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Abstract

We introduce a new generative block model
for graphs. Vertices (nodes) have mixed
memberships in margin components, and
edges arise from a multinomial defined over
the cartesian product of the margin com-
ponents. The model is able to represent
block structures of “non-community” type,
that is, it is able to model linkage between
margin components. Compared to earlier
mixed membership stochastic blockmodels
which have a Bernoulli parameterization for
the generation of links between each margin
component pair, in the new model collapsed
Gibbs samplers need to represent only those
interactions with realized data in them, mak-
ing possible large and sparse block models.

1. Introduction

Generative models for graphs can be divided to three
common subtypes. (1) In latent-space models nodes
reside in a continuous latent space, and usually a lo-
gistic link produces Bernoulli probabilities for linkage
(e.g., Handcock et al., 2007; not discussed here). (2)
Only links within blocks of nodes are modelled in com-
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munity models (Hofman & Wiggins, 2008; Sinkkonen
et al., 2007). (3) In block models (Airodi et al., 2008),
linkage between blocks is also modelled. Community
models are suitable for natural social networks and
in general where tightly integrated subnetworks exist,
or linkage between “communities” is not interesting.
Their advantage is simpler parameterization, leading
to better estimates.

Full block models have parameters for linkage between
all node subgroups or “communities”. If node sub-
groups are presented on margins of a contingency ta-
ble, each cell of the table corresponds to a potential
interactions that needs to be parameterized—hence
the name “block model”. Airoldi et al, (2008) have
introduced a mixed membership stochastic blockmodel
(MMSB), which assigns each node on multiple sub-
groups, effectively capturing the fact that nodes in a
network may arise from different sources and have dif-
ferent roles. Linkage between node groups is repre-
sented by Bernoulli distributions associated to each
cell of the block interaction table.

In this paper we introcude an alternative block for-
mulation. Nodes still have mixed memberships, but
links arise from a multinomial spanned over the pairs
of node subgroups. That is, the Bernoulli parameters
of MMSB in the cells of the contingency table are re-
placed by a multinomial over all the cells. The model
is able to generate multiple links for pairs of nodes,
but on sparse graphs where the proportion of linked
pairs p is small, the number of doubly linked pairs
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is on the order of p2, that is, vanishingly small, and
the multinomial parameterization approximately cor-
responds to the Bernoulli parameterization.

An advantage of the multinomial parameterization is
easy estimation with collapsed Gibbs sampling. The
implementation does not need bookkeeping of cells
with no data, making even quite large models with
a high number of components feasible.

In this paper we introduce the model structure and
demostrate it with toy data. Comparisons to existing
models and applications to larger datasets will appear
in the future, as well as a hierarchical mechanism to
allow the use of Dirichlet Process priors.

2. Simple interaction block model

A plate diagram of the block model is shown in Fig-
ure 1. The key insight is that the links can be seen
to belong to the latent components z which directly
determine a pair of margin components, z = (z1, z2),
into which the nodes belong. The z correspond to
cells of the contingency table between margin compo-
nent pairs. The nodes are sampled according to node
memberships p(i|z1) = φz1i and p(j|z2) = φz2j (nodes
i or j, node subgroups z1 and z2). The Dirichlet prior
for φz is parameterized by β, and here β optionally
arises from a Gamma distribution.

The distribution of links over the cells of the conti-
gency table is denoted θ, which arises from a Dirichlet
with parameter α, and that is again either fixed or
arises from a Gamma prior. In summary:

1. Initialization
(a) Optionally, generate (α, β) from Gamma.
(b) From Dir(α), draw parameters for the multi-

nomial linkage distribution θ over pairs z =
(z1, z2) of margin components.

(c) From Dir(β), draw multinomial parameters
φz of the margin node subgroup member-
ships, one multinomial per one margin com-
ponent.

2. For each link l = (i, j):
(a) Draw a component z from θ, which deter-

mines margin components z1 and z2.
(b) Draw the link endpoints, or interacting

nodes, i and j, from φz1 and φz2 , respectively,
and set a directed link between them.

The number of components is fixed. A hierarchical
Dirichlet Process arrangement is an interesting alter-
native, not considered here. Hyperparameter α con-
trols how evenly links are distributed over the node

Figure 1. A plate diagram of the block model.

subgroup pairs. Links are often allocated to only a
small proportion of all the pairs, because large practi-
cal networks are sparse.

We estimate the model with collapsed Gibbs. The
sampler iterates over links, and samples a new latent
component for each link l at a time, conditional on
other links and their assigments:

p(zl|{z}¬l, {(i, j)}¬l, α, β) ∝

(n¬l
z + α) ·

(q¬l
z1i + β)(q¬l

z2j + β)
(q¬l

z1· +Mβ)(q¬l
z2· +Mβ + δz)

, (1)

where n is the count over the component pairs (bins
of θ, cells of the contingency table), and q counts
component-node co-occurences. M is the number of
nodes, and δz ∈ {0, 1} is one for the diagonal (z1, z2).

If hyperparameters are not fixed, they are indepen-
dently drawn from their posteriors, or alternatively set
to their MAP values. This is repeated after each full
round over link assigments. Note that the model gen-
erates directed links. A modification allows generation
of undirected links.

3. Experiments

We applied the model to a toy data with a block struc-
ture. Adjacency matrix of the nodes, with notable
amount of noise, is shown in Figure 2 (top; 50 nodes,
10,000 links of which about half is noise). Underlying
is a structure of five node margin groups, with vary-
ing linkage within nine of the potential 25 interactions.
The populated interactions can be seen as darker ar-
eas in the adjacency node matrix, which counts the
links and where the nodes are sorted to make sub-
group nodes adjacent. Figure 2 (bottom) shows the
block structure correctly inferred with the model, with
MAP hyperpriors.

In the second experiment, we apply the model to the
famous friendship graph of 18 monks (Breiger et al.,
1975), with 88 links describing their relationships. The
monks are known to form three factions, but there
are also three “waverers” with less clear affiliations.
Figure 3 presents the inferred mixed memberships of
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Figure 2. Top: Adjacency matrix, or link counts of node
pairs, of the generated data, with the underlying block
structure made visible by ordering nodes to make the
within-block nodes adjacent. Bottom: Inferred block struc-
ture.

each monk, projected on a simplex. The model is able
to correctly separate the three known factions, and in
addition captures some of the waverer nature of the
three.

4. Discussion

We introduced a block model formulation for graphs,
where nodes have mixed memberships over latent
components, and the component interactions generate
links. The interactions are parameterized in a multino-
mial style, which allows sparse representations for in-
ference. Two small experiments showed that the model
is able to find both communities and block structures
from generated and real datasets.
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Figure 3. Inferred mixed memberships of the 18 monks.
Colors indicate the correct affiliations of the monks, and
the names of the three waverers are also shown. Positions
indicate inferred membership degrees in the three groups.
Underlying social structure, the factions (colors) is sepa-
rated well by the model. Of the three waveres (black dots),
Amand and Victor distinguish themselves while Ramuald
sits firmly in “loyal opposition”. Hyperparameters were
fixed at α = 0.1, β = 0.1.
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