(Θ|X,Y).
This results in a set of mean-field equations updating each term q(·) at a time
until convergence to a local optimum; the details can be found in [27].

For evaluating the correlation we estimate the conditional densities p(z|x)
and p(z|y) and then compute the correlation between their expectations. This
can be done for any subset of the samples using a procedure similar to updating
q(Z) while learning the posterior approximation.

3.3 Time-Dependent Bayesian CCA (T-BCCA)

One advantage of the Bayesian formulation for CCA is that it allows easily
extending the model to take into account particular properties of the underlying
data. As practical examples, in [1,26] more robust variants were introduced by
replacing the normal distributions with t-distributions, in [14,26] mixtures of
CCAs, and in [8] sparse variants. In this paper, we will extend Bayesian CCA
to a state-space model that is more accurate for modeling correlations between
two multivariate time series.

The key idea of the novel time-dependent CCA is that the latent variables
z will have a Markovian assumption. Instead of drawing each zt independently
from the same prior, we introduce the prior

z0 ∼ N(0, I)

zt ∼ Tzt−1 +N(0, σ2
0I)

where T governs the evolution of the latent space and σ2
0 controls the amount

of stochastic noise.
We retain the variational Bayesian framework for inference, and are able to re-

use the update formulas for the various terms in the approximation except for q(Z).
For that, we learned aKalman filter along with the Rauch-Tung-Striebel smoother
[9], using a forward-backward procedure as described in [3]. Since the Bayesian
CCAassumes independent latent components,we restrictT to be diagonal to avoid
modeling dependencies between them and use variational inference with prior cen-
tered around the identity matrix. Furthemore, we set σ2

0 = 1 to fix the scale, but
could do variational inference over this parameter as well.
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True comp. BCCA T-BCCA

Fig. 2. Illustration of the importance of modeling time-dependencies in CCA mod-
eling. The left column shows three latent components underlying a generated data
set, the middle column shows the latent components estimated by regular Bayesian
CCA, and the right column shows the estimated components when modeling also the
time-dependency. We see that already the regular Bayesian CCA (BCCA) captures
the signals roughly correctly, but that the time-dependent model (T-BCCA) gives
much more accurate estimates for the sinusoidal signals. The component with no time-
dependencies (bottom row) is modeled equally well; T-BCCA learns to automatically
set the corresponding element in T to zero.

To briefly illustrate the advantage of modeling time-dependencies in the la-
tent space, we applied both the regular Bayesian CCA model described in the
previous section (which corresponds to T = 0 and σ2

0 = 1 in the more general
formulation) and the time-dependent model to a simple simulated data. The
data has three latent components of which some show clear time-continuity, and
as shown in Figure 2 modeling the time-series nature results in more accurate
estimates for them.

4 Supervised Learning

Given the available sensor data, the usual approach for inferring the level of at-
tention would be to use supervised learning. That is, we would collect labels for
training instances and train a classifier or regressor for predicting the attention.
As discussed in the Introduction, gathering such labeling data for the task of
auditory attention is extremely challenging and the only reasonable way is to
use laboratory experiments with controlled stimulation. This allows gathering
training data from laboratory users, but not from the eventual users of an au-
ditory attention predictor system. Hence we require user-independent models in
this task.

In this paper, we will compare the unsupervised approach with supervised
learning where the model is learned from a training corpus measured and labeled
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for other users. We chose two state-of-art supervised methods: Relevance Vector
Machine (RVM) [23] and Gaussian process (GP) regression [21], as representative
alternatives. Both are probabilistic kernel-based learning methods that enable
non-linear mappings from the input to the level of attention. To capture non-
linearity, we used the Radial Basis Function (RBF) kernel:

k(x,x’) = exp(
‖x− x’‖2

2ν2
)

with both of these methods. For each method, we learned the kernel parameter
ν using type II maximum likelihood.

5 Experimental Setup and Data

To train and evaluate the proposed methodology for inferring the level of audi-
tory attention, we created a simple laboratory experiment. The subjects listen to
three types of audio content (scientific podcast, popular music, and audio drama)
while being measured with three different sensors (NeuroSky single-channel EEG
device, accelerometer measuring body movement, and eye-tracker measuring the
pupil dilation). Their level of attention to the auditory content is controlled by
a simultaneous alternative task with tunable difficulty competing for their at-
tentional resources. Based on the limited-capacity theorem asserting that there
is a direct performance tradeoff between simultaneous auditory and visual tasks
[4], we assume that the auditory attention is low whenever the user is paying a
high level of attention to the alternative task, and vice versa.

For the alternative task we chose a visual search task called conjunction search
where the user searches for objects identified by multiple features [24]. The user
is presented a grid of items, and asked to tell whether any of the items on the
screen is unique in terms of color and shape. We assigned the user the binary
detection task, instead of asking him to point where the unique item is, to avoid
introducing unnecessary movements.

The visual task was presented in four difficulty levels. We tuned the difficulty
of the search task by the number of different colors and shapes of the objects.
The easiest level (level 1) was simply the blank screen, hence there was no search
task at all. The remaining three levels of difficulty had 2, 4, and 9 different kinds
of objects, respectively (see the bottom half of Figure 3 for illustration of the
stimuli). This provides data with four ground-truth levels of visual attention, and
we assume that the auditory attention has an inverse monotonous relationship
to visual attention.

We constructed a partially balanced experimental setup for our 12 voluntary
test users (7 male and 5 female university students aged from 22 to 29 years).
All of them listened to the three audio contents, a scientific podcast, music, and
radio drama, of 4 minutes each. There was 1 minute of each visual task level
within each audio type. The order of the visual task levels within each audio
type was balanced across users using the 4 × 4 Latin squares design. The order
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User 1

User 2

User 3

User 4

Fig. 3. Top: Illustration of the experimental setup. The subjects listened to three
types of audio content while performing visual search tasks of varying difficulty (four
levels). The blocks of the visual tasks occurred at the same time for all subjects, but the
design was balanced so that the difficulty levels were in a different order for different
subjects, as well as in a different order between the different audio types for each
subject. Furthermore, the subjects listened the three audio types in different orders
(not shown in the image for clarity). Bottom: Examples of the three visual search
task difficulties corresponding to levels 2, 3, and 4 from left to right. Level 1 is blank
screen where there is no visual search task at all.

of the audio contents was also balanced according to another 3×3 Latin squares.
Figure 3 illustrates the course of the experiment.

For the data analysis we processed both the auditory content and the biosig-
nals into vectorial samples, forming each sample from a 250ms contiguous block
of the signals. The music is represented by 17 numerical features capturing pri-
marily timbral and rhytmic properties of the music, computed using the MIR
toolbox [6]. The idea is that the representation would capture essential charac-
teristics of the audio content. The physiological signals, in turn, were summa-
rized through several features stemming from the affective computing literature,
considered to be reasonable approximations of the information content in the
physiological signals. The actual features used are listed in Table 1.

6 Results

For evaluating the accuracy and feasibility of the proposed attention inference
method, we ran two separate computational experiments on the experimental
data described in the previous section. Here we both describe the experiments
and report their results.
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Table 1. Top: Physiological features extracted from the data collected by three sen-
sors: accelerometer, eye-tracker, and single-channel EEG. Bottom: Audio features
computed by the MIR toolbox [6].

Physiological features

3D body motion and pupil diameter: mean and standard deviation
mean of the derivative, mean, median, and maximum peak-to-peak interval

Single-channel EEG: spectral power in (0.5–2.75) Hz, (3.5–6.75) Hz,
(7.5–9.20) Hz,(10.0–11.75) Hz, (13.0–16.75) Hz,(18.0–29.75) Hz, (31.0–39.75) Hz,
(41.0–49.75) Hz

Audio features

zero-crossing rate, spectral centroid, brightness, spectral spread, kurtosis,
MFCC (Mel-frequency cepstral coefficients), skewness, roll-off, entropy,
spectral-flatness, roughness, RMS (root-mean-square), spectral flux,
novelty of spectral flux, fluctuation, fluctuation centroid, fluctuation entropy

6.1 Experiment 1: Inferring the Level of Attention for Long Time
Blocks

In the first experiment we study the problem of inferring the level of attention
for each of the experimental blocks. This answers the question of whether we
can differentiate between different levels of attention during periods of time
lasting roughly one minute each. The results would be directly applicable to
scenarios such as meeting highlighting but would not be sufficient for choosing
the attention target in an interactive interface, for instance.

We analyze each of the audio types and users separately, resulting in a total
of 12×3 = 36 models. For the correlation-based models we learn the CCA using
all the data for that user-audio pair and then evaluate the correlation for each
of the blocks corresponding to one level of ground truth attention. Since we
have four levels of ground truth attention, this gives us four correlation scores
which we sort in the decreasing order to predict the attention. For each user-
audio pair we then compute the accuracy as the number of correct ranks with
respect to the ground truth. For example, if the block with the hardest visual
task is ranked last, the score increases by one. This measure is equivalent to
classification accuracy for a scenario where we know that each class occurs only
once in the test set.

For the supervised models we train a regression model with the labeled train-
ing data for all other users and then apply it to the four blocks of the user in
question. This is done separately for each audio type, and we again rank the
resulting regression scores to label the four blocks with the levels of attention.
That is, we use the exactly same measure as for the correlation-based models.

Table 2 collects the average scores (over users, normalized so that 1 equals
to a perfect result) for all of the methods and all three audio types. The super-
vised user-independent approaches provide the best results, but the unsupervised
variants closely follow with only marginally lower accuracies. Of these three, the
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T-BCCA model has an accuracy over 40% for all three audio types, which is a
promising signal for real applications. To evaluate the reliability of the results
we performed Wilcoxon signed rank test over the results of all three audio types
(to obtain more statistical evidence over the 12×3 = 36 independent scores), re-
vealing that all five methods are significantly (p < 0.05) better than the random
baseline, but that the differences between the alternatives are not significant.

Note that in this experiment we normalized the correlations by dividing them
by the mean of the correlations for all users during the same audio content.
This was done to reduce the potential bias caused by the properties of the
auditory content itself. It is easy to imagine that certain types of audio content,
for example catchy music pieces, could result in naturally higher correlation levels
with the sensory signals for all attention levels. The kind of normalization done
in this experiment could be done for real applications given access to sensory
data of other users having listened to the same content, still without needing
any labeled data. As this is not necessarily the case in many situations, we also
re-ran the experiment without such normalization. This results in a drop of (on
average) two percentage points for each of the unsupervised methods. Together
these two experiments indicate that it pays off to remove the content-specific
effect on the correlation, but that it is not absolutely crucial and the methods
work even without any earlier data from other users.

Table 2. The classification accuracy for detecting the four levels of attention in the
experiment. All five methods outperform the chance level with statistical significance
(p < 0.05; Wilcoxon). The noteworthy observation is that the unsupervised CCA-
based methods are only slightly worse than the supervised ones (GP and relevance
vector regression).

Method Scientific Podcast Music Radio Drama Average

Gaussian Process regression 0.52 0.38 0.50 0.47
Relevance Vector regression 0.52 0.44 0.42 0.46

Time-dependent Bayesian CCA 0.42 0.46 0.44 0.44
Bayesian CCA 0.25 0.52 0.44 0.40
Classical CCA 0.35 0.44 0.48 0.42

Random baseline 0.25 0.25 0.25 0.25

6.2 Experiment 2: Inferring Short-Term Attention

The above experiment considered the problem of inferring the level of attention
for time-periods lasting roughly one minute, and also matched exactly the ex-
perimental setup of our data. For practical application scenarios we might want
to infer the level of attention also for shorter time periods, for example to enable
auto-pause or audio highlighting, or to more quickly recognize which of several
overlapping audio streams the user is attending to.

In this experiment we study how short we can make the time window while still
getting an estimate that is better than random chance. We do this by training
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Fig. 4. The classification accuracy of detecting the four levels attention is given for
all models in comparison as a function of time window size. For each window size,
the scores are averaged over all users and audio types. The unsupervised CCA-based
methods are all better than chance, but for most window sizes are slightly beaten by
the supervised methods. This figure is best viewed in colors.

the models as above, but making the predictions for all consecutive time windows
of certain length1 instead of the full blocks as we did above. We measure the
performance as before, by comparing the true ranking of the M windows with
the ranks obtained by ordering the windows based on the correlation score or
the regressor output. Again we assume we know how many windows of each
attention level we have; this is done for the purpose of measuring only – in
practical applications we will always have the full ranking and need not make
such assumptions. Figure 4 shows the resulting average accuracy (averaged over
both the users and audio types) of the alternative methods as a function of the
window size, showing the intuitive trend that inferring the level of attention gets
harder when we have less data. Again the supervised predictors are the best, but
the unsupervised models also outperform the chance level. For shorter window
lengths the Bayesian CCA variants outperform the classical one.

7 Discussion

Visual attention plays a central role in human-computer interaction, and being
able to measure the target of the attention with eye-tracking devices has enabled
novel types of user interfaces that infer information from the attention [15,20].
Auditory attention, while equally important for the daily life of humans, has
been studied much less extensively, not only because auditory interfaces are less

1 We exclude windows where the ground truth labeling changes during the window.
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common but also because no hardware solutions for estimating the level or target
of auditory attention exist.

In this work we studied the problem of inferring the level of auditory attention
from physiological signals. We compared two alternative approaches for inferring
the level: supervised learning with user-independent models, and unsupervised
inference based on the assumption that the physiological measurements corre-
late with the auditory content more strongly when the user is attending to the
content. We used state-of-art computational models, Gaussian process [21] and
Relevance Vector Machine [23] regression for supervised learning and Bayesian
canonical correlation analysis [27] for unsupervised learning, and extended the
latter approach to the novel time-dependent BCCA model to better match the
underlying time-series nature of the signals. Our experiments demonstrated that
both approaches can extract information on the amount of attention paid to
three different types of auditory content. The accuracy is not yet sufficient for
practical applications, but both approaches outperform chance level with statis-
tical significance, implying that the direction is feasible. The main observation is
that the unsupervised methods provide recognition accuracy only slightly worse
than that of the supervised models. Even though the time-dependent model was
demonstrated to better capture the time-dependencies on artificial generated
data, its performance on the real data was only comparable to not modeling the
dynamics; the time-dependent model was the best unsupervised variant for long
windows, but for short windows the regular Bayesian CCA was better.

One aspect worth noting is that our experiments do not reveal whether the
supervised predictors are predicting the level of attention to the auditory content,
or merely predicting the attention paid for the visual search tasks. This is because
they take as input only the sensory signals and the output labels are equivalent
for both tasks. Similar problems are likely to remain for all isolated experiments
trying to control the level of auditory attention, and hence for training supervised
models guaranteed to address the right aspect one would need to use several
alternative techniques for controlling the auditory attention: A supervised model
could only be relied to predict the auditory attention itself if it generalizes over
all such ways of control. The unsupervised approach, however, does not suffer
from the same problem, since we are not learning the parameters to predict the
attention but instead are merely estimating the amount of correlation between
the sensory signals and the auditory content. This means the approach directly
answers to the question of auditory attention, and would not have the flexibility
to model alternative explanations for the predicted attention.

For improving the accuracy towards the level required for real-world applica-
tions, the most promising direction is to improve the instrumentation and the
signal representations. Our main focus was on the machine learning question and
the associated computational methods, instead of building a practical attention-
detection tool. Replacing the three sensors used in our experiments with sensors
more suitable for detecting correlations with the auditory content (for example,
a multi-channel EEG additionally recording areas closer to the auditory cor-
tex) should dramatically improve the accuracy, yet the computational methods
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presented here would remain applicable. Regarding the methods development,
a promising direction would be to study methods that allow automatic normal-
ization of the correlation levels with respect to the auditory content. Learning a
regressor from the auditory content to the average correlation (independent of
the task), would allow normalizing the correlation measures with respect to the
content without needing to rely on having measurements from other users.
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Models. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD
2010, Part III. LNCS, vol. 6323, pp. 370–385. Springer, Heidelberg (2010)

27. Virtanen, S., Klami, A., Kaski, S.: Bayesian CCA via group sparsity. In: Pro-
ceedings of the International Conference on Machine Learning (ICML 2011), pp.
457–464. ACM, New York (2011)

28. Wilson, G.F., Russell, C.A.: Real-time assessment of mental workload using psy-
chophysiological measures and artificial neural networks. Human Factors 45(4),
635–643 (2003)


	Unsupervised Inference of Auditory Attention from Biosensors
	Introduction
	Application Overview
	Modeling Dependencies
	CCA
	Bayesian CCA (BCCA)
	Time-Dependent Bayesian CCA (T-BCCA)

	Supervised Learning
	Experimental Setup and Data
	Results
	Experiment 1: Inferring the Level of Attention for Long Time Blocks
	Experiment 2: Inferring Short-Term Attention

	Discussion
	References




