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Abstract

This report summarizes the modeling challenge held in conjunction with
the International Conference on Artificial Neural Networks (ICANN) 2011
and sponsored by the PASCAL2 Challenge Programme. The challenge
aimed at promoting awareness of the task “mind reading” or “brain de-
coding” based on magnetoencephalography (MEG) data. For neuroscien-
tists, the task provides a practical tool for understanding brain process
underlying perception, since any mechanism that can be used for inferring
the stimulus on the basis of brain activity must be related to processing
of the stimulus. For machine learners and other modelers, the challenge
provides an interesting real-world application playground for solving ac-
tive machine learning problems such as multi-view learning and covariate
shift.

The task was to infer from one-second time windows the type of visual
stimulus shown to the subject. The best brain decoders, out of the 10 sub-
missions, reached almost 70% accuracy in the task with mere 23% chance-
level, proving that even a short MEG measurement can be sufficient for

brain decoding tasks with a reasonable number of stimulus categories.
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1 Introduction

A grand challenge in neuroscience is to understand the neural basis of
sensory and cognitive processing, even to the extent to predict brain cor-
relates of novel stimuli. This challenge can be formulated as a decod-
ing problem: given the brain signals, read out some information about
the stimuli that generated (or modulated) them [1]. The information
read out can be category specific, identity specific, or the entire stimu-
lus itself—corresponding to the machine learning tasks of classification,
identification, or regression/reconstruction. Such decoding tasks are often
called brain/mind decoding, or multivariate/multivoxel pattern analysis
(MVPA).

The majority of the reported brain decoding results derive from func-
tional magnetic resonance imaging (fMRI), from attempts to decode rela-
tively simple properties or to choose the correct alternative amongst a few
choices. For example, Kamitani et al. [2] inferred the orientation of edges
out of 8 possible alternatives and Formisano et al. [3] identified what
(out of three vowels) and whom (out of three alternative speakers) the
subject was listening to. Recent studies have shown significant progress
in decoding more and more complex perceptual phenomena, resulting in
successful identification of natural images [4] and the meaning of nouns
[5] in setups where the set of possible alternatives is larger, in the order
of tens. All of these works fall into the category of classification or iden-
tification. Miyawaki et al. [6] have studied the task of reconstruction of
small binary images from local image patches decoded from brain signals,
and Naselaris et al. [7] extended reconstruction tasks to natural images.

While fMRI has very high spatial resolution throughout the brain, it
has poor temporal resolution and the blood oxygenation level dependent
(BOLD) signal is an indirect measure of neuronal activity. Riger et al. [8]
have shown that it is possible to apply decoding similarly to magnetoen-
cephalography (MEG); they predicted on the basis of single-trial MEG
signals whether the subject recognized and memorized a natural image.
With MEG it will be possible to focus on shorter timescales. Of particular
interest is the feasibility of brain decoding for continuous processes using
e.g. speech or video stimuli. Besides attempting to decode external stim-
uli, MEG has also been used for decoding the direction of hand-movement
[9] or reconstructing hand-movement trajectories [10]. Nevertheless, the

task of brain decoding from MEG is still in its infancy.
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From another point of view, the brain decoding task can be seen purely
as a challenging machine learning problem. The recorded brain signals
are very high-dimensional and noisy, and consequently advanced classifi-
cation or regression methods are needed for solving the prediction task.
This is also demonstrated in practical work, with focus on advanced Bayesian
solutions [10, 11] and completely novel types of machine learning strate-
gies, such as the zero-shot learning concept [12]. Furthermore, many of
the current trends in machine learning are highly relevant for solving the
brain decoding challenges: (1) the models need to handle covariate shifts
(changes in the input distribution between training and test data) [13]
with approaches like domain adaptation [14], (2) sparse solutions such as
lasso regression [15] are likely to be effective for the high-dimensional
data sources, (3) the prediction tasks should ideally combine informa-
tion from multiple sources through multi-view learning, and (4) especially
analysis of multiple subjects would benefit from multi-task learning meth-
ods [16].

We organized the challenge for brain decoding based on MEG signals
for four primary reasons. (1) To increase the awareness of the problem
amongst both machine learning researchers and neuroscientists, (2) to
study the feasibility of decoding continuous visual stimulus from short
periods of MEG recordings, (3) to bring up some of the relevant method-
ological challenges for MEG brain decoding, and (4) to provide a simple
benchmark data set. The challenge was organized in co-operation with
the ICANN conference since it attracts machine learning researchers with
interest in modeling neural processes. The motivations are largely shared
by other recent attempts of promoting visibility of brain decoding in gen-
eral, such as the 1st ICPR workshop on brain decoding, organized in con-

junction with the 20th International Conference on Pattern Recognition.

2 Data

2.1 Stimuli

The brain decoding task in the challenge was to recognize the type of video
stimulus shown to the subject. All videos were presented without audio,
and five different types of stimuli were used:

1. Artificial: Screen savers showing animated shapes or text
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Close-up of block A The whole experiment constists of

five (5) blocks of stimuli.
nature

football Blocks A-D contain alternating clips
of the stimuli types artificial, football
H ﬂ H H artificial and nature. Block E contains longer

clips of two directed films, an episode

time - of Mr. Bean series and a Chaplin
5s rest stimuli clips movie.
between of 6-26s
stimuli
Mr. Bean Chaplin
17 Y A 1 B .
Block A Block B Block C Block D Block E

Blocks A and B contain
the same stimuli.

Figure 1. Illustration of the stimulus design. The subject viewed the same set of 5 blocks
during two consecutive days. The first four blocks, labeled A-D, contained al-
ternating short clips of artificial objects (animated shapes or text), football or
nature documentaries, whereas the last block contained longer clips taken from
a television series and a feature film. Within blocks A-D the different clips were
separated by 5-s rest period showing a crosshair, and the clips lasted for 6-26 s.
The two longer clips in block E, extracted from video content with a storyline,
lasted for roughly 10 minutes.

2. Nature: Clips from nature documentaries, showing natural sceneries

like mountains or oceans

3. Football: Clips taken from (European) football matches of Spanish La
Liga

4. Mr. Bean: Clip from the episode “Mind the baby, Mr. Bean” of the Mr.

Bean television series

5. Chaplin: Clip from the “Modern times” feature film

The stimuli were shown in five blocks (Figure 1). The first four blocks
(A-D) contained alternating short clips of the first three stimulus types,
so that each block contained a roughly equal number of clips for each
stimulus type in random order. The clips lasted 6-26 s, and the different
clips were separated by 5-s rest periods showing a crosshair in the center
of the visual field. The first two blocks were identical, whereas blocks C
and D contained different video clips.

After the four blocks described above, the subject viewed two continuous
video clips containing a clear plot and storyline (clips from an episode of
a television series and a feature film), each lasting roughly 10 min. These

two clips were shown during the same experiment block.
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2.2 Recording and preprocessing

We recorded MEG signals from one healthy 25-yrs old male who gave his
written permission for releasing the data for the challenge.

MEG was acquired with a 306-channel Elekta Neuromag MEG system
(Elekta Oy, Helsinki, Finland) with a basspand from DC to 330Hz and
digitized at 1000 Hz. During the MEG recording, four small coils, whose
locations had been digitized with respect to anatomical landmarks, were
briefly energized to determine the subject’s head position with respect to
the MEG sensors. The continuous raw MEG data were further low-pass
filtered at 50 Hz, and downsampled to 200 Hz. External interference was
removed and head movements compensated for by using the signal-space-
separation (SSS) method [17]. Finally, we applied piecewise mean and
trend removal for each channel to compensate for very slowly varying
signals that are likely to be artefacts.

Since identifying the videos would be relatively easy based on long se-
quences of MEG recordings, we chose to hand out only short 1-s signal
epochs in random order. However, handing out only the raw measure-
ment data would have resulted in a challenge that requires considerable
expertise on MEG. In addition, it would have prevented reliable estima-
tion of low-frequency waveforms because sharp filters could not be applied
for signals as short as 1 s (200 samples). Consequently, we chose to pre-
compute a number of features at different frequency bands. We applied a
bank of 5 band-pass filters peaked at 2, 5, 10, 20, and 35Hz, and computed
the envelopes of the signals at these frequencies by taking the absolute
value of the Hilbert-transformed signal. The details of the filter bank are
provided in Table 1.

For each sample (1-s epoch of the recording) the participants received
six different data matrices, each containing 200 time points for 204 gra-
diometer channels of the MEG device. Those data matrices corresponded
to the raw signals after the SSS preprocessing, and the envelopes at the

five frequencies mentioned above.

3 Modeling problem

The modeling problem was to infer the stimulus from brain signals. Given

the limited set of possible stimuli, this was a classification task: For each
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Table 1. Details of the filter bank. The first column indicates the name of the filter, iden-
tified with a frequency within the band-pass area determined by the next two
columns. The filters were Kaiser window FIR filters with stop bands increasing
from 0.5Hz to 2Hz with increasing frequency. The order of the filters is shown
in the last column.

Peak freq. (Hz) | Min freq. (Hz) | Max freq. (Hz) | Order
2 1 4 2009
5 4 7 2009
10 7 13 503
20 17 23 503
35 27 43 503

input signal the task was to infer the type of the stimulus. Consequently,
the challenge was formulated as a classification problem. Given a set of
labeled training examples, the task was to infer the labels for left-out test
data.

For brain decoding, the generalization to new stimuli is critical. While
the set of possible stimulus types needs to be limited to make inference
possible, the actual stimulus content should be different for training and
test samples. After all, the goal is not to recognize when the subject is
watching a particular clip of a football match, but to identify the process of
watching football in general. Besides generalizing to new stimuli, a brain

decoding system will need to generalize over different recording sessions.

3.1 Data split

For studying the above properties, the data were split into training and

test sets so that the following properties were satisfied:

e Some of the training and test instances were recorded using the same
stimuli, whereas some test instances were taken from recordings of dif-
ferent stimuli of the same type. In total, 33% of the test samples con-

sisted of recordings during stimuli not seen in the training phase.
e The training and test data were taken from different recording sessions.
In particular, the training and test data were recorded during different

days.

e A small portion of the test samples were labeled, to simulate brief train-



Klami et al.: MEG Mind-Reading — Overview and Results

ing period during the test session and to enable studying possible differ-

ences between the data distributions.

e The samples were not continuous in time, to prevent attempts of order-
ing the samples given in random order.

The detailed split into training and test samples is described in Figure 2.
In brief, both the training and test samples were of 1-s length and were
separated from each other by 1 s. Out of the four blocks of short clips
the blocks A, B and D recorded during day 1 were used for training and
blocks A, B and C recorded during day 2 for testing. This resulted in
66% of the test samples having stimuli that exists also in the training
data. The clips in block E were split to training and test data so that time
(roughly) between 1:40 and 6:10 was used for training and time between
3:10 and 7:40 for testing, resulting in 68% of overlap between training and
test data. Finally, a random class-balanced subset of 50 test samples were
released with labels.

The training and test samples had, however, 1-s offset in timings. Hence,
even the set of samples using the same stimuli are not exactly from the
same time but instead are consecutive time points. If the time window
between seconds 3 and 4 was used for training, then the window between
seconds 4 and 5 was used for testing.

Overall, the setup resulted in 677 training samples with roughly class-
balanced distribution (the number of samples for the five classes were:
140, 171, 96, 135, and 135), 50 labeled test samples, and 653 unlabeled
test samples that the competitors needed to classify. The data are avail-
able at http://www.cis.hut.fi/icann2011/mindreading.php, and can be

used for research purposes and scientific publications.

3.2 Machine learning concepts

Even though the main problem is that of regular classification, the partic-
ular setup of learning to decode MEG measurements leads to a number of
more detailed machine learning challenges. Here we briefly overview the
kind of aspects initially thought to be relevant for the task. The research
on machine learning solutions for MEG mind decoding tasks would likely
benefit from tackling these modeling issues, besides just working towards

improved MEG signal analysis in general.
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Figure 2. Illustration of the data split. The dark grey boxes correspond to the selection
of data points for training data, the light gray boxes correspond to the choice
of test samples, whereas the unshaded areas were not used in the challenge at
all. The dark areas on the second day indicate the random choice of labeled test
samples. Note that blocks A and B contained the same stimuli. The closeup
shows how the 1-s samples were chosen with 1-s gaps between each other, and
how the training and test samples taken from the same block were misaligned
by 1s.

Covariate shift/‘domain adaptation For real-use cases brain decoding sys-
tems need to work for new recording sessions, besides being able to predict
merely new time points of existing recordings. Since (1) MEG instrumen-
tation is subject to stochastic noise, and (2) since the state of the subject
varies strongly from day to day, the data recorded during a different ses-
sion generally do not follow the same distribution as the training data.
Hence, computational models taking into account a change in the data
distribution are needed. This problem is generally tackled under the term
of domain adaptation [14], which is an active line of research in the ma-

chine learning community.

Multi-view learning MEG recording produces measurements for 204 gra-
diometer channels and 102 magnetometer channels, and for each signal
we can extract multiple frequency bands or other types of features. Infor-
mation encoded in different channels, frequency bands, and across differ-
ent time scales is largely complementary. This suggests that multi-view
learning methods could be useful for MEG decoding tasks. While it is pos-
sible to attempt decoding the stimuli from individual channels or based on
simple predictors operating on all channels, there is reason to believe that

clever integration of the different channels and frequency bands through

10
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multi-view learning models could result in improved accuracy, as well as
improved understanding of the underlying brain processes.

Multi-view learning methods have also been used for solving decoding
tasks outside classification. For identification, multi-view learning meth-
ods based on canonical correlation analysis (CCA), such as the Bayesian
CCA [18], can be used for extracting correlating projections of the brain
activity and stimulus description, enabling direct comparison of brain
measurements of test samples to the set of possible stimuli. Multi-view
learning methods have also been used for extracting image bases for vi-
sual image reconstruction [19], as well as for inferring properties of natu-
ral music based on fMRI [20].

Generalization and overfitting Another consequence of the high-dimen-
sional nature of the MEG recording is that it is very easy to overfit to
the available training data. Therefore a successful decoding solution will
have to be very carefully regularized to control the degree of generaliza-
tion to new data. Many of the decoding works apply Bayesian modeling
techniques [10, 11], which provide a way of tackling the overlearning is-
sue in a justified way, or apply sparse solutions such as lasso regression
[15].

Multi-task learning The variability across subjects is large for all brain
imaging techniques. Typical analysis methods will either assume that all
subjects are identical, which is a simplifying but incorrect assumption, or
will resort to subject-specific modeling resulting in no information being
transferred from one subject to another. Multi-task learning [16] stud-
ies computational models that combine the strengths of both approaches,
by learning separate predictive models for the subjects simultaneously, so
that the similarities between the subjects are utilized for improved accu-
racy while still allowing subject-specific variation. In this challenge, we
provided data only from a single subject, and hence such models could not
be applied, but in general multi-task learning of decoding models is likely
to be crucial. Recently, Alamgir et al. [21] demonstrated how multi-task

learning improved accuracy for EEG-based brain computer interfaces.

11
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Table 2. The list of participating teams in alphabetical order of the first author. The team
Tu & Sun provided two different solutions.

Name

Authors / Institute

Van Gerven & Farquhar

M.A.J. Van Gerven, J. Farqugar
Donders Institute for Brain, Cognition and Behaviour,

Radboud University Nijmegen, the Netherlands

Grozea

C. Grozea
Fraunhofer Institute FIRST, Germany

Huttunen et al.

H. Huttunen, J-P. Kauppi, J. Tohka
Department of Signal Processing,

Tampere University of Technology, Finland

Jyléanki et al.

P. Jyléanki, J. Rithimaki, A. Vehtari
Dept. of Biomedical Engineering and Computational Science,

Aalto University, Finland

Lievonen & Hyotyniemi

P. Lievonen, H. Hy6tyniemi
Helsinki Institute for Information Technology HIIT, Finland

Nicolaou N. Nicolaou
Dept. Of Electrical and Computer Engineering,
University of Cyprus, Cyprus

Olivetti & Melchiori E. Olivetti, F. Melchiori

NeuroInformatics Laboratory (NILab),

Bruno Kessler Foundation and University of Trento, Italy

Santana et al.

R. Santana, C. Bielza, P. Larranaga
Departamento de Inteligencia Artificial,

Universidad Politécnica de Madrid, Spain

Tu & Sun

4 Results

W. Tu, S. Sun
Department of Computer Science and Technology,

East China Normal University, China

Overall, the challenge received 10 submissions from 9 different teams

listed in Table 2. Multiple submissions per team were allowed if the solu-

tions utilized significantly different modeling approaches.

4.1 Challenge results

The main criterion for evaluating the submissions was the classification

accuracy on the test data. The baseline accuracy of predicting every sam-

ple to belong to the largest class in the training set would be 23%. The

results of the participants are summarized in Table 3, showing that all

12
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Table 3. The prediction accuracies (percent, bigger is better) of the competitors, sorted in
the order of the overall accuracy that was the criterion for evaluating the sub-
missions. The last three columns show the accuracy in separating the content
with plot from the short clips (PvsC), the accuracy in predicting the short clip
classes correctly (C), and the accuracy in identifying the longer clips with plot
correctly (P). For all tasks the best accuracy has been boldfaced. A notable ob-
servation is that the best solution outperforms all others in making the correct
predictions within both stimulus categories, but is only 7th best in making the
split between the two categories. The last line shows the accuracy of majority
voting based on the top nine submissions.

Team Accuracy | PvsC C P

Huttunen et al. 68.0 89.7 67.5 89.2
Santana et al. 63.2 93.0 64.1 74.0
Jylédnki et al. 62.8 93.0 56.8 85.8
Tu & Sun 62.2 97.1 50.1 87.0
Lievonen & Hyotyniemi 56.5 91.0 55.7 724
Tu & Sun (2) 54.2 96.6 44.3 75.8
Olivetti & Melchiori 53.9 946 414 854
Van Gerven & Farquhar 47.2 82.4 533 66.3
Grozea 44.3 88.5 39.1 67.7
Nicolaou 24.2 61.7 34.8 49.6
Pooled (top 9) 69.2 96.8 63.1 85.8

but one of the participants clearly surpass the baseline level, demonstrat-
ing successful brain decoding. The outlier submission falls at the chance
level, suggesting either very heavy overlearning or mistakes in implemen-
tation. The range of accuracies, excluding the outlier, falls between 44%
and 68%, demonstrating that there is a notable difference between the al-
ternative decoding solutions. The solution of Huttunen et al. outperforms
others by a margin of almost five percent, ending up as the clear winner,
followed by three other solutions above 60% accuracy.

For many classification tasks combining several classifiers results in im-
proved performance. While various advanced solutions, such as boosting,
can be used for obtaining maximal benefit from multiple classifiers, al-
ready a simple majority voting of the results provides often a reasonably
good model. Here, the combination of all 10 solutions results in accuracy
of 68.9% and the combination of the 9 solutions exceeding the chance level
gives 69.8%. Both figures are better than the best solution, but the margin
is smaller than the difference between the individual solutions.

As the stimuli to be decoded consisted of two distinct categories, directed

13
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Huttunen et al. Santana et al.

1 2 3 4 5 1 2 3 4 5
1194 29 16 10 1 1|67 54 14 15 0
2122 100 10 18 1 2125 110 5 11 O
3|25 16 51 10 O 3/19 14 57 12 0
4 4 12 8 21 411 1 5 59 59
5 4 3 114 511 0 0 4 120

Jylanki et al. Tu & Sun

1 2 3 4 5 1 2 3 4 5
1|67 32 43 8 0 1|56 55 36 3 0
2136 8 18 8 0 2130 96 21 4 0
3/30 6 61 4 1 3133 22 46 1 0
416 6 11 78 24 414 3 3 95 20
5/1 0 1 8 115 5/ 1 0 0 11 113

Figure 3. Confusion matrices of the top four submissions. The rows correspond to the
true classes, whereas the columns are the predicted classes. The labels are
l:artificial, 2:football, 3:nature documentary, 4:Mr.Bean, 5:Chaplin.

films with clear storyline and short video clips, we can also look at the
success rate in separating these two categories as well as the accuracy
in classifying the samples within either category (Table 3). The accuracy
in separating the two categories is computed as the binary classification
accuracy, whereas the accuracy within each category is measured with
the ratio of correct assignment amongst all samples for which both the
true and predicted class are within that category. Interestingly, the best
submission is not amongst the top ones in the easier task of separating
the clips with plot from the rest, but has the best accuracy within both
stimulus categories. One possible reason is that the other solutions have
overfitted to solving the easier task of binary separation between the two
categories. This is illustrated by the confusion matrices of the best four
solutions in Figure 3.

The best solutions are described in more detail in the separate articles
following this overview. Overall, the solutions focused quite strongly in
feature selection, either by careful validation of possible alternative fea-
tures or by building classifiers with automatic feature selection, such as
L1-regularized lasso models. One team, Santana et al., tried an ensemble

of more than one classifier. Three of the competitors, Olivetti & Melchiori

14
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and both submissions by Tu & Sun, focused on solving the domain adap-
tation problem with advanced machine learning techniques, each having
reasonable performance but not reaching the top positions, while many
of the other teams addressed the shift in input distributions by placing
more weight on the labeled test examples when validating the learned

classifier.

4.2 Alternative prediction tasks

Even though the challenge was defined as decoding the stimulus based
on 1-s MEG epochs, we can estimate how well the solutions would have
fared with longer observations by pooling the predictions given for consec-
utive samples. For this purpose, we looked at the predictions obtained by
majority vote for each short clip (classes 1-3), averaging as 8 observation
per clip, and for each collection of 8 consecutive samples for the longer
clips (classes 4-5). The best submission then gives 80% accuracy in pre-
dicting the class correctly for each clip or 8s period (Table 4), supporting
the intuitive belief that solving the decoding task is easier based on longer
observations. These accuracies provide a lower bound for the accuracy the
competitors could have obtained if they had access to such 8s observations
and had explicitly developed predictors for solving this alternative task.
As described in Section 3.1, the data set was split so that some of the
test samples were picked from the same clips as the training samples
(though with 1-s offset) while some were not. Even though the competi-
tors were not aware which samples matched the training samples, we can
inspect whether the accuracy of decoding differs from the two sets. Table 4
shows how almost all participants were more accurate in predicting the
samples taken from the same clips that were available in training, pro-
viding a quantification of the increase in difficulty in brain decoding due
to completely new stimulus content. On average, the accuracy was 6.3

percentage points higher for the samples included in the training data.

5 Discussion
The primary task in the challenge was to decode the type of the video stim-

ulus from MEG data. Nine out of ten submissions succeeded in this task

significantly above the chance level, showing that it is possible to decode

15
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Table 4. Results of alternative decoding tasks (not part of the competition), sorted in or-
der of the performance in the challenge results. For each task the best accuracy
is boldfaced. The first column shows the accuracy for predicting correctly the
whole clips by majority voting based on the samples within each clip (on average
8 samples per clip). For all but one participant the accuracy is better than when
decoding the label for 1s samples, as expected. The second column gives the ac-
curacy in the challenge decoding task for test samples taken from the clips used
also in the training set, whereas the last column gives the accuracy for the test
samples from clips not seen in the training set. For all contestants except one,
the accuracy is better for the first group, showing clearly how generalizing to the
new stimulus content makes the decoding task harder. Still, the accuracies for

16

the new content are well above chance level.

Team Full clips | Within train Not in train
Huttunen et al. 79.7 69.9 64.2
Santana et al. 68.5 65.1 59.6
Jylanki et al. 76.0 66.2 56.0
Tu & Sun 70.7 64.4 57.8
Lievonen & Hy6tyniemi 62.2 59.8 50.0
Tu & Sun (2) 57.0 59.5 43.6
Olivetti & Melchiori 61.8 55.6 50.5
Van Gerven & Farquhar 55.9 49.0 43.6
Grozea 41.3 44 .4 44.0
Nicolaou 25.0 23.7 25.2
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the various kinds of stimuli already from short 1-s windows of MEG data.
The difference in accuracies between the approaches was considerable,
with the best solution reaching near 70% accuracy while the majority of
the solutions had around 50% success, showing that carefully developed
machine learning solutions will achieve improved accuracy in brain decod-
ing. Still a clear gap exists between the best solution and perfect accuracy,
demonstrating that the task is far from trivial and especially that perfect
decoding results are unlikely to be obtained with such brief signals, prob-
ably because of the low signal-to-noise ratio of the single-trial MEG. By
pooling the competitors results for longer (8 s) periods of observations, the
accuracy of the best solutions increases close to 80%. In future research it
could be advisable to directly study the accuracy on multiple timescales,
to better estimate the amount of data needed for inferring different types
of stimuli.

The majority of the competitors focused on good feature selection and
cross-validation of the learned models, demonstrating once again the im-
portance of carefully controlling overlearning. In this challenge this as-
pect was particularly important due to the relatively big change in input
data distribution between training and test data. For example, the top
team explicitly mentioned in their submission that some of the more ad-
vanced features were neglected for that reason. Many of the teams also
addressed the domain adaptation problem seriously. Some of the com-
petitors handled the adaptation by giving more weight for the labeled test
samples in cross-validation, whereas some teams applied more advanced
techniques for correcting for the shift in the distribution, using methods
of EasyAdapt, transfer-priority cross validation and transferable discrim-
inant analysis.

In future, it would be interesting to see challenges with brain signals
from more subjects. This would enable studying more advanced modeling
concepts such as multi-task learning, while also providing information on
to which extent the perceptual processes that are best for decoding the
stimuli are shared by individuals. However, prior to releasing such data
sets it could be beneficial to create a more finely processed feature set,
since otherwise the amount of data becomes infeasible. Now the data of
just one subject took a total of roughly 6 gigabytes in compressed format,
and started to become a technical difficulty for some competitors.

For this challenge we used decoding accuracy as the primary criterion

and evaluated the submissions additionally based on methodological nov-
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elty of the approach. The challenge was also primarily advertised for
modelers. Consequently, the submissions focused on these aspects and no
neuroscientific interpretations were made. In future challenges it could
be a good idea to value also neuroscientific findings when determining
the winners, to encourage tighter interaction between modelers and neu-
roscientists as well as to provide insights into the perceptual processes

revealed by succesful decoding.
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Abstract

In our submission to the mind reading competition of ICANN 2011 con-
ference, we concentrate on feature selection and result validation. In our
solution, the feature selection is embedded into the regression by adding
a {1 penalty to the classifier cost function. This can be efficiently done for
regression problems using the LASSO, which generalizes also to classifica-
tion problems in the logistic regression classification framework. A special
attention is paid to the evaluation of the performance of the classification

by cross-validation in a parallel computing environment.

1 Introduction

Together with the ICANN 2011 conference, a competition for classifica-
tion of brain MEG data was organized. The challenge was to train a
classifier for predicting the movie being shown to the test subject. There
were five classes and the data consisted of 204 channels. Each measure-
ment was one second in length and the sampling rate was 200 Hz. From
each one-second measurement, we had to derive discriminative features
for classification. Since there were only a few hundred measurements, the

number of features will easily exceed the number of measurements, and
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thus the key problem is to select the most suitable features efficiently. We
tested various iterative feature selection methods including the Floating
Stepwise Selection [4] and Simulated Annealing Feature Selection [1], but
obtained the best results using Logistic Regression with /; penalty also
known as the LASSO [5].

2 Logistic Regression with the LASSO

Our classifier is based on the logistic regression model for class prob-
ability densities. The logistic regression models the PDF for the class
k=1,2,...,K as

exp(BLx) "
— , k # K, and (1)
)= TSR (T
pr(x) = ! @

L+ 300 exp(B %)’

where x = (1,21, 72,...,2,)" denotes the data and B;, = (Bko, Bk1, Bk2, - - -+ Brp) "
are the coefficients of the model.

The training consists of estimating the unknown parameters 3, of the
regression model, which can then be used to predict the class probabili-
ties of independent test data. The simplest approach for estimation is to
use an iterative procedure such as iteratively reweighted least squares
(IRLS).

In the mind reading competition the number of variables is large com-
pared to the number of measurements. If additional features are derived
from the measurement data, the number of parameters p to be estimated
easily exceeds the number of measurements N. Therefore, we have to se-
lect a subset of features that is the most useful for the model. Our first
attempt was to find the optimal subset iteratively using simulated an-
nealing, but soon we decided to use a method, with feature selection em-
bedded into the cost function used in the classifier design. LASSO (Least
Absolute Shrinkage and Selection Operator) regression method enforces
sparsity via /; -penalty, and in a least squares model the constrained LS

criterion is given by [5, 3]:
min [y = XB|* + 8], ®3)

where A\ > 0 is a tuning parameter. When ) is small, this is identical to

the OLS solution. With large values of ), the solution becomes shrunken
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and sparse version of the OLS solution where only a few of the coefficients
B are non-zero.

The LASSO has been recently extended for logistic regression [2], and a
Matlab implementation is available at http://www-stat.stanford.edu/~tibs
/glmnet-matlab/.

We experimented with numerous features fed to the classifier, and at-
tempted to design discriminative features using various techniques. Our
understanding is that those ended up being too specific for the the first
day data and eventually a simplistic solution turned out to be the best,
resulting in the following features:

e The detrended mean, i.e., the parameter b of the linear model y = az + b

fitted to the time series.

e The standard deviation of the residual of the fit, i.e., stddev(j — y).
Both channels were calculated from the raw data; we were unable to gain
any improvement from the filtered channels. Since there were initially

204 measurements, this makes a total of 408 features from which to select.

3 Results and Performance Assessment

An important aspect for the classifier design is the error assessment. This
was challenging in the mind reading competition, because only a small
amount (50 samples) of the test dataset was released with the ground
truth. Additionally, we obviously wanted to exploit it also for training the
model. In order to simulate the true competition, we randomly divided
the 50 test day samples into two parts of 25 samples. The first set of 25

samples was used for training, and the other for performance assessment.
50

25

Since the division can be done in () > 10'* ways, we have more than
enough test cases for estimating the error distribution.

The remaining problem in estimating the error distribution is the com-
putational load. One run of training the classifier with cross-validation of
the parameters takes typically 10-30 minutes. If, for example we want to
test with 100 test set splits, we would be finished after a day or two. For
method development and for testing different features this is certainly too
slow.

Tampere University of Technology uses a grid computing environment

developed by Techila Oy (http://www.techila.fi/). The system allows
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Figure 1. An example result of the error estimation. Figures (a-c) show the error distri-
bution for the first day training data, for the 25 samples of second day data
used for training and for the rest of the second day data, respectively. Figure
(d) shows the number of features used on the average for the model. In this
experiment we run the training for 200 test cases.

distributing the computation tasks to all computers around campus. Since
our problem is parallel in nature, incorporating the grid into the perfor-
mance assessment was easy: A few hundred splits of the test set were
done, and one processor in the grid was allocated for each case.

Figure 1 illustrate an example test run. The performance can be as-
sessed from the error distribution for the test data shown on Figure on
the bottom left, which in this case is 0.394, or 60.6 % correct classifica-
tion. We believe that the final result will be slightly better, because the
final classifier is trained using all 50 samples of the second day data.

The error for the validation data (top right figure) is very small. This
is because the samples were weighted such that second day data has a
higher weight in the cost function.

After preparing the final submission, we studied the distribution of the
predicted classes for the test data. The test samples should be roughly
class-balanced, so a very uneven distribution could indicate a problem
(such as a bug) in the classification. We also considered the possibility
of fine tuning the regularization parameter based on the balancedness
of the corresponding classification result. As the balancedness index we

used the ratio of the cardinalities of the largest and smallest classes in
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Figure 2. Left: The balancedness index for different values of regularization parameter.
Right: The predicted class histogram for the test data.

the predicted result. The balancedness indicator is plotted as a function
of the regularization parameter ) in Figure 2 (left).

The result clearly emphasizes the old rule: regularization increases the
bias but decreases the variance. This can be seen from the curve in that
less regularization (small )\) improves the class-balance (indicator close
to unity). However, since it seems that the regularization parameter A =
0.0056 selected using cross validation is at the edge of the well balanced
region, we decided not to adjust the CV selection. The final predicted class

distribution is shown in Figure 2 (right).
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Abstract

This paper describes the main characteristics of our approach to the ICANN-
2011 Mind reading from MEG - PASCAL Challenge. The distinguished
features of our method are: 1) The use of different sources of information
as input to the classifiers. We simultaneously use information coming from
raw data, channels correlations, mutual information between channels,
and channel interactions graphs as features for the classifiers. 2) The use
of ensemble of classifiers based on regularized multi-logistic regression,

regression trees, and an affinity propagation based classifier.

1 Type of information used for classification

The first building block of our approach is the combination of different
sources of information extracted from the MEG signals. We hypothesize
that different transformations to the brain signals could reveal diverse
types of brain signatures useful for the classification purpose. Therefore,
we have tried different information processing variants to unveil this in-
formation. In all cases, the starting point was the time series output from
the V = 727 training cases, for the £ = 204 channels. For the training set,

there are a total 727 cases and 204 time series for each case. The MEG
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output data corresponds to 200-component numerical vector.

The first type of brain signal representation is constructed by splitting
the time series in segments of 5 contiguous time points, and adding the
raw signals in each segment. We obtain, for each channel, a vector of 50
features. Therefore, for a fixed frequency, each of the 727 cases will be
represented by 204 x 50 = 10200 features. We call to this relatively simple
transformation of the initial information raw data.

For each of the cases, we use its corresponding raw data to compute the
correlations between each pair of channels for this case. For example,
to compute the correlations between channels ¢ and j, their correspond-
ing vectors of 50 raw values are used. As a result, a symmetric matrix
Wooax20s4 1S obtained from each case. The final set of features of each

M = 20706 values corresponding

case will comprise a vector of n =
to the upper triangular part of the correlation matrix (without the main
diagonal). This type of information is called channels correlations. This
approach intends to compute the interaction between different brain re-
gions during the solution of the recognition task.

In a similar way we compute, for each case, the matrix of mutual infor-
mation between the channels. First, the continuous data corresponding
to two variables, are discretized and from the discretized values the mu-
tual information is obtained. The bin size for discretizing all the data was
fixed to equal value of 11. Similarly to the computation of the correlation,
the final set of features will comprise vector of n = % = 20706 values
which are called the mutual information between channels. This approach
also tries to unveil interaction between different brain regions that could
be specific to each mental task.

In the fourth signal processing procedure, the correlation matrix is used
to construct interaction graphs between the different channels. The idea
is that a further analysis of the graph using topological measures from
network theory can serve to reveal local and global information that is
not directly recognizable from the correlation values.

The interaction graph G = (V, A) is such that V = {vy,...,v904} is the

set of vertices and arc a; ; between vertices v; and v; is defined as follows:

1 if i <jandcr;; > 0.5
aij =9 —1 if i<jander;; <—0.5
0 otherwise

where cr; ; is the correlation coefficient between channels ¢ and j, and
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Information — Freq | Full | 2H | 5H | 10H | 20H | 35H
Raw 236 | O 0 0 0 0
Correlation 547 | 64| 122 | 501 | 806 | 3566
MutualInf. 31 5| 14 49 98 | 356
Interactiongraph 16 0 0 39 61| 349

Table 1. Number of selected features of each type of information and frequencies.

values 1, —1 and 0 for a; ; respectively mean that there is an arc from v; to
vj, there is an arc from v; to v;, or there is no arc between v; and v;.

The interaction graph is an arbitrary way to represent strong correla-
tions (below —0.5 or above 0.5) between pairs of channels. We expect that
if there are higher order interaction patterns between the channels, at
least some of them could be unveiled by a topological analysis of these
graphs.

Once correlation graphs have been constructed, a number of (local) topo-
logical measures are computed for each node (e.g. clustering coefficient,
path length, betweenness centrality, etc.). In addition, a number of global
topological measures are computed for the complete graph (e.g. graph
density, graph diameter, etc.). The number of local features was n;,.q; =
204 -13 = 2652 and the number of global features was ng.pa = 7. The total
number of topological features extracted for each graph was n = 2659. We

call to this type of information channel interactions graphs.

1.1 Feature selection

In order to identify a reduced set of significant features, we applied, for
each feature, a statistical test to determine whether there exists signifi-
cant different between the 5 different classes for the given feature. The
statistical test was applied to each pair of classes. The idea was to identify
whether a given feature is effective at identifying differences between any
of the 10 possibles pairs of classes. A more stringent requirement would
be the identification of features that are significantly different between
the 5 classes altogether. However, in our approach we keep features that
detect “local” differences between classes.

The statistical test of choice was the Wilconxon rank sum test of equal
medians and the parameter o = 10~° was fixed for all the statistical tests.

Table 1 shows the number of significant features found for each frequency
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Raw data Correlation
Class | 1| 2 3 4 5 1] 2 3 4 5
1 —163| 96| 10 8| — 61| 672326 | 2922
2 — 1221 | 46 0 — | 281 | 2374 | 3437
3 — | 12| 55 — | 1852 | 2456
4 - 0 — | 3102
Mutual information Interaction graph
Class | 1| 2 3 4 51 1| 2 3 4 5
1 — 1 10 312491221 —| O 5 92| 151
2 — | 25|270 | 254 — 4| 281 | 147
3 — 211|174 — | 244 | 133
4 — 1330 —| 278

Table 2. Number of significant features for all pairs of classes and types of information.

and each type of information. Table 2 shows the number of significant
features found for each pair of classes and using all sources of informa-
tion. Notice that a feature may be significant in the comparison of two or
more pairs of variables. Emphasized in bold are the marked differences
between the raw data and the interaction graph types of information in
terms of the number of relevant features they respectively find for class
pairs (1,2) and (4,5). These differences confirm our hypothesis that dif-
ferent types of information may reveal different types of brain signatures.

For the classification purpose we use the combined set of all the 6860

relevant features included in Table 1.

2 Classification approaches

Three different classification approaches were used: Elastic net regular-
ized multi-logistic regression [3], regression trees [1] and affinity propaga-
tion [2]. The first two methods are supervised classification methods and
were initially evaluated in the training set using a 5-fold cross-validation
scheme. The second method is an unsupervised classification method that
we directly used as a way to classify the test cases similarly as described
in [4].

Using 5-fold cross-validation on the training set with the complete set
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of 6860 variables we observed that elastic net multi-logistic regression
was able to reach a 0.83 classification rate for different values of 8 €
{0.01,...,0.9}. We then trained the model using the complete set of 727
solutions and used it to classify the test set. 21 different classifications
corresponding to different pairs of («, ), those that achieved and accu-
racy over 0.98 in the complete training set, were obtained. We called this
set of solutions MLRSet.

To evaluate the regression trees, the set of 6860 variables was split into
26 different sets of (overlapping) variables. Each set excluded a subset of
features relevant in the identification of 2, 3 or 4 classes, i.e. we used the
grouping of variables shown in Table 2 to partition the set of variables.
For each subset of features, we used cross-validation on the training set,
to learn a regression tree for each subset of features. Of the initial set
of 26, three regression trees were removed due to achieve a classification
accuracy under 0.48. The remaining 23 were used to create an ensemble
of regression trees with the majority vote strategy. Its application, using
5-fold cross-validation on the training set gave an accuracy of 0.6066. The
application of each individual tree to the test set produced a set of 23
solutions. We called this set of solutions TreeSet.

Affinity propagation was applied to the combined set of training and
test cases. However, by penalizing the preference values of the test cases
we enforce that only train cases are allowed to be an exemplar. A test
case is classified in the same class its corresponding exemplar belongs
to. To evaluate the quality of the classification, we computed the num-
ber of non-exemplar training cases that were correctly classified. We have
previously observed [4] that this may be an indirect measure of the clas-
sification quality for the test cases. 9 different similarity measures were
applied to the 26 sets of variables in which the initial set of features was
partitioned. As a result, we obtained a set of 234 clusterings. From these
clusterings, we selected those for which the number of correctly classified
non-exemplar training cases was above 0.60. There were 11 such cluster-
ings. Each cluster determines a assignment to the test cases. We called
this set of solutions APSet.

To obtain the final solution, we compute, for each of the three sets pro-
duced by the classifiers, the class probability for each test case. The
class probability is simply the frequency of each class in the correspond-
ing set for the given test case. The final probability of a case is found

as a weighted sum of the probabilities for each of the three sets, i.e.
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pr = 04prrrrset + 0.3p7reeset + 0.3papser. The weights were determined
according to the accuracies obtained by the two supervised classification
algorithms in the training set and we assumed that affinity propagation
achieved a classification rate similar to regression trees. The final assign-
ment of a given test case will correspond to the class with the highest class

probability in pg.
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The approach is based on calculating power features from the filtered
MEG signals and doing a supervised linear dimensionality reduction for
the gradiometer channel space. The dimensionality reduction is done
with binary classifiers separately for each class and frequency band. The
resulting lower dimensional features are classified using a multi-class
Gaussian process classifier [2].

The Power features were extracted by calculating the mean squared am-
plitude from all the 204 planar gradiometer channels for each of the five
prefiltered frequency bands. Logarithms of these power features were
normalized to zero mean and unit variance separately for the both mea-
surement days to give a 204-dimensional feature vector x;; for all the
labeled observations i = 1,...,n and frequency bands ¥ = 1,.., K, where

K =5.
Dimensionality reduction

Linear one-versus-rest logistic classifiers were used to reduce the 204-
dimensional feature space into a one dimensional latent space for each of
the five classes and five frequency bands separately. For a frequency band

k and an input vector x; ;,, the probability of class c is modeled as

PWie = 1| Wi Ves Ti) = (L4 exp(—2ipe)) (1)
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where wy, . are the coefficients of the linear predictor and v . a bias term,
Zike = x;ljk Wi e +Ui . the latent value we are trying to estimate, and y; . €
{—1,1} a class label which is 1 for all the observations in the class ¢ and
—1 otherwise (see, e.g., [1]). To model the possible linear shifts in the
power features between the different measurement days, a dummy vari-
able x; o € {—1,1} indicating the recording day, was included in x; ; as an
additional predictor. A Gaussian prior p(wy,.) = N(0, 02 1) with a variance
parameter o2, was assumed for the linear coefficients, and also a Gaussian
prior vy, . ~ N(0,02) was set for the bias term.
Combining the likelihood of all the labeled observations y, = {y1,c, ..., Yn,c}

from the both measurement days with the priors results in a conditional

posterior distribution

n
p(wk,cv Uk',c' Dk,w 0-5;7 012;) X <H(1 + eXp(ylsz))l> p(wk,c)p(vk,c)7 (2)
i=1

where Dy, . = {y., Xi}, Xi = [x14, ...,x,,“k]T. Since the posterior distribu-
tion (2) is analytically intractable an approximative inference method is
required. The Laplace approximation was chosen because it is computa-
tionally convenient for the logistic model (see, e.g, [1, 2]). In the Laplace

approximation a multivariate Gaussian approximation

q(wk,m Uk,c) = N(l’/k,@ Ek,c)

is formed by doing a second order Taylor expansion for
IOgP(Wk,m Uk,c' Dk,cv 0-7%;7 012;)

around the posterior mode. Point estimates for the parameters ¢2 and o2
were determined by optimizing the approximative log marginal posterior

distribution log ¢(c2,, o2

wr v

| Di,) obtained by approximating the log marginal
likelihood, log p(y. | Xy, 02, 02), with the Laplace’s method as described
in [2]. Relatively flat half-Student-t¢ priors with scale 10 and degrees of
freedom v = 10 were assigned for the variance parameters to prevent
them from becoming very large.

From the posterior approximation ¢(wy, ., v;.), a Gaussian approxima-
tion is obtained for the latent values related to both the labeled and unla-

beled input vectors for class c:
(Zie) = N(Mi e, Vike)s 3)

where m; , . = X;ljk e Vie = x;ljk 3k Xi , and one is appended to the fea-

ture vector x;; to account for the bias v;.. The expected values m; .
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from all the C' classes and K frequency bands as well as the dummy
variable z; indicating the recording day were combined to form new 26-
dimensional input vectors m; = [m;11,mi21, ..., Mi K,c, Tio] for a multi-

class classifier.

Multi-class classification

Using the latent vectors m; as new inputs, the type of the video stimulus
was predicted using a nonlinear Gaussian process (GP) multi-class clas-
sifier with a squared exponential covariance function [2]. The softmax
function was used to model the class probabilities according to
o ~1
p(yilfi) = exp(fic) Z exp(y; £) ) 4)
j=1

where f; = [f;1, ..., fic|T is a vector of the latent function values related
to data point ¢ and y; = [yi1,..., yi,C]T is the corresponding target vector
which has entry one for the correct class for the observation i and zero
entries otherwise. Following [2], independent zero-mean GP priors were
placed for each class, that is, p(f. |ls, 02,) = N(0,K), where f. collect all
the latent function values related to class c¢. The covariance matrix K is

defined by the squared exponential covariance function

d
1
[K]ij = kse(m;, m; |0) = 02 exp <_l2 Z(m,l — mj,l)2> , (5)

5 i=1

where d = 26, 02, is a magnitude parameter which scales the overall vari-
ation of the unknown function, and [ is a length-scale parameter which
governs how fast the correlation decreases as the distance increases in
the input space.

Combining the likelihood of the observations y = {y,...,y, } with the
priors p(f.|ls) results in an analytically intractable posterior distribution
for the latent function values f = {f;,...,f,}, and again the Laplace ap-
proximation is used for approximate inference as described in [2]. The
Laplace approximation results in a Gaussian posterior approximation for
f, and to approximate the predictive distribution it can be analytically
combined with the conditional GP prior p(f.|f, m, m,), where m collects
the training inputs and f, is a C' x 1 vector of latent values related to
an unlabeled test input m,. Using the Laplace approximation also a
marginal likelihood approximation ¢(y | m, Iy, 02,) can be obtained to de-

termine point estimates of the parameters Iy, and 2. However, optimiz-
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ing the marginal likelihood resulted in a very small length scale and in-
stead more conservative estimates ls, = 2 and 02, = 1 were selected based
on cross-validated predictive tests with the data from the second day. In
practise, both the dimensionality reduction as well as the multi-class clas-
sification were implemented with the freely available GPstuff software

package (http://www.lce.hut.fi/research/mm/gpstuff/).
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Different types of visual stimuli evoke
different kinds of brain responses. Are the
differences big enough to enable decoding
from brain activity measurements what kind
of avideo the subject is watching? Can we
tell whether someone is watching football or
enjoying a comedy film? To provide answers
to such questions, a PASCALZ challenge on
MEG mind reading was organized in
conjunction with the ICANN'11 conference
in Espoo, Finland. This collection describes
the outcomes of the challenge, including a
full description of the challenge and its
results, as well as technical descriptions of
the top three solutions.
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