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ABSTRACT

High-dimensional data are often visualized by dimensional-

ity reduction methods whose goals are not directly related to

visualization. We use a recent formalization of visualization

as information retrieval and apply that formalism to data with

structured annotations: we analyze gene expression data with

annotations from the Gene Ontology (GO). We show that us-

ing the GO information in visualization yields better retrieval

with respect to known ontological relationships and allows

discovery of data properties not explained by the ontology.

Index Terms— dimensionality reduction, gene ontology,

information retrieval, structured annotation, visualization

1. INTRODUCTION

Analysis of high-dimensional data often begins with visual-

ization. Recently a novel formalization of visualization as

an information retrieval task has been given, where the an-

alyst retrieves neighborhood relationships of points from the

visualization [1]. Based on this task, the Neighbor Retrieval

Visualizer method (NeRV; [1]) optimizes the visualization ac-

cording to well-defined information retrieval measures.

Often, annotation (existing knowledge of the analyst) is

available coupled to each data point; often each annotation is

structured e.g. as a graph. Visualization can show how an-

notation is related to data features, or show which properties

of data are not represented in the annotation. In particular,

we study gene expression data, where genes have been clas-

sified with terms from the Gene Ontology (GO), representing

knowledge about the function of genes, the processes they are

involved in, and where their activity is localized in the cell.

Many supervised projection methods are unable to exploit

structured annotation: supervised methods may, e.g., assume

data points have a single label, whereas most genes are la-

beled with several ontology terms that are related through a
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graph structure. We extend NeRV to data with structured an-

notation for each data point, using GO annotation of gene ex-

pression profiles as a case study. From the methods point of

view, we extend the well-performing NeRV to analyse graph-

structured annotation. From the application point of view,

we give novel methods for visualizing gene expression. Our

methods have a unique information retrieval interpretation.

2. NEIGHBOR RETRIEVAL VIZUALIZER (NERV)

How should one define an optimization goal for a visualiza-

tion? A recent rigorous answer formalized visualization as an

information retrieval task [1]. Looking at a point on a scat-

terplot, the analyst retrieves neighbors of that point. Retrieval

performance can be measured by information retrieval crite-

ria: precision describes what proportion of all retrieved points

were really neighbors according to original high-dimensional

features or according to an expert criterion; recall describes

what proportion of such neighbors were retrieved.

With these criteria, one can directly optimize dimension-

ality reduction to maximize performance of information re-

trieval: the Neighbor Retrieval Visualizer (NeRV; [1]) opti-

mizes output coordinates of data items to allow neighbors to

be retrieved from the visualization. NeRV optimizes a trade-

off CNeRV = λ
∑

i DKL(pi, qi) + (1 − λ)
∑

i DKL(qi, pi)
where pi and qi are probabilistic neighborhoods around the

point i in the input and output space, respectively. The two

kinds of Kullback-Leibler divergences DKL generalize recall

and precision [1]; the parameter λ sets the desired tradeoff

between precision and recall. The cost CNeRV is minimized

with respect to output-space coordinates yi of data points;

see [1] for details. The resulting nonlinear embedding is opti-

mized for the information retrieval task of visualization.

It is also possible to optimize a linear projection yi =
Wxi from original high-dimensional coordinates xi, by opti-

mizing the cost CNeRV with respect to the projection matrix

W. We call this method linear NeRV [2]; it is less flexible

than NeRV but easy to interpret: each visualization axis is a



linear combination of original high-dimensional data features.

Linear NeRV also allows a new kind of analysis: when

input neighborhoods pi are derived from an expert distance

measure, the linear projection of data features is optimized for

retrieval of expert neighborhoods; the projection reveals the

relationship between the features and the expert knowledge.

We call this case ‘supervised linear NeRV’ (SL-NeRV). When

expert knowledge is not used, i.e, input neighborhoods are di-

rectly computed from high-dimensional features, we call this

case ‘unsupervised linear NeRV’ (UL-NeRV).

We now extend NeRV to data with structured annotation.

2.1. NeRV for Data with Structured Annotation

Consider data where each data item (e.g. gene) has a feature

vector (e.g. expression profile) and a structured annotation

(e.g. the graph-formed set of ontology labels of the gene):

each item is annotated with a (different-sized) set of class la-

bels. The labels come from a hierarchy (a directed acyclic

graph): there is a root class (root node) with several children,

and each class (node) under the root may have several parent

and child classes. The Gene Ontology is such a graph.

We can create unsupervised visualizations of the data

by nonlinear or linear NeRV: compute input neighborhoods

based on (here Euclidean) distances between expression pro-

files, ignoring annotation, and apply NeRV. Such visualiza-

tions are good for retrieving neighbors in the feature space.

We will use annotations in the analysis to complement un-

supervised visualizations, in two ways: by visualizing simi-

larities (neighborhoods) of the annotations themselves with-

out considering the feature vectors, and by visualizing the re-

lationship of features and annotations. Let Si be the set of

of class nodes occupied by data item i. We measure anno-

tation distance between data items as the Jaccard distance:

J(Si, Sj) = (|Si ∪ Sj | − |Si ∩ Sj |)/|Si ∪ Sj | where |S| is

the size of S. This distance compares the number of nodes

where i and j differ to the total number of nodes occupied by

i and j. Weighting could be applied when computing |S| to

emphasize parts of the hierarchy; we used no weighting.

To visualize regularities in annotation, we give the Jac-

card distances as input distances to nonlinear NeRV; it visu-

alizes which data items are neighbors in terms of annotation.

To visualize the relationship between feature vectors and

the expert knowledge (the annotation), we use supervised

linear NeRV (a previous supervised NeRV [3] is not feasi-

ble with vast numbers of possible annotations.) We give the

Jaccard distances (expert knowledge) as input distances, and

optimize a linear projection of feature vectors. SL-NeRV op-

timizes a projection so that neighbors in the visualization cor-

respond to annotation neighbors: e.g. a projection of expres-

sion profiles where neighbors have similar GO annotation.

Influence of original data features. To further ana-

lyze the SL-NeRV visualization, we estimate how much

each original feature d contributes to the projection, as
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Fig. 1. One of the 19 GO true paths for human gene AIFM1.

Root note in italics; annotated term in bold. A node can have

multiple children and parents. Colors are for clarity only.

Influence(d) = C · Var{xd}
∑

k w2

k,d where wk,d is

the weight of feature d along the kth projection direction,

Var{xd} is the variance of data along feature d, and C nor-

malizes the influences so they sum to one over features. For

SL-NeRV, influence values tell which features (gene expres-

sion measurement conditions) have strongest relationships to

the annotation (GO information). Lastly, to analyze whether

there is structure in the data not explained by the annotation,

we will plot the influence values of SL-NeRV together with

the influence values of a comparable UL-NeRV: features with

low influence for SL-NeRV but high influence for UL-NeRV

contain structure not explained by the annotation.

Technical note. To avoid overfitting SL-NeRV, we regu-

larize Jaccard distances by Euclidean distances between fea-

ture vectors, as d(xi,xj) = βJ(Si, Sj) + (1− β)||xi − xj ||,
where β is chosen by cross-validation; we apply the area un-

der the precision-recall curve (an information retrieval statis-

tic) to visualization, as the criterion to find the best β.

3. EXPLORATION OF GENE EXPRESSION DATA

Exploring genes visually, with expression profiles as features,

can yield hypotheses for targeted analyses or lab experiments.

E.g. heatmaps [4] work poorly when the number of genes

and conditions is large, and yield limited insight into global

data structure; we use scatterplots which can yield hypothe-

ses e.g. that a set of genes is co-regulated. Trustworthiness

and continuity [6] of dimensionality reduction methods have

been evaluated for visualizing gene expression data [5]; sev-

eral methods had problems, but NeRV performed well [1].

The Gene Ontology (GO) includes three ontologies of

terms describing genes and their products: molecular func-

tions (MF), biological processes (BP) and cellular compo-

nents (CC). Each ontology is a directed acyclic graph: a class

node may have many parents and children. Classes follow a

true path rule: a gene belonging to some class node must be-

long to all parent classes of the class, all grandparents, and so

on up to the root of the ontology; Figure 1 shows an example.

A gene with multiple annotation terms belongs to the union

of their true paths. Thus, for each gene i we do not simply

use its GO terms as the label set Si, rather we use the union

of its true paths as Si when computing Jaccard distances.

We first perform a noise tolerance study, on part of the

Novartis SymAtlas [7]: expression of 627 genes in 33 human

tissues, and GO annotations from the MF ontology. In exper-
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Fig. 2. SL-NeRV ignores noise features (right of the dashed

line). Relative influences are shown: visualizations ignore

features with low influence. λ sets the tradeoff in CNeRV .

iments (not shown), we found that relationships between ex-

pression and annotations are here hard to detect; we show that

even then, SL-NeRV ignores features unrelated to GO anno-

tation. We add 1, 2, 5, or 10 ‘noise features’ whose marginal

distribution matches a real tissue, but permuting values so ex-

pression of noise features is independent of annotation.

Visualizations that reveal expression-annotation relation-

ships should ignore noise features. Figure 2 shows influ-

ence plots for SL-NeRV; it successfully sets low weights to

noise features except some fluctuation with λ = 0.5 which

needs future study. In the rest of the paper we use λ = 0.1
which gave stable good performance. (We also tried a sce-

nario where noise features come from a mixture of 10 multi-

variate Gaussians, so they have a cluster structure unrelated to

annotation. Results were similar in all but the most difficult

structured noise tests.) In summary, SL-NeRV can rule out

expression-ontology relationships not supported by the data.

We now perform a real case study, on expression data of

yeast genes measured under 300 conditions, each comparing a

mutant yeast strain to a wild-type (normal) strain [8]. We left

out genes with non-significant expression, genes without on-

tology information, and genes and conditions with too many

missing values; we then had 501 data items (yeast open read-

ing frames), whose expression is measured across 31 dele-

tion mutant conditions (where a genetic sequence has been

removed from the yeast). We lastly left out a subset of genes

as test data. We studied all three GO ontologies: MF, BP, and

CC. For brevity, we show results with CC annotations only.

Step 1: we apply nonlinear NeRV to Jaccard distances be-

tween CC annotations of genes, and hence visualize regular-

ities in the CC ontology annotation; Figure 3 (top left) shows

some visible regularity. Step 2: we apply nonlinear NeRV

to Euclidean distances of gene expression profiles; Figure 3

(top middle) shows clear structure. Step 3: we want to see

if expression-annotation relationships are visible in the NeRV

visualization. This is nontrivial: we cannot simply color each

annotation with some arbitrary color; with too many different

annotations the result would be a jumble of colors. Instead,

we take the NeRV visualization of annotations as a colorspace

map for the genes, and apply the colors to Figure 3 (top mid-

dle). We see some potential expression-annotation relation-

ships, but not very clear ones. Step 4: we use SL-NeRV

to optimize a projection to reveal the expression-annotation

relationships. Figure 3 (top right) shows the result: some

clear groups of color are now visible. Step 5: we try to find

structure that is not explained by the CC annotation. First,

we verify that SL-NeRV really reveals expression-annotation

relationships better than an unsupervised comparison (UL-

NeRV): we measure their ability to retrieve ontology neigh-

bors, by the area under the precision-recall curve (AUC). SL-

NeRV attains AUC 0.0687 and UL-NeRV 0.0628, hence SL-

NeRV performs better; note that AUC values are low for this

difficult retrieval task. Next, we identify which data features

contain structure not explained by the CC annotation: we

compute influence plots for SL-NeRV and UL-NeRV, and find

the dimensions having large influence on UL-NeRV and low

influence on SL-NeRV. Figure 3 (bottom left) shows the in-

fluence plots; boxes mark dimensions with unexplained struc-

ture. Step 6: we lastly use nonlinear NeRV to visualize the

dimensions that had unexplained structure. Figure 3 (bot-

tom right) shows the results: we see that interesting struc-

ture remains. The result shows clear structure (some of which

may be present in the previous unsupervised visualization, top

middle subfigure). This structure is not explained by the CC

ontology and is worth investigating in further work.

4. CONCLUSIONS

We presented methods for nonlinear and linear visualization

of data with structured annotation, and applied them to gene

expression data with gene ontology (GO) annotations. The

Neighbor Retrieval Visualizer (NeRV) has proven a powerful

nonlinear visualizer here and in previous quantitative compar-

isons [1, 3]. We recommend it for high-dimensional data like

gene expression, for visualizing similarities between features

like expression profiles or between (structured) annotations

like GO annotations. To find how expression profiles are re-

lated to GO annotations, we used a linear version of NeRV;

it allowed easy interpretation of influence of the features, and

discovery of features having structure not explained by the an-

notations. Other nonlinear (e.g. Isomap) and linear methods

could be used; we use NeRV which performed well in com-

parisons [1, 3] and has an information retrieval interpretation.
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Fig. 3. Visualizing yeast genes with CC annotation. Top left: nonlinear NeRV shows some regularity in ontology neigh-

borhoods. Top middle: nonlinear NeRV embedding of expression profiles shows clusters. Coloring from the top left plot;

homogeneity of coloring would indicate expression-annotation relationships. Top right: SL-NeRV projection of expression

profiles, optimized to reveal expression-annotation relationships; some ontologically homogeneous groups are shown. Bottom

left: finding features with structure unexplained by the CC ontology, i.e., features with low influence for SL-NeRV and high for

UL-NeRV; such features are marked with boxes. Bottom right: UL-NeRV visualization of expression profiles along dimen-

sions with unexplained structure (boxes in bottom left subfigure); visible structure is not well explained by the CC annotation.

NeRV revealed structure in the data: gene groups that

are similar in terms of expression profiles or GO annotations.

By encoding ontological similarities as colors we found that

some clusters of genes with similar expression are also simi-

lar in terms of GO annotations. We also found structure not

explained by CC annotation. Our methods are from ongo-

ing work for visualization with structured annotation, where

many standard supervised methods are not suitable. Our

methods in this first paper using annotations already obtain

interesting results that will be compared further later.
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