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Abstract

Information visualization has recently been
formulated as an information retrieval prob-
lem, where the goal is to find similar data
points based on the visualized nonlinear pro-
jection, and the visualization is optimized to
maximize a compromise between (smoothed)
precision and recall. We turn the visualiza-
tion into a generative modeling task where
a simple user model parameterized by the
data coordinates is optimized, neighborhood
relations are the observed data, and straight-
forward maximum likelihood estimation cor-
responds to Stochastic Neighbor Embedding
(SNE). While SNE maximizes pure recall,
adding a mixture component that “explains
away” misses allows our generative model to
focus on maximizing precision as well. The
resulting model is a generative solution to
maximizing tradeoffs between precision and
recall. The model outperforms earlier models
in terms of precision and recall and in exter-
nal validation by unsupervised classification.

1 INTRODUCTION

The importance of information visualization as a cen-
tral part of data analysis has been evident in ex-
ploratory branches of statistics, called for instance ex-
ploratory data analysis, and the importance of visual-
ization is being emphasized in the current strong visual
analytics movement. Machine learning seems to have
an obvious contribution to the field through nonlin-
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ear dimensionality reduction. Many nonlinear dimen-
sionality reduction methods developed during the past
ten years have been designed for manifold learning,
including Isomap (Tenenbaum et al., 2000), Locally
Linear Embedding (Roweis and Saul, 2000), Stochas-
tic Neighbor Embedding (Hinton and Roweis, 2002),
Maximum Variance Unfolding (Weinberger and Saul,
2006), Laplacian Eigenmap (Belkin and Niyogi, 2002),
and their more recent variants (see for example Zhang
and Wang, 2007; Choi and Choi, 2007; van der Maaten
and Hinton, 2008; Song et al., 2008). See van der
Maaten et al. (2009) for a recent comparison of meth-
ods. At first sight it might then seem attractive to
simply use manifold learning methods for visualiza-
tion. However, the manifold learning methods have
not been designed or optimized for visualization and
hence may not work well for visualization if the in-
herent dimensionality of the data manifold is larger
than the display dimension (Venna et al., 2010). While
there now are several more or less rigorous formula-
tions for the manifold learning problem, there are not
many for the visualization problem.

Visualization has recently been formulated as a visual
information retrieval task (Venna et al., 2010), with
the goal being to organize points on the display such
that if similar points are retrieved based on the display,
the accuracy of retrieving truly similar data is maxi-
mized. As in all information retrieval, the result nec-
essarily is a compromise between precision and recall,
of minimizing false positives and misses. Stochastic
Neighbor Embedding (SNE) corresponds to maximiz-
ing recall.

We also take SNE as the starting point because it
works well and has a nice interpretation explicated be-
low: The cost function is (mean) maximum likelihood
of a simple user model, where the user is assumed to
pick neighbors according to a kernel probability distri-
bution on the display. The data are the actual neigh-
bor relationships, in practice often given by specifying
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a kernel as well. Now the question we asked is: If
maximizing recall is a generative modeling task, could
a generative model be made to focus on precision as
well, or in fact on any tradeoff between the two?

We formulate information visualization as a genera-
tive modeling task, which reduces to SNE when max-
imizing pure recall, and precision is maximized by a
mixture model. When a mixture component is added
to explain away the misses the rest of the model will
focus more on minimizing false positives. This turns
the whole visualization task into a generative modeling
task which makes it more understandable for model-
ers, easier to extend and, as it turns out, makes the
visualizations better. Our cost function, in contrast to
Venna et al. (2010), is directly a likelihood of observed
neighborhoods. This makes visualization a rigorous
statistical modeling task, with all tools of generative
modeling available.

2 GENERATIVE MODELING FOR
VISUALIZATION

Consider visualization as a model learning task, where
observed similarity relationships are the data and the
coordinates of points on the display are the param-
eters. We construct a generative model which will
generate neighbor relationships for query points, and
can naturally generate a distribution over query points
too although we do not consider that straightforward
extension in this paper. The model can be consid-
ered as a user model, that is, a model that specifies
which other points the user would inspect given the
query point. When the visualization is optimized for
the specific user model (neighborhood kernel), it will
naturally be optimal for a user behaving according to
that model.

If the data consists of observed neighborhood relation-
ships, for instance as counts of citations in a paper or
counts of social interactions of a person, we can use
them directly or, assuming large sample size, normal-
ize them into distributions. Let p;; denote the “ground
truth” probability that 57 would be chosen as a neigh-
bor of i without any constraints coming from the vi-
sualization, and Ej# pij = 1 for all 4. In practice the
analysis often starts with a kernel, or distance mea-
sure and functional form. In that case, we denote the
density after appropriate normalization by p.

Let now probabilities 7;; denote the neighborhood re-
lationships of the model; r;; is the probability of choos-
ing point j as a neighbor of point i, 3>, ,;ri; =1 for
all i. The r;; are interpretable as a “user model” as
follows: r;; is the probability with which the model be-
lieves a user will inspect point j when the query point
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is 1, given the visualization. The user model is param-
eterized by the coordinates y; of each point j on the
visualization display. Many definitions of 7;; can be
used depending on the needs of the analyst; we will
use the simple Gaussian falloff around the query point
i

exp(—|ly; — y:l|? /o2
p(-llyi — y,l2/o?) "

Y Ysexp(=llyi — yxl?/o?)

where o; is a neighborhood radius around point i.
Another recent possibility is a t-distributed falloff
(van der Maaten and Hinton, 2008) which can be easily
included.

Simple generative modeling to maximize recall.
Now consider simply maximizing the log-likelihood of
the observed neighborhoods, that is, maximizing

Zzp” IOg Tij - (2)

i j#i

This corresponds to minimizing Y. D1 (pi., ri.), the
sum of Kullback-Leibler divergences from the observed
neighborhoods to the user model, which is the cost
function of Stochastic Neighbor Embedding (SNE;
Hinton and Roweis, 2002). This is a straightforward
re-interpretation of SNE.

We then consider a simple user model in order to build
a connection to recall, extending the work of Venna
et al. (2010). Assume that the user (or retrieval model)
retrieves a set R; of points as neighbors of query point
i, and places a uniform distribution r;; = (1 —€)/|R;|
across the retrieved points with a very small proba-
bility /(N — 1 — |R;|) for others, where € is a very
small number and N — 1 is the total number of points
other than ¢. Similarly, let the set of actually rel-
evant neighbors be P;, with a uniform distribution
pij = (1 — €)/|P;| across the relevant neighbors and
very small probabilities for the rest. Then the objec-
tive function for a single query point ¢ becomes

1—c¢ 1—¢€
Subes 2 ()

Jj#i JEPNR;

1—¢ €
E 1
- | P o8 (N— 1- Ri')

JEPNRY

Nrp; ( 1 ) Nurrss,i
~ “log | — | + —=—">1loge (3)
|| | i Id

where R§ and P¢ denote complements of R; and P;,
Nrp; = |PiNR;| = |R;| — Nrp, is the number of true
positives (retrieved relevant points), Npp; = |R; N Pf|
is the number of false positives (retrieved non-relevant
points), and Nyrss: = |P; N R§| is the number of
misses (relevant non-retrieved points). With small ¢
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the rightmost term in (3) dominates, and maximiz-
ing the objective function (3) with respect to the re-
trieval distribution defined by the r;; is equivalent to
minimizing the number of misses, that is, maximiz-
ing recall = NTP,i/|Pi| =1- NMISS,i/‘Pi‘- Therefore
SNE, which maximizes (3), can be seen as a generative
model of neighborhood relationships which maximizes
recall.

2.1 Extending the generative model for
flexible visualization goals

We showed above that maximizing the likelihood for
the simple retrieval model corresponds to maximizing
recall, and it also corresponds to the objective of SNE.

However, maximizing recall is only one possible goal
of successful visualization: it corresponds to minimiz-
ing misses (missed true neighbors), but it ignores the
other type of visualization error, false positives. Min-
imizing false positives would be equivalent to maxi-
mizing precision of retrieving neighbors from the vi-
sualization. Both precision and recall, or any tradeoff
between them, are useful optimization goals for visu-
alization. We next show that we can change the re-
trieval model to optimize a tradeoff between precision
and recall, while keeping the same rigorous generative
modeling approach which we introduced above.

Notice that the simple analysis above already gives
a hint on how to proceed; equation (3) does involve
the number of true positives Npp; (or equivalently
the number of false positives Npp;) in the first term
on the right-hand side. However, this term does not
have much influence on optimization because the cost
function is in practice dominated by the second term
involving misses. For small € the second term is always
much larger than the first, therefore misses are likely
to dominate. If we could somehow change the model
so that the cost of misses becomes less dominant, the
model would be able to focus also on false positives.

More flexible generative modeling to maximize
a tradeoff between precision and recall. Let us
design a more flexible retrieval model g;; which extends
r;j. We will define ¢;; as a mixture of two retrieval
mechanisms: the user model r;; which depends on the
visualization coordinates of points, and an additional
model which need not depend on the visualization co-
ordinates; the goal of the additional model is to explain
away those neighbors that the user model r;; misses.
We give the precise definitions soon.

Intuitively, if we can create an additional retrieval
mechanism which retrieves all those neighbors that the
user model r;; misses, then when we fit the combined
model to maximize the likelihood of observed neigh-
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borhoods, the user model r;; (which is part of the func-
tional form of ¢;;) can minimize the remaining kind of
error, the number of retrieved false positives.

A simple solution is to define the retrieval distribution
gi; as a mixture of the plain user model 7;; and an
“explaining away” model:

Qij X Tij + VYPij (4)

where v > 0 is a multiplier which controls the amount
of explaining away. The model is again fitted to
the observed neighborhoods by maximizing the log-

likelihood
L=>"Y pijlogg; (5)
i g
with respect to the output coordinates y; of all data
points, which affect the ¢;; through the plain user
model Tij -

It is easy to see that the explaining-away has no effect
in the perfect retrieval case where r;; already equals
pi; (then g;; = r;;); instead, the explaining-away af-
fects how severely errors in r;; affect the likelihood.
In the log-likelihood (5) the explaining-away has the
largest effect on the terms corresponding to misses,
where 7;; is small but p;; is large; for such terms g;; is
also large and the cost of misses thus no longer dom-
inates the likelihood. Therefore, optimizing ¢;; with
respect to the visualization coordinates is now able to
better take into account the false positives, and hence
the visualization will be better arranged to avoid false
positives.

An analysis of the mixture model likelihood.
In the simple case that we discussed above, where the
observed neighborhoods p;; and plain user models 7;;
are uniform over some subsets of points P; and R;
respectively, and near-zero elsewhere, it can be shown
that the log-likelihood of the mixture model for a single
query point becomes

Zpij log ¢;; ~ const.
J#i

precision _ _recall
( recall + ’Y) (a precision)
_recall €
v (a’ - ) + 1—e

precision
(1 —e€ €
+(1—e)log< (P- )+N—|R-|—1> (6)

where a = (N — 1)/|P;|, and the information retrieval
criteria are recall = Nrpp;/|P;| and precision =
Nrpi/|Ri| as usual. With no explaining-away (y =
0), maximizing (6) reduces to maximizing equation
(3), that is, maximizing the mixture model likeli-
hood without explaining-away is the same as maximis-
ing recall - const. and ignoring precision. However,

+ recall - log
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with a sufficient amount of explaining away such that
v > € > 0 the above reduces to the more appealing
form

1 .
Zpij log q;; ~ const.+recall-log ( 1+ — - precision
— ¥ recall
Jj#i

(7)
where we can see that, because of the explaining-away,
the objective function is affected both by precision
(false positives) and recall (misses). The influence of
precision is strongest when ~ is small but still clearly
larger than e.

In more detail, the log-likelihood is dominated by a
sum over misses and a sum over true positives. If
v is much smaller than €, the misses dominate the
cost function, which reduces to maximization of re-
call. On the other hand, as v grows, it begins to affect
the log-likelihood of true positives: r;; for true posi-
tives depends on the number of retrieved points |R;|
and hence depends on precision; however, for asymp-
totically large v, q;; o< 735 + yps; for true positives
becomes nearly constant with respect to the visualiza-
tion, which then reduces the influence of precision on
optimization. For more details, see the full derivation
of equation (7) in the supplement.

To summarize, in order to make precision influence
the cost function as much as possible, v should be suffi-
ciently larger than zero so that it can explain away the
misses. Otherwise, v should be kept small: then the
log-likelihood of true positives depends on the retrieval
distribution r;; rather than being explained away. In
our experiments we use v = 0.9 which yielded very
good results.

The objective function can be maximized with respect
to the output coordinates y; by gradient methods; here
we use conjugate gradient. The computational com-
plexity per iteration is O(N?) for N data points which
is the same complexity as for SNE. To help avoid local
minima, we first run the method with no explaining-
away (7 = 0) and use the resulting coordinates y; as
initialization for the final run with the desired amount
of explaining-away (desired v value).

2.2 Comparison to regularization

The functional form of our retrieval distribution g;; is
superficially similar to regularization: the user model
r;; is mixed with another distribution which keeps cru-
cial retrieval probabilities nonzero. Regularized vari-
ants of stochastic neighbor embedding have been pro-
posed earlier: in particular, UNI-SNE (Cook et al.,
2007) is a variant of SNE where the retrieval distribu-
tion is regularized by mixing it with a uniform distri-
bution, which is equivalent to g;; o< r;; + const.
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The problem with such regularization is that it dis-
torts the retrieval model and hence cannot achieve the
optimal embedding result. Because the regularization
always mixes a constant to all retrieval probabilities,
the user model is forced to compensate for this regu-
larization which distorts the embedding.

It can be shown that even if a perfect embedding
(where 7;; = p;;) is possible, for example when the
original data lives on a low-dimensional subspace, the
UNI-SNE optimum does not correspond to that per-
fect embedding. (This can be seen by taking the gradi-
ent of the UNI-SNE cost function with respect to 75,
enforcing nonnegativity and sum-to-one constraints by
reparameterization, and showing that 7;; = p;; is not
a zero-point of that gradient.)

In contrast, our method mixes the user model with
the “perfect retrieval” distribution p;;, which is data-
dependent and non-uniform. This is a true “explain-
ing away” model which does not distort the embed-
ding: it is easy to show that if perfect embedding
(where r;; = p;;) is possible, it corresponds to the
optimum of our method, as desired. To show this,
simply note that if r;; = p;; then also g;; = pyj
which yields the maximum value of the log-likelihood
> iji Dij log g;;, or equivalently the minimal value of
> i Drr(pi.;qi.) where the Dy, are Kullback-Leibler
divergences between the relevance probabilities p;; and
the g;;. Therefore, if r;; = p;; can be achieved, it cor-
responds to the optimum of our method.

In summary, the new method can be seen as a rig-
orous approach to the same problem that has been
previously addressed by regularization approaches like
UNI-SNE. Our new method also has a novel interpre-
tation and an analysis in terms of precision and recall;
and it corrects a problem present in UNI-SNE, so that
the new method is able to find the optimal embedding.

3 EXPERIMENTS

We compare our new method to several previous meth-
ods, first in terms of retrieval performance and then
in terms of unsupervised classification performance;
lastly, we plot visualizations produced by our method
on several data sets.

3.1 Comparison of retrieval performance

We evaluate the performance of the new method
against a comprehensive set of alternatives on two
data sets, in the task of visualizing the sets as scat-
terplots in 2D. The Faces data set (http://www.cs.
toronto.edu/~roweis/data.html) contains 400 face
images, from 40 people with 10 images each, with dif-
ferent facial expressions and lighting; each image is
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64 x 64 pixels with 256 grey levels. The Seawater tem-
perature time series (Liitidinen and Lendasse, 2007)
contains weekly measurements of seawater tempera-
ture over several years. Each data point is a 52-week
window of the temperature time series, and for the
next data point the window is shifted one week for-
ward; this yields 823 data points with 52 dimensions.

We compare our method with thirteen others: Prin-
cipal Component Analysis (PCA; Hotelling, 1933),
Metric Multidimensional Scaling (MDS; see Borg and
Groenen, 1997), Locally Linear Embedding (LLE; see
Roweis and Saul, 2000), Laplacian Eigenmap (LE;
Belkin and Niyogi, 2002), Hessian-based Locally Lin-
ear Embedding (HLLE; Donoho and Grimes, 2003),
Isomap (Tenenbaum et al., 2000), Curvilinear Compo-
nent Analysis (CCA; Demartines and Hérault, 1997),
Curvilinear Distance Analysis (CDA; Lee et al., 2004),
Maximum Variance Unfolding (MVU; Weinberger and
Saul, 2006), Landmark Maximum Variance Unfolding
(LMVU; Weinberger et al., 2005), Local MDS (LMDS;
Venna and Kaski, 2006), Neighbor Retrieval Visualizer
(NeRV; Venna et al., 2010), and UNI-SNE (Cook et al.,
2007).

We use the same test setup as Venna et al. (2010). In
brief, each method was run with several parameter val-
ues, and non-convex methods were run from five ran-
dom initializations. For each method, the best result
was chosen in the sense of maximizing the (unsuper-
vised) F-measure computed as 2(P- R)/(P+ R) where
P and R are rank-based smoothed precision and re-
call measures; see Venna et al. (2010) for details. The
NeRV and LocalMDS methods which allow a tradeoff
between precision and recall were run with several val-
ues of their tradeoff parameter \; for clarity we show
results for a single A value chosen by the F-measure.
We ran our method with two settings: the base-
line case v = 0 (no explaining-away; corresponds to
Stochastic Neighbor Embedding) and v = 0.9 (strong
explaining-away during training). We ran the corre-
sponding setting for UNI-SNE, with A = 0.47 which
corresponds to v = 0.9 in our method. Note that both
the explaining-away in our method and regularization
in UNI-SNE are only used during training, and only
the resulting visualization (data point locations) are
used to evaluate the quality of the method.

The quality of the visualizations is evaluated by how
well the real neighborhoods are visible in the visualiza-
tion or, equivalently, how well the real neighbors (set
to be the 20 nearest neighbors of points in the original
space) can be retrieved based on the visualization. We
use traditional precision-recall curves to measure this.

Based on Figure 1 our new method (denoted “NM” in
the figures) performs very well: it attains clearly the
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best precision. In terms of recall it is roughly as good
as NeRV or, equivalently, SNE. The simple regulariza-
tion approach UNI-SNE also performs fairly well, but
our more rigorous approach achieves better results.

3.2 Unsupervised classification

We additionally compare the methods using external
validation, computing unsupervised 2D displays and
then measuring how well known but so far unused
classes are separated on the display. Class separation
is measured by classification accuracy of a k-nearest
neighbor classifier (kK = 5) operating on the display
coordinates; each point is classified according to a ma-
jority vote of its k nearest neighbors excluding itself.

Four data sets are used. The Letter recognition data
set is from the UCI machine learning repository (Blake
and Merz, 1998) and contains 4 x 4 images of capital
letters, based on distorting letter shapes in different
fonts; the data set has 16 dimensions and 26 classes.
The Phoneme data set is from LVQ-PAK (Kohonen
et al., 1996) and contains spoken phoneme samples;
the data are 20-dimensional and there are 13 classes
(different phonemes). The Landsat satellite data set is
from the UCI machine learning repository; it contains
satellite images, each of which is 3 x 3 and measured in
four spectral bands, yielding 36 dimensions per image.
Each image is classified into one of 6 classes which
denote different soil types. The TIMIT data set is
from the DARPA TIMIT speech database (TIMIT,
1998); it contains phoneme samples, each of which is
12-dimensional, and there are 41 classes.

Our new method (“NM” in Table 1) with strong
explaining-away during training (y = 0.9) yields the
best results on two data sets (Landsat and TIMIT),
second-best on one (Letter), and third-best on one
(Phoneme). The use of explaining-away during train-
ing clearly improves results on all data sets compared
to the no explaining-away case (v = 0, corresponding
to SNE). UNI-SNE performs almost as well: it is best
on two data sets (Letter and Phoneme), third-best on
one (TIMIT) and fourth-best on one (Landsat). Other
methods that perform well are LocalMDS and NeRV.

Although for brevity we report the results of our
method only with two choices of ~, the results are very
good for all the nonzero gamma values that we tried
(between 0.1 and 0.9). On TIMIT our method is best
with any such v value; on Letter, Phoneme and Land-
sat, our method is always in the top-two, top-three,
and top-four respectively.
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Figure 1: Retrieval quality measures for neighbor retrieval based on the visualizations, for two data sets: Faces
and Seawater temperature time series. For clarity, only a few of the best-performing methods are shown for each
data set. Performance is measured by standard precision-recall curves. For NeRV and LocalMDS, for clarity
performance is shown for only a single A chosen by a F-measure. For our method (denoted “NM”) we report
performance for v = 0 (no explaining away; corresponds to Stochastic Neighbor Embedding) and v = 0.9 (strong
explaining away used during training). For UNI-SNE we report results for A = 0.47 which corresponds to our
setting v = 0.9; UNI-SNE at A = 0 is essentially equivalent to our method at v = 0. Our new method attains
the highest precision for both data sets and is comparable to NeRV/SNE in terms of recall.

Table 1: (In)separability of known classes on unsu-
pervised diplays for four data sets. The cost mea-
sure is classification error rate, based on the visualiza-
tions, with a k-nearest neighbor classifier, k = 5. Our
method is the best on two of the four data sets, second-
best on one data set (Letter), and third-best on one
data set (Phoneme). On Landsat data our method and
LocalMDS yield the same accuracy. The best method
in each column has been boldfaced.

Letter Phon. Land. TIMIT
Eigenmap 0.914 0.121  0.168 0.674
LLE n/a 0.118  0.212 0.722
Isomap 0.847 0.134  0.156 0.721
MVU 0.763  0.155  0.153 0.699
LMVU 0.819  0.208 0.151 0.787
MDS 0.823 0.189  0.151 0.705
CDA 0.336  0.118 0.141 0.643
CCA 0.422  0.098 0.143 0.633
NeRV 0.532  0.079  0.139 0.626
LocalMDS 0.499 0.118 0.128 0.637
UNI-SNE, 0.299 0.072 0.136 0.628
A =047
NM, v=0 0.590 0.088 0.133 0.657
NM,~v=09 0.326 0.080 0.128 0.594
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3.3 Demonstrations on toy data, face images,
and fMRI data

We demonstrate the visualizations on three data
sets. First, we replicate the simple demonstration
of the precision-recall tradeoff shown in Venna et al.
(2010). Data points are distributed on the surface
of a three-dimensional sphere (Figure 2A). We create
two-dimensional visualizations with our new method,
with two settings: no explaining-away (y = 0; cor-
responds to SNE) which concentrates on minimizing
misses, and strong explaining-away during training
(v = 0.9) which concentrates on minimizing false pos-
itives. The result trained without explaining-away
(Figure 2B) minimizes misses by squashing the sphere
flat, which leads to numerous false neighbors when
points originally on opposing sides of the sphere are
placed near each other. With strong explaining-away
(Figure 2C) false neighbors are minimized by opening
up the sphere, at the expense of missing some neigh-
bors across the tear. Both solutions are useful visual-
izations of the sphere, but for different purposes.

Secondly, we visualize the face images data set which
was already used in the previous section. In the plot
with v = 0.9, Figure 2D, faces of the same person be-
come mapped close to each other in the visualization.
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Figure 2: Demonstrations of our method. A-C demonstrate the tradeoff between misses and false positives.
Points on a three-dimensional sphere (A) are mapped to a two-dimensional display by the new method. In B,
the visualization is optimized without explaining-away (v = 0; corresponds to Stochastic Neighbor Embedding)
which minimizes misses by squashing the sphere flat. In C, the visualization is optimized with strong explaining-
away (v = 0.9) which minimizes false positives by opening up the sphere. D: Face images (7 = 0.9); faces of the
same person occur close to each other. E: Visualization of fMRI whole-head volumes from an experiment with
several people experiencing multiple stimuli (y = 0.9). The four stimuli types (red: tactile, yellow: auditory
tone, green: auditory voice, blue: visual) have become separated in the visualization; the two auditory stimuli
types are arranged close-by as is intuitively reasonable. An axial slice is shown for each whole-head volume,
chosen so that the shown slice contains the highest-activity voxel.

585



Generative Modeling for Maximizing Precision and Recall in Information Visualization

Thirdly, we visualize a set of functional magnetic reso-
nance imaging (fMRI) measurements. The data set
Malinen et al. (2007) includes measurements of six
healthy young adults in two measurement sessions
where they received temporally non-overlapping stim-
uli: auditory (binaural tones or a male voice), visual
(shown video clips), and tactile (touch pulses delivered
to fingers). Using an MRI scanner, 161 whole-head
volumes (time points) were obtained for each person
in each test. Preprocessing of the volumes included re-
alignment, normalization, smoothing, and extraction
of 40 components by independent component analy-
sis; see Ylipaavalniemi et al. (2009) for details.

For our purposes we took every fourth time point
(whole-head volume) from the first half of each session
as a data item to be visualized, yielding 6 x2x19 = 228
data items with 40 dimensions. We visualize this data
set in two dimensions using our new method with
explaining-away (v = 0.9) during training. Figure 2E
shows the result. The different stimuli types are sep-
arated in the visualization. This kind of a display is
useful for interactive analysis of the experiment, where
browsing for evidence of common patterns is inter-
leaved with interactive slicing through the 3D brain
volumes to more accurately view the sets of 3D active
regions.

4 CONCLUSIONS AND
DISCUSSION

We have introduced a novel way to perform nonlinear
dimensionality reduction by bringing in the genera-
tive modeling framework and a way of controlling the
precision and recall of the visualization. The method
includes Stochastic Neighbor Embedding (SNE) as a
special case, and thus gives a generative interpretation
for it, but where SNE minimizes only one kind of error
(misses) we allow a flexible amount of explaining-away
during training to let the model concentrate on reduc-
ing the other kind of error, false positives. Our model
simply mixes the retrieval “user model” linearly with
an explaining-away distribution during training; this
remarkably simple model suffices to yield a flexible
tradeoff between minimizing misses and minimizing
false positives, and in experiments it gives visualiza-
tions that outperform alternative methods according
to several measures.

Compared to the earlier regularization-based approach
UNI-SNE (Cook et al., 2007), our method performs
slightly better. Furthermore, it has a novel interpre-
tation and an analysis in terms of precision and recall,
and it corrects a problem present in UNI-SNE. In con-
trast to UNI-SNE, the new method is able to find the
optimal embedding.
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Compared to a previous approach (Venna et al., 2010)
which also minimized a tradeoff between misses and
false positives, our novelty is the rigorous generative
framework; our cost function is directly a likelihood
of observed neighborhoods and we control precision
and recall by using a generative model. This makes
it easier to analyze the performance and extend the
model. In particular, it should now be possible to start
to rigorously learn the user model too, on-line or off-
line, to adapt to real user behavior and needs.

We have now brought information visualization into
the domain of rigorous probabilistic generative model-
ing. The specific modeling choices were made to show
that this is possible; we did not yet make any claims
about optimality, in particular about maximization of
precision. However, even the proof-of-concept model
outperformed existing models in empirical tests, giving
strong support to this line of research.

A simple extension is to use alternative distributional
assumptions. Instead of the Gaussian falloffs which
gave very good results here, there is evidence that t-
distributed neighborhoods could work even better for
visualizations (van der Maaten and Hinton, 2008).

In this paper the goal is information visualization,
where it is natural to have 2-3 output dimensions.
Controlling precision and recall with generative model-
ing may also be useful more generally in dimensionality
reduction with higher output dimensionalities.
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