
2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 23–26, 2012, SANTANDER, SPAIN

Copyright 2012 IEEE. Published in the 2012 IEEE Interna-
tional Workshop on Machine Learning for Signal Processing
(MLSP 2012), scheduled for 23-26 September 2012 in San-
tander, Spain. Personal use of this material is permitted. Per-
mission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in
other works.

978-1-4673-1026-0/12/$31.00 c©2012 IEEE

EFFICIENT OPTIMIZATION FOR DATA VISUALIZATION AS AN INFORMATION
RETRIEVAL TASK

Jaakko Peltonen and Konstantinos Georgatzis

Aalto University, Department of Information and Computer Science,
P.O. Box 15400, FI-00076 Aalto, Finland

{jaakko.peltonen, konstantinos.georgatzis}@aalto.fi

ABSTRACT
Visualization of multivariate data sets is often done by map-
ping data onto a low-dimensional display with nonlinear
dimensionality reduction (NLDR) methods. Many NLDR
methods are designed for tasks like manifold learning rather
than low-dimensional visualization, and can perform poorly
in visualization. We have introduced a formalism where
NLDR for visualization is treated as an information retrieval
task, and a novel NLDR method called the Neighbor Retrieval
Visualizer (NeRV) which outperforms previous methods. The
remaining concern is that NeRV has quadratic computational
complexity with respect to the number of data. We introduce
an efficient learning algorithm for NeRV where relationships
between data are approximated through mixture modeling,
yielding efficient computation with near-linear computational
complexity with respect to the number of data. The method
inherits the information retrieval interpretation from the orig-
inal NeRV, it is much faster to optimize as the number of data
grows, and it maintains good visualization performance.

Index Terms— Visualization, dimensionality reduction,
neighbor retrieval, efficient computation, mixture modeling

1. INTRODUCTION

Visualization is crucial in analysis of multivariate data sets,
especially in the first stages where strong hypotheses about
the data are not available. Large data arise for instance in
bioinformatics studies where expression levels can be mea-
sured for thousands of genes over each patient. To reduce
the data onto a two- or three-dimensional scatterplot display,
dimensionality reduction is usually applied, from linear pro-
jections to mappings found by nonlinear dimensionality re-
duction (NLDR) methods. Visualization is a traditional ap-
plication of NLDR, however, many NLDR methods are not

The authors belong to Helsinki Institute for Information Technology
HIIT. This work was financially supported by the Academy of Finland
(Finnish Centre of Excellence in Computational Inference Research COIN,
grant no 251170; JP also by decision number 252845. The work was also
supported in part by the PASCAL2 EU NoE, ICT 216886. This publication
reflects the authors’ views only.

designed for visualization but tasks like manifold learning.
Manifold learning methods are often not designed to reduce
dimensionality below the dimensionality of the manifold, and
can work poorly in low-dimensional visualization [1].

A low-dimensional display cannot represent all properties
of the high-dimensional data; it is then crucial to quantify er-
rors that necessarily happen in the visualization, and the good-
ness of the visualization. There is no generally agreed on
goodness measure for visualization. Often mappings are just
inspected by eye, or by classification accuracy on the display
or preservation of pairwise distances which may not match
the tasks an analyst would like to do using the visualization.
A good criterion should correspond to real needs of analysts.

We have introduced a novel NLDR approach in low-
dimensional visualization, where visualizations are optimized
for a specific visualization task, information retrieval based
on the visualization. Based on the approach, we have in-
troduced a well-performing NLDR method, the Neighbor
Retrieval Visualizer (NeRV) [2, 3], which optimizes visual-
izations for retrieval of neighborhood relationships. NeRV
has outperformed state of the art visualization methods [3].
A remaining concern is that its computational complexity
is quadratic with respect to the number of data samples N .
Quadratic complexity often occurs in pairwise distance based
NLDR methods: it takes much time as N grows, hindering
use of the methods for large data sets. A typical speedup is
to visualize a data subset, but this can be unsatisfactory in ex-
ploratory analysis as the subset may contain just a small por-
tion of the interesting data relationships. E.g. neighborhood
preserving hashing or approximate queries [4] can speed up
neighbor search, but using them well in NLDR is nontrivial
as coordinates undergo complex changes in optimization.

We introduce a fast version of the Neighbor Retrieval
Visualizer having near-linear complexity with respect to the
number of samples. The idea is: use all neighbor relationships
in optimization, a few exactly, the rest by expectation over
a mixture model. For each point, a few of the neighbors are
treated with exact coordinates, the rest by mean over a Gaus-
sian mixture model of the coordinates. We recap the NeRV
approach, then present our efficient method and experiments.

false
positives

Input space

miss

Output space (visualization)

*

*
*

i

i

Q

P
x

y

i

i

*

*
*

Fig. 1. Illustration of errors in visual information retrieval of
neighbors for query point i. Misses are points in the input
neighborhood Pi that are not retrieved in the output neighbor-
hood Qi, false positives are points in Qi that are not in Pi.

2. VISUALIZATION AS AN INFORMATION
RETRIEVAL TASK

Consider mapping a Din dimensional data set {xi}Ni=1 onto
a low-dimensional display for visualizing similarity relation-
ships. Let each sample i have an input neighborhood Pi of
samples close to i. Pi might contain all samples (other than i)
within some radius from i, or a fixed number of samples clos-
est to i. The goal is to create output coordinates {yi}Ni=1 for
the data, for use in visual information retrieval. The output
dimensionality Dout is typically 2 or 3. In visual information
retrieval, given a sample i as a query, a set Qi called the out-
put neighborhood is retrieved containing samples close to yi
on the display, typically all samples within some radius from
yi or a fixed number of samples closest to yi. The number of
points ki in Qi may differ from the number of points ri in Pi.

Evaluating visualization performance. Generally a
low-dimensional display cannot represent all neighborhood
relationships of high-dimensional data exactly; some out-
put neighborhoods Qi will not correspond to the original
input neighborhoods Pi. Two kinds of errors will then hap-
pen: neighbor points from Pi that are not in Qi are misses,
whereas points that are in Qi but not in Pi are false neighbors
(false positives); see Fig. 1. Assume the user has assigned
a cost CF for a false positive and CM for a miss, and de-
note the number of false positives for query i by NF,i and
the number of misses by NM,i. The total cost for query i is
Ei = NF,iCF + NM,iCM . Setting CM = C ′M/ri, it can be
shown the total cost becomes a sum of precision and recall:
Ei/ki = CF (1 − precision(i)) + (C ′M/ki)(1 − recall(i)),
where precision(i) = 1 − NF,i/ki and recall(i) = 1 −
NM,i/ri are usual information retrieval definitions. To evalu-
ate a whole visualization, the cost is averaged over samples i
yielding mean precision and mean recall of the visualization.

Precision-recall tradeoff for continuous neighbor-
hoods. To evaluate grades of relevance in visualizations, we

extend the neighborhood relationships to continuous proba-
bilistic neighborhoods. We define the neighborhood on the
display as a probability distribution over neighbor points; for
a query point yi, if the user selects a neighbor for inspection,
qj|i is the probability that point yj is chosen. The qj|i can be
defined at simplest as a normalized Gaussian falloff so that

qj|i =
exp(−||yi − yj ||2/2σ2

i)∑
k 6=i exp(−||yi − yk||2/2σ2

i)
(1)

where σ2
i adjusts the size of the neighborhood around i. In

the input space, we can analogously extend the neighborhood
definition to probabilistic neighborhood distributions pj|i as

pj|i =
exp(−d2(xi,xj)/2σ2

i)∑
k 6=i exp(−d2(xi,xk)/2σ2

i)
(2)

where d(·, ·) is a suitable distance measure; we simply use
the Euclidean distance metric between original feature vec-
tors xi. The parameter σ2

i is set to make the entropy of the
p·|i distribution equal to log k where k is set by the user as a
rough upper limit for the number of relevant neighbors.

It remains to measure how well retrieval from the dis-
play corresponds to input space neighborhoods. Nonlinear
mappings can yield false neighbors (qj|i > pj|i) and misses
(qj|i < pj|i). A natural measure of the difference between
neighborhood distributions is the Kullback-Leibler diver-
gence D(pi, qi) =

∑
j 6=i pj|i log(pj|i/qj|i) where pi and qi

are neighborhood distributions around point i in the input
space and on the display. It can be shown D(pi, qi) is a
generalization of recall and D(qi, pi) is a generalization of
precision [3]; we call the generalizations smoothed recall and
smoothed precision. To evaluate a whole visualization we
take the mean over points i, yielding mean smoothed recall
Ei[D(pi, qi)] and mean smoothed precision Ei[D(qi, pi)];
they can be used to evaluate performance in visual infor-
mation retrieval. We argue the retrieval measures correspond
better to a human task than e.g. feature reconstruction error in
autoencoders where reconstruction functions can be complex.

3. THE NEIGHBOR RETRIEVAL VISUALIZER

Mean smoothed recall and precision are not only useful mea-
sures for evaluating visualizations, they are continuous func-
tions of the outputs yi and can be used as optimization cri-
teria for a visualization method. The method Neighborhood
Retrieval Visualizer (NeRV; [2, 3]) uses the measures to op-
timize visualizations for information retrieval. Once the user
has assigned a cost for misses and false neighbors, the total
cost of visualization errors corresponds to a tradeoff between
precision and recall. NeRV then minimizes the total cost

ENeRV = λEi[D(pi, qi)] + (1− λ)Ei[D(qi, pi)] (3)

where the relative cost of false neighbors to misses is repre-
sented by a parameter λ: λ = 0 optimizes precision only,

λ = 1 optimizes recall only, and λ between 0 and 1 optimize
intermediate tradeoffs between precision and recall. Setting
λ = 1 in NeRV yields the earlier method Stochastic Neighbor
Embedding (SNE; [5]), hence SNE can be seen as a method
that optimizes mean smoothed recall. More generally NeRV
optimizes flexible tradeoffs between precision and recall.

The cost (3) is a function of the output coordinates: they
can then be directly treated as variables and optimized. NeRV
minimizes (3) with respect to output coordinates yi of all
points by conjugate gradient descent. The gradient is

∂ENeRV

∂yi
=
(∑
j 6=i

Di,jqj|i
)(∑

j 6=i

qj|i
yi − yj
σ2
i

)
+
∑
j 6=i

(wj −Dj,i)qi|j
yi − yj
σ2
j

−
∑
j 6=i

Di,jqj|i
yi − yj
σ2
i

(4)

where Di,j = (1−λ)(log qj|i− log pj|i+1)−λpj|i/qj|i and
wi =

∑
j 6=iDi,jqj|i.

Computing the cost and gradient takes O(N2Dout) time
for N data points and Dout output dimensions, similarly to
many pairwise distance based embedding methods like SNE.
Quadratic complexity with respect to N makes it hard to use
information retrieval based visualization for large data; we
now present an efficient method based on mixture modeling.

4. EFFICIENT LEARNING FOR NERV BY
MIXTURE MODELING BASED APPROXIMATION

We introduce an efficient learning method for NeRV, having
linear computational complexity with respect to the number
of data points: this speeds up visualization and allows fast
visualization of large data. The method is based on iterative
optimization (conjugate gradient descent) used successfully
for the original NeRV; we get speedup by computing the cost
function and gradient approximately in near-linear time. The
approximation does not drop any terms from the cost or gra-
dient: we process all terms but some of them through mean
over a mixture model. In our new method, we compute some
expectations over neighbor relationships analytically. We use
the Gaussian falloff as in (1) and (2), and use the Euclidean
metric in (2). This setting is useful for a variety of data; fast
learning with other settings will be treated in future work.

Fast computation of the cost function. Inserting the def-
initions (1) and (2) with the Euclidean metric into the NeRV
cost function (3) yields

ENeRV =∑
i,j 6=i

λexij
Rxi

log

(
exij/R

x
i

eyij/R
y
i

)
+
∑
i,j 6=i

(1− λ)eyij
Ryi

log

(
eyij/R

y
i

exij/R
x
i

)

=
∑
i

[
λ

Rxi
(Sxi−Txyi)+

1− λ
Ryi

(Syi−Tyxi)+(1−2λ) log Rxi
Ryi

]
(5)

where exij = exp(− ||xi−xj ||2
2σ2

i
), eyij = exp(− ||yi−yj ||2

2σ2
i

) and

Rxi =
∑
j 6=i e

x
ij , Sxi = −

∑
j 6=i e

x
ij
||xi−xj ||2

2σ2
i

, the cross-term

is Txyi = −
∑
j 6=i e

x
ij
||yi−yj ||2

2σ2
i

, and Ryi , Syi and Tyxi are the
same with roles of x and y reversed. To simplify the setup we
use equal neighborhood scales σ2

i = σ2.
Each point i has N −1 neighbors j, and evaluating all the

sums exactly over all the points i would yield O(N2) com-
plexity. Instead, for each point i we will compute each sum
Rxi , Sxi , Txyi , Ryi , Syi , and Tyxi in two parts as follows.

In each sum over neighbors such as Rxi , we evaluate the
terms exactly for a subset Ei of neighbors denoted the exact
neighbors. The Ei will be chosen to contain a small number
mexact of neighbors close to i as detailed later.

We call the remaining N − 1−mexact neighbors of point
i the non-exact neighbors: we treat the input coordinates xj
and current output coordinates yj of these neighbors as la-
tent variables, and take the expectation of each sum Rxi , Sxi ,
Txyi , Ryi , Syi , and Tyxi over the latent coordinates. Assume the
xj follow a mixture of Gaussians distribution with C compo-
nentsN(µxc ,Σ

x
c) and the yj follow a corresponding Gaussian

mixture with components N(µyc ,Σ
y
c). For each non-exact

neighbor we know the posterior weights wjc = p(c|xj) over
the mixture components. The expectation over a sum term
f(xj) then becomes

∑
c w

j
c

∫
x
N(x;µxc ,Σ

x
c)f(x)dx where

N(x;µxc ,Σ
x
c) is the density of mixture component c evalu-

ated at x. The sums Rxi , Sxi , Txyi , Ryi , Syi , and Tyxi in the
cost function (5) involve exponents, or exponents multiplied
by squared distances, and the expectation over such terms can
be computed analytically, using Gaussian identities. For all
non-exact neighbors, the expectations do not depend on the
exact value of the latent coordinate xj and instead depend on
the mixture distribution; the same happens for terms involv-
ing yj . The contribution of all non-exact neighbors to the cost
function terms then reduces to a sum over the mixture compo-
nents, yielding efficient linear-time computational complex-
ity: for a fixed σ2, input-space terms are first computed in lin-
ear time O(NmexactDin +NCD

2
in +CD

3
in) which only needs

to be done once for a fixed σ2, and then each evaluation of the
cost function takes linear time O(N(mexact + C)Dout). The
resulting expectation equations follow from Gaussian identi-
ties; we will provide the full equations in a technical report.

Fast gradient computation. The gradient can be handled
much like the cost function, by inserting (1) and (2) into the
gradient (4) and arranging it as a function of several sums.
The procedure goes as before; for brevity we just note the
result gradient equation uses the same sums Rxi , Txyi , Ryi , Syi ,
and Tyxi as (5), and also sums G1yi =

∑
j 6=i e

y
ij(yi − yj),

G2yxi =
∑
j 6=i

wj

Ry
j
eyji(yi−yj) wherewi = 1−λ

2σ2
i
(Syi−logRyi−

Tyxi + logRxi) + 1−2λ
2σ2

i
, G3yi =

∑
j 6=i e

y
ij

(−||yi−yj ||2
2σ2

i
−

logRyi
)
yj , G4yi =

∑
j 6=i e

y
ij

(−||xi−xj ||2
2σ2

i
−logRxi

)
yj , G5yi =∑

j 6=i e
y
ij

yj

Ry
i

, G6yi =
∑
j 6=i e

x
ij

yj

Rx
i

, Hyxi =
∑
j 6=i e

x
ji

yi−yj

2σ2
j Rx

j
,

G7yi =
∑
j 6=i e

y
ji(
−||yi−yj ||2−log Ry

j

Ry
j

)
yi−yj

2σ2
j

,

G8yxi =
∑
j 6=i e

y
ji(
−||xi−xj ||2−log Rx

j

Ry
j

)
yi−yj

2σ2
j

, and G9yi =∑
j 6=i e

y
ji

yi−yj

2σ2
j Ry

j
. For the non-exact neighbors we again take

expectation over the Gaussian mixture and the resulting in-
tegrals can again be computed analytically. To avoid dou-
ble integrals over the mixture, for the non-exact neighbors
in sums G2yxi , G7yi , G8yxi , G9yi and Hyxi we approximate
wj/Ryj , Ryj and Rxj within each mixture component by its
mean value over data from the component, which can be
computed in linear time. As a result, for a fixed σ2, af-
ter input-space terms have been computed in linear time
O(NmexactDin + NCD2

in + CD3
in), evaluating the gradi-

ent for a low output dimensionality Dout takes linear time
O(NmexactDout +NCD2

out + CD3
out).

4.1. Full Algorithm

The full algorithm is presented as pseudocode in Figure 2. We
now tell how the remaining operations are done in linear time.

Clustering. The clustering of the original data into C
clusters and computation of the cluster means and covari-
ances can be done in O(NCDin + (N + C)D2

in) time by
several methods such as k-means which we use here (k-
means has linear complexity per iteration; we use a fixed 150
iterations). After k-means we run one E-step of expectation-
maximization (EM) based Gaussian mixture modeling, to
yield probabilistic membership weights of the data points in
the clusters; we run only one E-step instead of several EM
iterations since each E-step involves inversion of the mix-
ture component covariances which takes O(CD3

in +NCD2
in)

time. The cluster statistics and data point memberships are
then used throughout the rest of the algorithm.

Choosing the exact neighbors. Choosing the mexact ex-
act neighbors randomly for each point i is done by a permu-
tation approach: briefly, maintain a permutation of data and
swap the point i to the front; choose the lth neighbor from the
N−l−1 positions at the tail of the permutation and swap it to
position l+ 1. To ensure exact neighbors are fairly close to i,
we take exact neighbors first from the same cluster as i and if
the cluster does not contain enough points we take the remain-
ing neighbors from all data; this can be done by a modification
where permutations are maintained also within each cluster.
The total time complexity is linear O(NC +Nmexact).

Initialization. The optimization can be started from any
initial outputs {yi}Ni=1. With good initialization, the mixture
component memberships found for the input space are rea-
sonable in the output space too, hence the approximation of
output-space terms of the cost and gradient will be good. We
initialize the outputs either as a PCA projection in O(ND2

in +
D3

in) time or by mapping the input-space cluster centroids
onto the display with NeRV in O(C2(Din +Dout)) time and
then interpolating data between centroids according to their
mixture component memberships in O(NCDout) time.

Initialization: 1. Cluster data by k-means, then run one
E-step of EM Gaussian mixture modeling to compute mix-
ture component memberships of points. 2. Initialize output
coordinates: use PCA or map input-space mixture com-
ponent centroids with NeRV and interpolate data between
centroids by posterior mixture weights. 3. Assign the fi-
nal neighborhood size σ2 by line search minimizing differ-
ence between the entropy E =

∑
i(logR

x
i − Sxi)/NR

x
i

of neighborhood distributions and its desired value (log k
for k effective neighbors). 4. Assign the initial σ2 as
maximum squared input-space distance from data to exact
neighbors or clusters. Iterative optimization: Run several
iterations with the following steps each: 5. Decrease the
neighborhood width towards the final value. 6. Run conju-
gate gradient descent to minimize the cost function. Each
time the cost function or gradient is computed, first update
the low-dimensional cluster statistics, then compute the ap-
proximate cost function or gradient based on the clustering.

Fig. 2. Pseudocode of the fast optimization algorithm.

Updating the mixture model in the output space. The
mixture model in the input space and the mixture component
memberships of points remain fixed throughout the algorithm.
To maintain the mixture model on the display, before each
evaluation of the cost function or gradient we update compo-
nent means and covariances in the output space by one M-step
of expectation-maximization based on the current output co-
ordinates yi, which takes O(NCD2

out) time. We use a further
speedup by tresholding very small component memberships
of points to zero, and only process nonzero memberships.

4.2. Discussion

Our method is linear-time when the numbers of exact neigh-
bors mexact and clusters C are negligible compared to the
number of data N . For larger mexact and C the method be-
comes near-linear-time. Largemexact andC are not needed, in
experiments we get good performance even with mexact = 0.

Since NeRV contains Stochastic Neighbor Embedding
(SNE) as the case λ = 1 where only recall is optimized,
our method also yields an efficient algorithm for SNE, but
more generally the method optimizes any tradeoff between
precision and recall. For SNE and its variants [6], there have
been previous approaches for alternative and more efficient
optimization methods, for example [7] proposes multiplica-
tive updates, [8] finds the direction and step size based on a
quadratic model of the SNE cost, and [9] proposes an algo-
rithm related to SNE but with a simpler form. However, for
the general case of optimizing both precision and recall we
are not aware of previous efficient computation approaches.

A method for handling pairwise distances based on
Krylov iteration has been proposed [10] yieldingO(N logN)
complexity. Such approaches are compatible with our ap-

proximation approach: if a large proportion of exact neigh-
bors is desired, they can be handled through methods such as
[10] while non-exact neighbors are handled through mixture
modeling as proposed here; we did not use such combination
since our method already yielded very efficient computation.

5. EXPERIMENTS

When all neighborhood relationships are treated exactly, our
method essentially yields the previous Neighbor Retrieval Vi-
sualizer (NeRV) method which has already been shown to
yield very good performance [3]. We now show that the new
efficient method maintains the good performance with much
faster computation. We use settings and comparison methods
from [3], see [3] for details of comparison methods.

We compute 2-dimensional visualizations; for our method
we run the fastest setting mexact = 0 and also mexact =
0.2N, 0.4N, 0.6N, 0.8N,N to show how the method ap-
proaches the original NeRV. We use C = 25 mixture compo-
nents except for data sets Phoneme whereC = 20 and TIMIT
where C = 15 sufficed. We compare our method to Principal
Component Analysis (PCA), Metric Multidimensional Scal-
ing and Isomap (MDS and Isomap; see [11]), Locally Linear
Embedding and Hessian-based Locally Linear Embedding
(LLE and HLLE; see [12]), Curvilinear Component Analysis
and Curvilinear Distance Analysis (CCA and CDA; see [13]),
Maximum Variance Unfolding and Landmark Maximum
Variance Unfolding (MVU and LMVU; see [14]), and Local
MDS (LMDS;[15]). See [3] for overviews of the methods.

Comparison of information retrieval performance. We
compare our new method with the original NeRV and se-
lected other methods in information retrieval on three data
sets: S-curve (1000 data, Din = 3), noisy S-curve (1000
data, Din = 3), and mouse gene expression ([3]; 1600 data,
Din = 45). We use the experiment setting from [3], setting
the ground-truth input neighborhood to 20 effective neighbors
and evaluating methods by the information retrieval measures
mean smoothed precision and mean smoothed recall. Re-
sults for other methods are from [3]. Fig. 3 shows the re-
sults: our method maintains state of the art performance even
at the fastest setting. The speedup is strong: for S-curve
the fastest setting mexact = 0 is about 36 times faster than
mexact = N corresponding to original NeRV (12.3 seconds
versus 445 seconds); for noisy S-curve we get about 26 times
speedup (12.2 seconds vs. 316.9), and for mouse gene expres-
sion we get 50 times speedup (26 seconds vs. 1313.5).

Comparison based on unsupervised classification ac-
curacy. We then compare our method to the others on two
labeled data sets of phoneme samples [3], Phoneme (1500
data, Din = 20, 13 classes; distributed with LVQ-PAK soft-
ware) and TIMIT (1500 data, Din = 12, 41 classes; from
the DARPA TIMIT speech database), based on a common in-
direct measure, unsupervised leave-one-out classification ac-
curacy by k-nn classification (k = 5) based on the projec-

Fig. 3. Retrieval performance. Horizontal axes: −1· mean
smoothed recall, vertical axes: −1· mean smoothed precision
(multiplication by -1 is done so that best results appear at top
right). Our method: curves over λ, green for mexact = 0, cyan
for mexact = 0.4N .

tion. Results are shown in Table 1. The new method again
maintains very good classification accuracy with substantial
speedup (mexact = 0 yields 18.3 times speedup over mexact =
N on Phoneme and 24.1 times on TIMIT).

Efficient learning on a large data set. Lastly, we demon-
strate the speed advantage of the new method compared to
the original NeRV on the large Covertype data set (10 fea-
tures, 581012 points) from UCI machine learning repository.
We set λ = 0.6, mexact = 0, and C = 25. We try sub-
sets of 1000, 2000, 4000, and 8000 points and report running
time, (−1)·mean smoothed precision and recall. Results are
in Table 2; the new method yields substantial speedup and
maintains good results comparable to original NeRV.

The experiments show the new method is a viable efficient
alternative for NeRV; it remains comparable with state of the

Method Phoneme TIMIT
MDS 0.189 0.705
CDA 0.118 0.643
CCA 0.098 0.633
NeRV 0.079 0.626

LocalMDS 0.118 0.637
Our (mexact = 0) 0.178 0.676

Our (mexact = 0.2N) 0.143 0.663
Our (mexact = 0.4N) 0.126 0.667
Our (mexact = 0.6N) 0.086 0.665
Our (mexact = 0.8N) 0.156 0.666
Our (mexact = 1.0N) 0.083 0.637

Table 1. Error rates of k-nearest neighbor classification accu-
racy based on the visualization.

Method DataSize Time −1·Recall −1·Precision
NeRV 1000 375.6 -3.911 -85.212
NeRV 2000 1498 -4.605 -120.295
NeRV 4000 5986 -6.008 -162.443
NeRV 8000 23358 -6.510 -205.822
Our 1000 35.2 -5.198 -84.832
Our 2000 31.9 -6.365 -119.180
Our 4000 135.7 -6.085 -162.230
Our 8000 170.1 -233.125 -170.4125

Table 2. Running times (lower values are better) and perfor-
mances (higher values are better) for covertype data subsets.

art competitors, and achieves large speedups.

6. CONCLUSIONS

We introduced an efficient nonlinear dimensionality re-
duction method that optimizes visualizations for informa-
tion retrieval, in linear or near-linear time with respect
to the number of data. The method is a faster version
of the very well-performing Neighbor Retrieval Analyzer
(NeRV) where the original NeRV has quadratic time com-
plexity. The fast learning is achieved by approximating part
of the data relationships through mixture modeling. The
method inherits the rigorous information retrieval interpre-
tation from the original NeRV. In experiments, the method
performed very well, achieving much faster computation
than the original NeRV while maintaining good visual-
ization performance. Code for the method is available at
http://research.ics.aalto.fi/mi/software/LinearTimeNeRV.

7. REFERENCES

[1] J. Venna and S. Kaski, “Comparison of visualization
methods for an atlas of gene expression data sets,” In-
formation Visualization, vol. 6, pp. 139–54, 2007.

[2] J. Venna and S. Kaski, “Nonlinear dimensionality re-
duction as information retrieval,” in Proc. AISTATS*07
(JMLR W&CP Vol. 2), 2007, pp. 572–579.

[3] J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski,
“Information retrieval perspective to nonlinear dimen-
sionality reduction for data visualization, JMLR,” vol.
11, pp. 451–490, 2010.

[4] D. Dolev, Y. Harari, N. Linial, N. Nisan, and M. Par-
nas, “Neighborhood preserving hashing and approxi-
mate queries,” in Proc. SODA’94, pp. 251–259. Society
for Industrial and Applied Mathematics, 1994.

[5] G. Hinton and S. T. Roweis, “Stochastic neighbor em-
bedding,” in Proc. NIPS 2002, pp. 833–840. MIT Press,
2002.

[6] L. van der Maaten and G. Hinton, “Visualizing data
using t-SNE,” JMLR, vol. 9, pp. 2579–2605, 2008.

[7] Z. Yang, C. Wang, and E. Oja, “Multiplicative updates
for t-SNE,” in Proc. MLSP 2010, pp. 19–23. IEEE,
2010.

[8] K. Nam, H. Je, and S. Choi, “Fast stochastic neighbor
embedding: a trust-region algorithm,” in Proc. IJCNN
2004, vol. 1, pp. 123–128. IEEE, 2004.

[9] M. Á. Carreira-Perpiñán, “The elastic embedding al-
gorithm for dimensionality reduction,” in Proc. ICML
2010, pp. 167–174. Omnipress, 2010.

[10] N. De Freitas, Y. Wang, M. Mahdaviani, and Dustin
Lang, “Fast Krylov methods for N-body learning,” in
Proc. NIPS 2005. 2006, pp. 251–258, MIT Press.

[11] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A
global geometric framework for nonlinear dimensional-
ity reduction,” Science, vol. 290, pp. 2319–2323, 2000.

[12] D. L. Donoho and C. Grimes, “Hessian eigenmaps: Lo-
cally linear embedding techniques for high-dimensional
data,” PNAS, vol. 100, pp. 5591–5596, 2003.

[13] J. A. Lee, A. Lendasse, and M. Verleysen, “Nonlin-
ear projection with curvilinear distances: Isomap versus
curvilinear distance analysis,” Neurocomputing, vol. 57,
pp. 49–76, 2004.

[14] K. Weinberger, B. Packer, and L. Saul, “Nonlinear
dimensionality reduction by semidefinite programming
and kernel matrix factorization,” in Proc. AISTATS
2005, pp. 381–388. Society for AI and Statistics, 2005.

[15] J. Venna and S. Kaski, “Local multidimensional scal-
ing,” Neural Networks, vol. 19, pp. 889–99, 2006.

