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Abstract
Dimensionality reduction for data visualization has recently been formulated as an information retrieval task with
a well-defined objective function. The formulation was based on preserving similarity relationships defined by a
metric in the input space, and explicitly revealed the need for a tradeoff between avoiding false neighbors and
missing neighbors on the low-dimensional display. In the harder case when the metric is not known, the similarity
relationships need to come from the user. We formulate interactive visualization as information retrieval under
uncertainty about the true similarities, which depend on the user’s tacit knowledge and interests in the data.
During the interaction the user points out misses and false positives on the display; based on the feedback the
metric is gradually learned and the display converges to visualizing similarity relationships that correspond to the
tacit knowledge of the user.

Categories and Subject Descriptors (according to ACM CCS): H.5.m [Information interfaces and presentation (e.g.,
HCI)]: Miscellaneous

1. Introduction

We study methods for interactive data exploration with scat-
ter plots. Traditional simple plots of feature pairs only re-
veal part of the structure in multivariate data; to show high-
dimensional data on a scatter plot, nonlinear dimensional-
ity reduction (NLDR) is often applied. What is relevant in
data is normally not known a priori; it depends on the user
and his/her interest. That is why simple visualization using
naive assumptions about what data properties are important
to show will not work well; interactive visualization should
be used to let the user give feedback about what is rele-
vant. In this paper we introduce a novel information retrieval
based approach to interactive data exploration with scatter
plots.

A recent method [VK07b,VPN∗10,PK11] formalizes the
case where the user is interested in neighborhood relation-
ships between data points. A static (non-interactive) visu-
alization with scatter plots is formalized as a rigorous in-
formation retrieval task where the user retrieves neighbor-
hood relationships based on the display; the display is op-
timized to minimize errors between retrieved neighbors and
known neighborhoods in the input space. The optimized dis-

play is then a faithful representation of the data in the well-
defined sense of yielding few errors in the visual informa-
tion retrieval. The formalism yields the Neighbor Retrieval
Visualizer (NeRV) method which has outperformed several
methods [VPN∗10]; the methods Stochastic Neighbor Em-
bedding (SNE; [HR02]) and t-Distributed SNE [vdMH08]
can also be interpreted as special cases of the formalism.

A general way to encode what aspects of data are relevant
to a user is to define the metric between data, so that dif-
ferences between data depend on the relevant aspects. Most
NLDR methods require known distances or a known metric;
NeRV and related methods use the known metric to compute
input space neighborhoods between high-dimensional data.
When the metric is not known a priori, a natural approach
is to learn it by interaction with the user. We assume the
user’s interaction is based on an underlying metric that en-
codes the user’s tacit knowledge and interests in the data; we
call the input neighborhoods in this tacit metric true neigh-
borhoods. Learning the metric and compressing data to the
display should be optimized for a unified goal of the interac-
tive system. In this paper we give a solution: we introduce
an interactive visualization method optimized to serve
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the user in the rigorous task of retrieving true neighbors
from the scatter plot. We infer the metric iteratively from
feedback of the user’s retrieval task, and optimize the dis-
play for each iteration, compressing data to the display to
serve information retrieval in the inferred metric. In this pa-
per we concentrate on pairwise similarity and dissimilarity
feedback. We introduce a mathematical formulation of in-
teractive visualization as information retrieval under uncer-
tainty of the user preferences, and our method can be seen as
the full interactive extension of the NeRV formalism.

Earlier methods for interactive data exploration with scat-
ter plots include, for example, the Grand Tour [Asi85], and
simple approaches where the user explicitly decides what
dimensions are selected to be plotted. Recently, systems that
try to learn from observation-level interactions how the user
thinks data should be arranged [EHM∗11,EFN12,BLBC12]
have also been proposed. An advantage of our system is that
the whole interactive process is optimized for the rigorous
user task of neighbor retrieval.

2. New method: information retrieval approach to
interactive visualization

Scatter plot visualization of multivariate data is often done
by applying nonlinear dimensionality reduction (NLDR;
methods include e.g. [TdSL00, BN02, RS00]). Many NLDR
methods do not perform well in visualization tasks [VK07a];
they have not been designed to reduce dimensionality be-
yond the effective dimensionality of the data manifold, and
are not good at compressing data onto a low-dimensional
display. We first review a formalization of NLDR which has
proven successful in static visualization [VPN∗10], and we
then extend the formalization to interactive visualization.

Let {xi}N
i=1 be a set of input data samples. Let each sam-

ple i have an unobserved true neighborhood pi, which is a
distribution telling for each neighbor j the probability p j|i
that j is chosen as a neighbor to i. The user’s true neighbor-
hoods will be learned from feedback. The goal is to create
output coordinates {yi}N

i=1 for the data suitable for visual
neighbor retrieval. On the display an output neighborhood
qi can be defined around each sample as probabilities q j|i,

in this paper q j|i =
exp(−||yi−y j||2/σ

2
i )

∑k 6=i exp(−||yi−yk||2/σ2
i )

, where || · ||2 is

squared Euclidean distance on the display; q j|i is the prob-
ability that an analyst starting from a central point i picks
neighbor j for inspection. This simple mathematical form
can be replaced by more advanced user models if available.

All properties of high-dimensional data cannot be repre-
sented on a low-dimensional scatter plot. Two kinds of errors
will happen (Fig. 1, top): misses are true neighbors of a point
i (high p j|i) that are not neighbors on the display (low q j|i).
False neighbors are neighbors on the display (high q j|i) that
are not true neighbors (low p j|i). Misses and false neighbors
can have a different cost to the analyst. The display should
be optimized to minimize the total cost of errors.
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Figure 1: Top: errors in visual information retrieval for
query point i. Pi denotes points with high true neighborhood
probability, Qi denotes points with high neighborhood prob-
ability on the display. Misses are true neighbors that are
not neighbors on the display; false neighbors are neighbors
on the display that are not true neighbors. Bottom: differ-
ent tradeoffs between recall and precision (misses and false
neighbors) yield different optimal 2D displays. Original 3D
data (bottom left) are on a sphere surface; flattening the
sphere (bottom center) avoids misses but yields false neigh-
bors from opposite sides, cutting the sphere open (bottom
right) avoids false neighbors but yields misses over the cuts.
Figure used by permission of [VPN∗10].

It has been shown [VPN∗10] that the total cost of misses
corresponds to the information retrieval measure recall, and
the total cost of false neighbors corresponds to precision.
The measures have been generalized to divergences be-
tween probabilistic neighborhoods [VPN∗10]: the Kullback-
Leibler divergence D(pi,qi) = ∑ j 6=i p j|i log p j|i

q j|i
is a general-

ization of recall and D(qi, pi) = ∑ j 6=i q j|i log q j|i
p j|i

is a gen-
eralization of precision. The total information retrieval cost
CNeRV of misses and false neighbors is then

CNeRV = λEi[D(pi,qi)] + (1 − λ)Ei[D(qi, pi)] (1)

where Ei denotes expectation over the query points i. The pa-
rameter λ in (1) controls the precision-recall tradeoff desired
by the analyst: whether misses or false neighbors are more
important to avoid. Different tradeoffs yield different opti-
mal low-dimensional displays as shown in Fig. 1 (bottom).
In our interactive sessions we emphasize precision (λ near 0)
since then intermediate plots are locally well arranged with
few false neighbors; this can make it easier to browse data on
the display as the analyst is not distracted by false neighbors.

To optimize a scatter plot visualization, (1) must be op-
timized with respect to the output coordinates yi that define
the output neighborhoods qi = {q j|i}. The previous static vi-
sualization approach [VPN∗10] can do this only if the true
neighborhoods pi = {p j|i} for each data point i are known.
In this paper we treat the more difficult case when the true
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neighborhoods are unknown; we now extend the approach to
unknown true neighborhoods.

2.1. Interactive visualization optimized for information
retrieval under uncertainty

Equation (1) can be computed only if the true neighborhoods
pi = {p j|i} are known. When the true neighborhoods are un-
known, but evidence of them is available in the form of user
feedback, the rigorous approach is to treat the true neighbor-
hoods as missing values, and optimize the expectation of the
cost function over the missing values. That is, we optimize
the visualization for information retrieval under uncertainty
of the user’s preferred similarities. This is written as

E[CNeRV] = E{pi}|F
[
λEi[D(pi,qi)]+ (1−λ)Ei[D(qi, pi)]

]
(2)

where E{pi}|F denotes expectation over the possibilities for
different true neighborhood distributions {pi}; the expecta-
tion is over a posterior distribution of the possible neighbor-
hood distributions, given the evidence from feedback F .

Assume the true neighborhoods pi = {p j|i} have a simple
functional form: they are a function of distances in an un-
known metric of the original multivariate feature space, so
that

p j|i =
exp(−||xi−x j||2A/σ

2
i )

∑k 6=i exp(−||xi−xk||2A/σ2
i )

(3)

where ||xi−x j||2A = (xi−x j)
>A(xi−x j) and A is the met-

ric matrix. Then the expectation over possible true neighbor-
hoods in (2) reduces to an expectation over the possible true
metrics, so that

E[CNeRV] = EA|F
[
λEi[D(pi,qi)]+ (1−λ)Ei[D(qi, pi)]

]
(4)

where the true neighborhoods pi = {p j|i} are now functions
of the true metric which we denote by its associated matrix
A, and EA|F denotes expectation over a posterior distribu-
tion of metrics A given the feedback F .

Equation (4) is an expectation (integral) of CNeRV over
the posterior distribution of metrics. In this paper we make
a simple fast estimate of the integral. We infer a variational
approximation p̂(A|F) to the posterior p(A|F) as described
in Section 2.2. We then approximate the integral by the value
of CNeRV at the mean A∗ = E p̂(A|F)[A] of the variational
posterior. Since the variational distribution is unimodal and
is optimized to contain a large part of the posterior mass,
the value of CNeRV at A∗ is a reasonable quick-and-dirty ap-
proximation to the integral. We thus write

E[CNeRV]≈
[
λEi[D(pi,qi)]+ (1−λ)Ei[D(qi, pi)]

]
A=A∗

(5)
where the true neighborhoods pi are computed by (3) using
the mean posterior metric A∗ and the output neighborhoods
qi are computed from display coordinates {yi} of the data

as defined in Section 2. Equation (5) measures the perfor-
mance of a visualization in the information retrieval task
of retrieving the true neighbors, corresponding to the an-
alyst’s tacit knowledge, from the display. Equation (5) can
be used as an optimization criterion, since it is a well-defined
function of the display coordinates of the data.

Interactive optimization of the cost (5) performs the fol-
lowing three steps at each iteration. 1. Infer the approximate
posterior mode A∗ of the metric from feedback received so
far. 2. Optimize the visualization for the neighborhoods pi
yielded by the metric A∗. 3. Show the new visualization and
gather feedback from the analyst. The optimization of the
visualization can be done simply by minimizing the cost (5)
with respect to each low-dimensional output coordinate yi
of each data point i; here we optimize the output coordinates
by conjugate gradient descent. The approach has a rigorous
interpretation: the display is optimized for minimal expected
cost of misses and false neighbors. We call the resulting in-
teractive visualization method the Interactive Neighbor Re-
trieval Visualizer (Interactive NeRV).

2.2. Inference of the metric from feedback

We assume the analyst gives feedback on pairs of points,
labeling them similar or dissimilar. We use a Bayesian ap-
proach to learn the metric from feedback. The metric is pa-
rameterized as A=∑

D
d=1 γdvdv>d where the vd are basis vec-

tors for the data and γd are weighting parameters that differ-
entiate the possible metrics. In experiments we use the orig-
inal basis of the data, therefore we learn weighted Euclidean
metrics, which makes analysis of the results easy. Inferring
p̂(A|F) from a set of feedback pairs F = {(i, j, fi j)} is then
done by inferring the variational posterior approximation for
the γd . The likelihood of a single feedback pair is defined
as p( fi j|xi,x j,A,µ) = (1 + exp( fi j(||xi − x j||2A − µ)))−1,
where µ is a threshold parameter and fi j = 1 for a similar
pair and −1 for a dissimilar pair. Given a Gaussian prior for
the weighting parameters γd , and the likelihood terms for all
feedback pairs as above, we can infer a variational approx-
imation for the posterior of γd . Details of the update equa-
tions are omitted for brevity. Equivalent Bayesian updates
have been used for metric learning without a visualization
context [YJS07], but our novel contribution for the metric
learning is to integrate the updates as a part of interactive
optimization of the information retrieval cost E[CNeRV ].

3. Experiments

We evaluate our method in three ways: 1. we evaluate the
benefit of utilizing a visualization in finding good feedback
pairs, 2. we test whether the iterative interaction and metric
learning help the user in the task of visual retrieval of rele-
vant neighbors, and 3. we present a small case study with a
real user. In experiments 1 & 2, in each iteration 3 pairs of
feedback are produced by an artificial mechanism: we com-

c© The Eurographics Association 2013.



J. Peltonen, M. Sandholm, and S. Kaski / Information Retrieval Perspective to Interactive Data Visualization

pare the current visualization to known true neighborhoods
and give the worst misses or false neighbors as feedback.

We use three data sets in the experiments: articles pub-
lished by researchers of a local research institute, a subset of
the DARPA TIMIT phoneme data, and Wine from UCI ma-
chine learning repository. Each data set has additional noise
features, assumed not to be beneficial for retrieving the true
neighborhood relationships corresponding to user interests.

To evaluate our approach we built a simple implementa-
tion, where the user is shown a scatter plot and he interacts
by picking neighbors and non-neighbors, and can inspect
data items by hovering over them with a mouse. Our ap-
proach can naturally be integrated in larger systems and can
be combined with inspection tools, linked displays, glyphs
etc. as in all scatter plot based systems, and with tools to
annotate points or regions to ease exploration.

Figure 2 (top) shows, using an oracle user who always
picks out the worst miss or false neighbor (with respect to
a known true neighborhood), that giving the feedback based
on the visualization improves metric learning compared to
picking the pair randomly.

Figure 2 (bottom) shows that quality of the visualization
improves as the worst misses and false neighbors are pointed
out, and that our information retrieval-based visualization
approach outperforms traditional multidimensional scaling
(MDS) coupled to metric learning on two data sets. Here we
measure for each visualization the area under the precision-
recall curve, where the true neighbors are defined as the 20
closest neighbors using the ground truth metric. The curves
are constructed by varying the number of neighbors retrieved
from the visualization between 1 and 100, calculating mean
precision and recall for each number of retrieved neighbors.
This experiment can be seen as a case of transductive learn-
ing: by giving feedback to only a small amount of pairs the
overall accuracy of neighborhoods improves.

Figure 3 shows a small-scale user study using scientific
articles as the data set. The user’s goal was to arrange the
scatter plot in such a way that scientific documents that the
user considers similar are close to each other on the screen,
by giving pairwise feedback. To help the user browse the
points, we displayed the title, year, and authors of the paper
in a pop-up display when the user hovered over the corre-
sponding point with the mouse. Additionally, points changed
color after the user gave feedback on them. Figure 3 shows
that as feedback was given, the metric improved and articles
became arranged according to research fields.

4. Conclusions

We introduced a novel interactive visualization method
that serves a user in an information retrieval task of find-
ing neighborhood relationships that correspond to the tacit
knowledge of the user. The true neighborhoods are encoded

Figure 2: Top: Feedback pairs chosen based on the visu-
alization (“Vis”) improve the metric learning compared to
selecting the pair randomly in all data sets. The data sets in-
clude added irrelevant features (dimensions) containing only
noise, and we measure the portion of weight that the met-
ric assigns to the noise features. Both mechanisms are able
to decrease the importance of noise features, our method
“Vis” does so faster. Bottom: Area under the precision-
recall curves using the ground truth metric. Retrieval per-
formance improves when we give feedback about the errors
of previous visualizations. Interactive NeRV outperforms the
MDS based system on two data sets, but improvement can be
seen also with MDS.

Iteration 1 Iteration 13

Iteration 20 User interface at iteration 20

Figure 3: Example visualizations from the user experiment.
Colors denote broad fields of research: green=machine
learning, red=complexity theory, black=human-computer
interaction and blue=social psychology. Starting from the
initial visualization (top left), points become more arranged
according to the hidden colors as we give more feedback
(top right, bottom left). The interface (bottom right) shows
data without hidden labels, and feedback point pairs in red
shades (brighter red is more recent).
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with a metric for the high-dimensional data. The user inter-
acts by pointing out misses and false positives on the display,
the metric is inferred from the feedback, and the display is
optimized for information retrieval in the inferred metric; the
display then iteratively converges to showing similarity rela-
tionships relevant to the user. The whole system is rigorously
quantifiable and optimizable by performance in the informa-
tion retrieval task. Our experiments show the interactive vi-
sualizer learns metrics better than a simple non-visual mech-
anism, and shows relevant neighbors better than an alterna-
tive multidimensional scaling method coupled to the metric.
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