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Abstract. We introduce a Bayesian extension of the tensor factoriza-
tion problem to multiple coupled tensors. For a single tensor it reduces
to standard PARAFAC-type Bayesian factorization, and for two tensors
it is the first Bayesian Tensor Canonical Correlation Analysis method.
It can also be seen to solve a tensorial extension of the recent Group
Factor Analysis problem. The method decomposes the set of tensors to
factors shared by subsets of the tensors, and factors private to individ-
ual tensors, and does not assume orthogonality. For a single tensor, the
method empirically outperforms existing methods, and we demonstrate
its performance on multiple tensor factorization tasks in toxicogenomics
and functional neuroimaging.

1 Introduction

Tensor Factorization methods decompose data into underlying latent factors or
components, taking advantage of the natural tensor structure in the data. A wide
range of low-dimensional representations of tensors have been proposed earlier
[1]. The most well-known models include the CP CANDECOMP/PARAFAC
[2,3] and the Tucker 3-mode factor analysis [4]. Tucker is a more generic model
for complex interactions, whereas CP as an additive combination of rank-1 con-
tributions is easier interpretable analogously to matrix factorizations. Recently
well-regularized probabilistic tensor factorization methods have been introduced
for both CP [5] and Tucker [6], though they are limited to single tensors only.

Two-view tensor models. In order to discover shared patterns between two
co-occuring tensors, joint factorization approaches decompose them into corre-
lated factors [7]. Recently, several non-probabilistic methods for Tensor Canon-
ical Correlation Analysis have been introduced [8,9,10] extending the matrix
counterparts. The methods impose different constraints but all aim at finding a
common latent representation of two paired tensors.

Two-view matrix models. For paired matrices, integration approaches
have been thoroughly studied. For an overview on nonlinear Canonical Correla-
tion Analysis (CCA) see [11] and Bayesian CCA see [12].

Multi-view models. Multi-view modeling integrates information from mul-
tiple coupled datasets. For unsupervised multi-view modelling, a method has
recently been proposed for decomposing several coupled matrices, into compo-
nents shared by subsets of the matrices, and components private to each matrix.
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Fig. 1. Multi-view tensor factorization. Datasets X (1),X (2),X (3) are simultaneously
decomposed into K components. The Z and U loadings are common to all tensors,
while the view-specific loadings W(m) show the intrinsic component-view structure in
the data. The structure is highlighted in W(m) with black representing a component
active in a view (non-zero loadings), while white is switched off (zero-loadings).

The method was called Group Factor Analysis [13]. As far as we know, methods
for analysing multiple coupled tensors have not been proposed earlier.

In this paper we formulate and address the novel multi-view tensor factor-
ization problem, where the task is to decompose multiple coupled or co-occuring
tensors into factors that are shared by subsets of the tensors: one, some or all
of them. We formulate a Bayesian model to solve the task, allowing automatic
model complexity selection and an intrinsic solution for degeneracies. For two
views, our model is the first Bayesian Tensor Canonical Correlation Analysis.

The rest of the paper is structured as follows: In section 2 we formulate
the novel multi-view tensor factorization problem. In section 3 we present our
Bayesian multi-view tensor factorization model and describe its relationship to
existing works. In section 4 we validate the model’s performance in various set-
tings and demonstrate its application in a novel toxicogenomics setting and a
neuroimaging case. We conclude with discussion in section 5.

Notations: We will denote a tensor as X , a matrix X, vector x and a scalar

x. The Frobenius norm of a tensor is defined as ‖X‖ =
√∑

n

∑
d

∑
l X 2

n,d,l. The

Mode-2 product ×2 between a tensor A ∈ RN×K×L and a matrix B ∈ RD×K
is the projected tensor (A ×2 B) ∈ RN×D×L. A reshaped Khatri Rao product
� of two matrices A ∈ RN×K and C ∈ RL×K is the “column-wise matched”
outer product of K vector-pairs that results in the tensor (A�C) ∈ RN×K×L.
The outer product of two vectors is denoted ◦. The rank of a tensor X is the
smallest number of rank-1 tensors that generate X as their sum. The order of
a tensor is the number of axes in the tensors, also called ways or modes. For
notational simplicity the model is presented for third order tensors, while it is
trivially extendable to higher orders.

2 Multi-View Tensor Factorization

We formulate the novel Multi-view Tensor Factorization (MTF) problem for
a collection of m = 1, . . . ,M paired tensors (views), X (1),X (2), . . . ,X (M) ∈
RN×Dm×L, as the combined factorization that decomposes the tensors into
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factors shared between all, some, or a single tensor. In MTF, each tensor is
factorized into a view-specific matrix of loadings W(m) ∈ RDm×K and a low-
dimensional tensor Y ∈ RN×K×L common for all views:

X (m) = Y ×2 W
(m) + ε(m) .

Here ε(m) ∈ RN×Dm×L is the noise tensor.
The view-specific matrix of loadings W(m) then controls which of the factors

k from the common tensor are active in each view. For convenience we assume a
fixed number of K factors, with the understanding that for methods capable of
choosing the number of factors, K is set large enough, and the loadings of extra
components will automatically become set to zero.

The tensor Y forms the shared latent tensor and can be left unconstrained
(equivalent to Tucker1 factorization), or can be further constrained to represent
any decomposition including Tucker2, Tucker3 or CP. The CP decomposition
factorizes a tensor into a sum of rank-1 tensors, where each rank-1 tensor is
the outer product of vector loadings in all modes, whereas in Tucker variants
the factor interactions are modelled via a core tensor G. This rank-1 component
decomposition of CP and its intrinsic axis property from parallel proportional
profiles [14], along with uniqueness of solutions [15], gives it a very strong in-
terpretive power. The Tucker model is more flexible, though, the complex in-
teractions via G and non-uniqueness of solutions make its interpretation more
difficult. Therefore, we adapt an underlying CP decomposition for our model.

Figure 1 illustrates MTF for the joint CP-type factorization. More formally,

X (m) =

K∑
k=1

Zk ◦Uk ◦W(m)
k + ε(m) (1)

= (Z�U)×2 W
(m) + ε(m) .

Here Z ∈ RN×K and U ∈ RL×K are the common latent variables and the W(m)

are loadings for each view m.
Figure 1 shows the MTF formulation for three tensors, where components

(rows) of W(m) can be active in all, two, or a single view. The loadings W
(m)
k

are zero for the components k that are not active in view m. A component active

in two or more views has non-zero loadings in the corresponding W
(m)
k and is

hence shared between them. This specification comprehensively represents the
intrinsic structure of the tensor collection.

3 Bayesian Multi-View Tensor Factorization

We formulate a Bayesian treatment of the MTF problem of Equation 1, by
complementing it with priors for model parameters. Figure 2 summarizes the
dependencies between the variables in the decomposition of the M observed
tensors X (m) as a graphical model. The main idea is incorporated in plate M ,
which represents the view-specific loadings W(m), having two layers of sparsity:



4 S.A. Khan and S. Kaski

τ (m)X (m)

W(m)Z

DM
N

U α(m)

β

L
M

K

h(m)

Π

Fig. 2. Plate diagram for Bayesian multi-view tensor factorization.

1) view-wise sparsity controlled by h(m) and 2) feature-wise sparsity (across the
DM features) controlled by α(m). The view-wise sparsity acts as an on/off switch
and allows the model to automatically learn which views share each factor, and
also the total number of factors in the data. The plate K represents probabilistic
CP decomposition for each view, where Z and U are the latent variables.

The distributional assumptions of our model (explained in detail below) are:

X (m)
n,l ∼ N ((Zn �Ul)×2 W

(m), I(τ (m))−1)

Z ∼ N (0, I)

Ul,k ∼ N (0, (βl,k)−1)

W
(m)
d,k ∼ h

(m)
k N (0, (α

(m)
d,k )−1) + (1− h

(m)
k )δ0

h
(m)
k ∼ Bernoulli(πk)

πk ∼ Beta(aπ, bπ)

βl,k ∼ Gamma(aβ , bβ)

α
(m)
d,k ∼ Gamma(aα, bα)

τ (m) ∼ Gamma(aτ , bτ )

where Gamma(a, b) is parameterized by shape a, rate b.
The coupled N×L samples in each tensor X (m) are modelled via the product

of loadings, with a view-specific observation precision τ (m). For the latent vari-
ables, we assume a priori independence, and induce an element-wise automatic
relevance determination ARD prior [16] on Ul,k to encourage sparsity.

To infer the interactions between views and components, we make the model
view-wise sparse via a Spike and Slab prior [17] on the projection weights W(m).
The spike and slab prior has two parts, one being a delta δ0 function centered at
zero and the other some continuous distribution (usually Gaussian). We replace
the Gaussian with an element-wise ARD prior to additionally allow feature-level
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sparsity in our model. The ARD is a Normal-Gamma prior that specifies the

precision α
(m)
d,k controling the scale of each variable. Our element-wise d, k,m

formulation of ARD encourages the loadings within a component-view pair to

be sparse. In the spike and slab construct, the binary value h
(m)
k drawn from

a Bernoulli distribution gives the component-view activation. If h
(m)
k = 1, the

component k is active in view m and the loadings W
(m)
k are sampled from a

corresponding element-wise ARD prior, whereas if h
(m)
k = 0, the component-

view pair is not active and the loadings W
(m)
k are set to zero via δ0, inducing

view-wise sparsity.
Learning the h(m) activities allows automatic determination of the number

and sharing of factors between the views. This is because if K is set to be large

enough, the model will switch off h
(m)
k , for all the extra k,m pairs. This yields

the underlying sharing pattern of the views, even producing empty components
that are not active in any view. The presense of empty components indicates that
K was set to a large enough value, and the amount of non-empty components
gives the rank of the view collection. In the construct, πk represents probability
of activation of each component.

The joint probability of data and parameters can be factorized as follows,
and inference is performed via Gibbs sampling:

p(X (1),X (2), ...,X (M), Θ) =

M∏
m=1

N∏
n=1

L∏
l=1

p(X (m)
n,l |Zn,Ul,W

(m), τ (m))

p(τ (m))p(Zn)

K∏
k=1

p(Ul,k|βl,k)p(βl,k)

D(m)∏
d=1

p(W
(m)
d,k |α

(m)
d,k ,h

(m)
k )p(α

(m)
k ).p(h

(m)
k |πk)p(πk)

Degeneracies can complicate the practical use of CP when analyzing real data
[18]. Most degeneracies occur due to non-trilinear structure in the data and are
identified by strong negative correlations between two components. To overcome
the problem, researchers have proposed adding orthogonality and non-negativity
constraints that address it by hindering correlations [18,19], but may also effect
the model’s ability to discover PARAFAC’s intrinsic axes.

In our Bayesian formulation, we impose an element-wise ARD prior on the
component loadings W(m),U. The element-wise prior regularizes the solution al-
lowing determination of precise factor loadings, and is a construct less strict than
orthogonality. Our model should therefore be able to handle weak degeneracies,
via a flexible composition that still allows identifying PARAFAC’s intrinsic axes.

3.1 Special Cases and Related Problems

We next present special cases of our model and relate them to the existing works.
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Sparse Bayesian CP. For m = 1 (a single view) our model reduces to sparse
Bayesian CP factorization, which can automatically infer the number of compo-
nents. In this special case our formulation goes very close to the Bayesian CP
[20], the main differences being that they use MAP estimation and do not have
feature-level sparsity.

Other Bayesian versions of CP include a variant specialized for temporal
datasets [5], the fully conjugate model [21], and an exponential family framework
[22]. For Tucker factorizations, Chu and Ghahramani [6] formulated Tucker in
a probabilistic framework (pTucker) while [23] presented a non-linear variant
using Gaussian processes. All of these follow different assumptions; however,
unlike our method, none of them automatically learns the rank of the tensors.
Instead, repetitive methods of rank identification are used, though they pose
serious scalablity issues for large tensors [1].

Bayesian Tensor CCA. For m = 2, our model is the first Bayesian Tensor
CCA. The model is related to tensor-CCAs in the classical domain, specifically
to [8,10]. An additional technical difference, besides our Bayesian treatment, is
that the earlier works assume the two tensors to be paired in a single mode
(N), while we assume pairing in both N and L. Both settings are sensible and
applicability depends on the nature of the data.

There have also been fusion studies on coupled matrix-tensor factorization,
where values in a tensor were predicted with side information from a matrix, or
vice versa. A gradient-based least squares optimization approach was presented
in [24], while [25,26] used generalized linear models in a coupled matrix-tensor
factorization framework to solve link prediction and audio processing tasks.

In the matrix domain, a related multi-view problem was recently studied un-
der the name of Group Factor Analysis [13]. The goal there was to perform a joint
factor analysis of multiple matrices to find relationships between datasets. Their
method also finds components shared between subsets of views but, naturally,
works only for matrices.

4 Experiments

We have applied our model on both simulated and real datasets. We will first
demonstrate in a simulated example the model’s ability to correctly separate
shared and view-specific components, as well as precisely identify the factor mode
loadings. We next compare our model to the existing state-of-the-art methods
on benchmark single-view datasets, to validate that in the single-view special
case our algorithms are comparable. We then validate our model’s performance
on simulated multi-view tensors and compare to the single-view tensor methods
and the multi-view matrix methods as the existing baselines, ascertaining the
advantage gained by the multi-view tensor decomposition. Finally, we apply our
method on multi-view real data tensors on a new problem from toxicogenomics
and a functional neuroimaging dataset, demonstrating the interpretative power
and diverse applicability of the model.



Bayesian Multi-View Tensor Factorization 7

1
2
3

True Components

20L

U

30N

Z

40D(1)

W(1)

50D(2)

W(2)

●
lo

ad
in

gs

Estimated Components
1
2
3
4

20L

30N

40D(1)

50D(2)

Tensor A Tensor B
1
2
3
4

Fig. 3. Demonstration of BMTF decomposing two tensors A and B simultaneously,
finding the one shared and two view-specific components. Left: Loadings are drawn
for the three components (1 shared, 2 specific) embedded in the data. Right-Bottom:

component-view activation h
(m)
k for a K = 4 BMTF run. Right: Loadings of the four

BMTF components reveal the shared and specific components.

Our model detects the number and type of components automatically, as
long as it is run with a large enough K, resulting in the extra components get-
ting zero loadings. The practical procedure we followed is to increase K until
empty components are found. The experiments were run with the hyperparam-
eters aπ, bπ, aα, bα, aβ , bβ , aτ , bτ initialized to 1. To account for high noise in real
datasets, the noise hyperparameters aτ , bτ were initialized assuming a signal-
to-noise ratio of 1. All remaining model parameters were learned using Gibbs
sampling while discarding the first 10,000 samples as the burn-in and using the
next 10,000 samples for estimating the posterior. Our R implementation of the
model is available at http://research.ics.aalto.fi/mi/software/bmtf/.

4.1 Simulated Illustration

We first demonstrate the ability of our BMTF to decompose the data into factors
in a two-view setting. For this purpose two tensor datasets A and B were created
using three underlying components, one of which is shared between both tensors,
while one is specific to each. Figure 3-left shows the 3-mode loadings used to
create the two tensors, where Z and U are the common 1st and 2nd mode

http://research.ics.aalto.fi/mi/software/bmtf/
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loadings between both tensors while W(1) and W(2) are the 3rd mode loadings
for tensor A and tensor B, respectively. The shared component (blue) has non-
zero loadings in both W(1) and W(2) while the specific ones have non-zero W(m)

loadings in only the corresponding view.
BMTF was run with K = 4, i.e., larger than the number of embedded compo-

nents (=3). Figure 3-bottom-right plots the learned h
(m)
k values for the M = 2

views and K = 4 components. The plot shows that one component is active
in both views (black) while one component active in each view, demonstrat-
ing that the model correctly separates the shared and view-specific effects. The
fourth component was rightly detected as not active in any of the views, as the
data come from only three components, indicating that the model identifies the
correct number of components by switching off the extra ones. The discovered
loadings for the 4 components are plotted in Figure 3-right. The plots show that
the loadings are identified correctly in this simulated example.

4.2 Single View

As discussed in Section 3.1, our method also solves the CP problem as a special
case when run on a single dataset. We compare our formulation to the existing
state-of-the-art single-view methods on benchmark datasets to validate that our
performance is at least comparable. These single-view methods have not been
generalized to multi-view tensors where our main contribution lies.
Comparison Methods. We compare to the following state-of-the-art approaches.

ARDCP: Mørup et. al. [20] formulated CP in a Bayesian framework and au-
tomatically learn the number of components, using MAP estimation. In compar-
ison to them, our model is fully Bayesian and additionally element-wise sparse.

pTucker: Chu and Ghahramani [6] presented a probabilistic version of the
Tucker model. Tucker is more flexible than CP, though not easy to interpret.

CP: We also compare to the most widely used and updated classical CP im-
plementation from the N-way Toolbox (v3.31 of July 2013, http://www.models.
life.ku.dk/nwaytoolbox). The implementation solves the factorization using
the well established Alternating Least Squares ALS algorithm [27]. On the com-
putational side, per-iteration complexity of BMTF exceeds ARDCP and CP only
due to computing K ×K covariance matrices, which is small compared to the
rest of the computation. Tucker is costlier than CP as it needs to solve for the
core tensor as well, while pTucker reduces its costs with custom solutions.
Datasets. We use the three commonly used benchmark datasets in tensor mod-
eling from http://www.models.life.ku.dk/nwaydata, namely Amino Acids,
Flow Injection Analysis, and Kojima Girls datasets.

We test our model for both its ability to find the number of components and
to model the data correctly in a missing value setting. We randomly selected
half of the values in the datasets for training the models and predicted the
remaining half. The split was repeated independently 100 times. BMTF and
ARDCP learned the number of components for each split. CP and pTucker were
run with the number of components estimated from the full data using the de-
facto standard pftest from N-way toolbox [27].

http://www.models.life.ku.dk/nwaytoolbox
http://www.models.life.ku.dk/nwaytoolbox
http://www.models.life.ku.dk/nwaydata


Bayesian Multi-View Tensor Factorization 9

Table 1. Detection of number of factors, and ability to find the intrinsic structure.
The table lists the number of factors of the three real datasets determined by pftest
(on full data) from N-way Toolbox and compares the ability of BMTF with other state
of the art methods in a) learning the number of factors and b) prediction error, when
data contains missing values.

Data set Amino Acid Flow Injection Kojima Girls

Size 5 x 201 x 61 12 x 50 x 45 4 x 153 x 20
Factors

pftest 3 4 2
BMTF 3.0 ± 0.0 4.5 ± 0.5 2.0 ± 0.1
ARDCP 3.1 ± 0.3 4.0 ± 0.0 1.2 ± 0.4

Prediction RMSE
BMTF 0.0257±0.0003 0.045±0.010 0.189±0.025
ARDCP 0.0278±0.0035 0.065±0.001 0.305±0.051
CP 0.0256±0.0003 0.053±0.001 1.643±4.098
pTucker 0.0250±0.0003 0.049±0.001 0.236±0.055

Results are presented in Table 1. Both BMTF and ARDCP recovered the num-
ber of components well despite 50% missing values, with the mean being close
to the number obtained by pftest on full data. The result clearly shows that
automatic component selection works even in the presence of missing values.

Prediction RMSE results for the first two datasets Amino Acids and Flow
Injection show that all methods perform almost comparably and none goes ex-
ceedingly wrong, confirming that our method compares well with state-of-the-art
single-view methods. The third dataset Kojima Girls shows a major difference
in the performance of the methods. This dataset is known to have a degeneracy
problem, and hence the standard CP fails to model the data correctly. ARDCP
seems to perform better in comparison to CP, and close examination reveals that
this is because ARDCP tends to skip the degenerate component as can be seen
from the mean component number of 1.2. Using fewer components is one way of
avoiding the effect of degeneracies. Our method does both, finding the correct
number of components and being able to cope with degeneracies as is shown by
the best performance. With its flexible parametrization the Tucker is also able
to correctly model non-trilinear structure in the data, which is a characteristic
of degeneracies [28]; hence does not suffers from the degeneracy problem.

4.3 Multi-View

To validate the performance of our model in multi-view settings, we applied it to
simulated data sets that have all types of factors, i.e., factors specific to just one
view, factors shared between a small subset of views and factors shared between
most of the views. We show that the model can correctly discover the structure
as the number of views is increased, while the baseline approaches are unable to
find the correct result.
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Fig. 4. Performance of Bayesian multi-view tensor factorization compared to single-
view tensor methods and multi-view matrix methods (baselines). The number of views
increases on the x-axis while the relative mean square error of recovering the underlying
data is plotted on the y-axis. The single-view methods were tested in two settings a) CC
marked with dashed-lines, where all the tensors are concatenated; b) SVL as dotted-
lines, where models are learned for each tensor seperately.

We simulated a data set consisting of M = 16 views with dimensions N =
20, L = 5 and Dm randomly sampled between 10 and 100, using a manually
constructed set of K=31 factors of the various types. For each component, the

loadings Z:,k, U:,k and W
(m)
:,k were randomly sampled from the standard normal

distribution for all active m. For the non-active views m in the component k,

the W
(m)
:,k were set to zero. The views were then created as:

X (m)
=

∑
k

Z:,k ◦U:,k ◦W(m)
:,k

X (m) = X (m)
+ ε(m)

where X (m)
is the true underlying data while ε(m) is a noise tensor sampled from

a normal distribution with mean zero and variance equivalent to that of X (m)
.

We ran BMTF for M = 1, . . . , 16. The single-view tensor methods were run
in two settings, a) on a concatenation of all views [CC], b) single view learning
[SVL], where a model is learned for each view seperatly. BMTF found the correct
number of components in all cases while ARDCP[CC] failed to detect the correct
number for M ≥ 4. The other two methods, CP and pTucker, were run with the
true number of factors. In single view learning [SVL], the methods were unable
to identify the sharing between components, as they do not solve the multi-view
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Fig. 5. Component activations in the toxicogenomics dataset indicate 3 shared compo-
nents between the disease-specific gene expression responses and toxicity measurements
of the drugs. The presence of several empty components indicates that K = 30 was
enough to model the data.

problem addressed by BMTF. For completeness, we also compare our method to
multi-view matrix FA (GFA) [13] by matricizing the tensors X (M) ∈ RN×Dm×L

into matrices X(M) ∈ R(N×L)×Dm .
We measured the models’ performance in terms of the recovery error of the

missing data. Defining X̂ (m) as the model’s estimate of the data, the recovery
error is computed as the relative mean square error ‖X̂ (m) − X (m)‖2/‖X (m) − X (m)‖2

averaged over all the views.
Figure 4 plots the recovery error of our method as a function of the number

of views. Our model’s performance is stable as the number of views increases and
outperforms all the baseline tensor and matrix alternatives. Single-view methods,
applied to a data set which contains all tensors concatenated, deteriorate rapidly;
while by learning each tensor seperately they are unable to discover the shared
pattern. The matricized method (GFA) performs comparably to the single-view
tensor methods. The experiment confirms that the specific multi-view tensor
problem cannot be optimally solved with methods not designed for the purpose,
and that our method fulfills its promise.

4.4 Application Scenarios and Interpretation

We next demonstrate the method at work on multi-view tensor datasets in po-
tential use cases of BMTF. The first application represents a new problem at
the juncture of toxicity and bioinformatics, while the second is a functional neu-
roimaging case.
Toxicogenomics. We analyzed a novel drug toxicity response problem, where
the tensors arise naturally when gene expression responses of multiple drugs are
measured for multiple diseases (different cancers) across the genes. The data
contain two views, the measurement of post-treatment gene expression, and sen-
sitivity of the cells to the drug. The key question that BMTF can answer is,
which parts of the responses are specific to individual types of cancer and which
occur across cancers, and which of them are related to drugs effectiveness. These
patterns, if uncovered, can help understand the mechanisms of toxicity [29].
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Fig. 6. Component 1 captures the well-known heatshock protein response. The top
genes (left) and toxicity indicators (right) from the two views are plotted as columns,
and the three different cancers as rows. The component links the strong upregulation
of the heatshock protein genes (red) to high toxicity (green) in the top three drugs, all
of which are heatshock protein inhibitors.

The dataset contained two views. The first, m = 1, contained the post-
treatment differential gene expression responses D1 = 1106 of several drugs
N = 78 as measured over multiple cancer types L = 3. The second, m = 2,
contained the corresponding drug sensitivity measurements D2 = 3. The gene
expression data were obtained from the connectivity map [30] that contained
response measurements of three different cancers: Blood Cancer, Breast Cancer
and Prostate Cancer. The data were processed so that gene expression values
represent up (positive) or down (negative) regulation from the untreated (base)
level. Strongly regulated genes were selected, resulting in D1 = 1106. The drug
screen data for the three cancer types were obtained from the NCI-60 database
[31], measuring toxic effects of drug treatments via three different criteria: GI50
(50% growth inhibition), LC50 (50% lethal concentration) and TGI (total growth
inhibition). The data were processed to represent the drug concentration used
in the connectivity map to be positive when toxic, and negative when non-toxic.

BMTF was run with K=30, resulting in 3 components shared between both
the gene expression and toxicity views, revealing that some patterns are indeed
shared (Figure 5). These shared components form hypotheses about underlying
biological processes that characterize toxic responses of the drugs.
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Table 2. Prediction RMSE of BMTF in comparison to existing methods on toxicoge-
nomics and neuroimaging datasets. The mean prediction performance over 100 runs
of independent sets of missing values (50% missing) is given, along with one standard
error of the mean. BMTF outperformed all other methods significantly with t-test
p-values < 10−6 on toxicogenomics data, and p-values < 10−4 on neuroimaging data.

CC SVL
BMTF GFA ARDCP CP ARDCP CP

Toxicogenomics
Mean 0.4811 0.5223 0.8919 5.3713 0.6438 5.0699

StdError 0.0061 0.0041 0.0027 0.0310 0.0047 0.0282

Neuroimaging
Mean 0.5105 0.5144 0.6224 0.5740 0.5725 0.5611

StdError 0.0004 0.0004 0.0003 0.0004 0.0003 0.0010

The first component captures the well-known “Heatshock Protein” response.
The response is characterized by strong upregulation of heatshock genes in all
cancers (Figure 6-left) and corresponding high toxicity indications (Figure 6-
right). The response is being activated by the heat shock protein (HSP90) in-
hibitor drugs, all of which have the highest loadings in the component (the top
three drugs). The HSP inhibition response has been well studied for treatment
of cancers [32] evaluating its therapeutic efficacy. Had the biological action not
already been discovered, our component could have been a key in revealing it.

Component 2 represents toxic mechanisms via inhibition of protein synthesis
(details not shown) and Component 3 via damaging of cell DNA. Both of these
components reveal interesting cancer type-specific findings, detailed interpreta-
tions of which are under way. The experiment validates that the model is able
to find useful factors from multiple-tensor data.

We also evaluated BMTF for predicting missing values on the toxicogenomics
data. BMTF outperformed the single-view methods1 and matrix methods signif-
icantly with t-test p-values < 10−6, on the prediction RMSE of 100 independent
runs (Table 2). Additionally, the tensors of BMTF are easier to interpret than
the corresponding (L×N)×Dm matrices of matricized GFA, and the reformed
tensors of single view CP.

Functional Neuroimaging. As the second demonstration we analysed a multi-
view functional neuroimaging dataset, which comes from subjects exposed to
multiple audiovisual stimuli. The data contained M = 7 views, representing
the different audio and audiovisual stimuli, each composed of three songs. The
different views are brain recordings made under different “presentations” of the
same songs: purely auditory ones including singing (A:Sing), piano (A:Piano)
etc, and audiovisual speaking with both voice and image of speaker (AV:Speech)
etc. The views have a natural tensor structure where brain activity was recorded
with fMRI from L = 10 subjects over the course of the experiment (N = 162
time points) in Dm = 32 regions of interest (data from [13]).

1 pTucker failed to complete even on 50GB of RAM, hence was excluded.
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Fig. 7. Top: Component activations in the neuroimaging dataset. The components
shared between subsets of views capture potentially interesting variation, separated
from the view-specific “structured noise” or non-interesting variation. Bottom:
Zoomed inset of top components based on subject (U) loadings. The first component
is active in both speech views.

BMTF was run with K = 300 and the h(m) profile is shown in Figure 7. The
plot indicates that there exist several potentially interesting components shared
between different subsets of views. The large number of view-specific components
model “structured noise”, i.e., mostly brain activity not related to the stimuli.

The goal of the fMRI study was to find responses that generalize across
the subjects and describe relationships of the different presentation conditions
(views). We selected components generalizing across subjects by sorting them
based on the subject (U) loadings, and explain the first one here to concretize
what the method can produce. The first component is active in the speech-
related views, pure audio (A:Speech), and combined audio-visual (AV:Speech)
views, indicating that it captures speech-related activity. A closer look at the
W(m) loadings for the views shows activation of the same auditory regions of
the brain, demonstrating the signal is neuroscientifically relevant.

Quantitatively, BMTF fits the data better than simpler alternatives as demon-
strated by the missing value prediction in Table 2, while in comparison to the
analysis of [13], it extracts more components having consistent behaviour over
the subjects, indicating that taking the tensorial nature of data into account
improves detection of structure.

5 Discussion

We introduced a novel multi-view tensor factorization problem, of collectively
decomposing multiple paired tensors into factors. We factorize the tensors into
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PARAFAC-type (equivalently, CP-type) components, each shared by a subset
of the tensors, from one to all. We introduced a Bayesian multi-view tensor
factorization (BMTF) model that solves the problem via a joint CP-type de-
composition of tensors while learning the precise type and number of factors
automatically. In the special case of two tensors, our method is simultaneously
also the first Bayesian tensor canonical correlation analysis (CCA) method. The
model can also be considered as an extension of the matrix-based Group Factor
Analysis method [13] to tensors.

We validated the model’s performance in identifying components on simu-
lated data. The model was then demonstrated on a new toxicogenomics problem
and a neuroimaging dataset, yielding interpretable findings with detailed inter-
pretations on-going. Initial evidence suggests that taking the tensor nature of
data into account makes the results more accurate and precise. In particular,
the model is able to handle degenerate solutions well, making the formulation
applicable to a wider set of datasets.
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