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Abstract

A challenge of data-driven sciences is how to make maximal use of growing
databases of experimental datasets to keep research cumulative. We introduce
a modeling-based dataset retrieval engine for relating a researcher’s experimental
dataset to earlier work in the field. The search is (i) data-driven to enable new
findings, going beyond keyword searches in annotations, (ii) modeling-driven, to
include both biological knowledge and insights learned from data, and (iii) scal-
able, as it is done without building one unified grand model of all data. We apply
a rapidly computable and optimizable combination model to decompose a new
dataset into contributions from earlier relevant models. We thus identify a net-
work of interrelated datasets from a human gene expression atlas. While tissue
type and disease were major driving forces, found relationships between datasets
were richer, and model-based search was more accurate than keyword search;
moreover, it recovered biologically meaningful relationships not straightforwardly
visible from annotations. Data-driven links and citations matched to a large ex-
tent; the data-driven links even uncovered corrections to the publication data. This
is a short version of our accepted PLOS ONE paper, arXiv version at [1].

1 Introduction

Molecular biology has been transformed into a data-driven science with as much importance given
to computational and statistical analysis as to experimental design and assay technology. Challenges
include processing of massive sequencing data and statistical challenges from having few samples
and many variables. Many successful methods rely on increasing the effective number of samples
by combining with similar experiments in a large meta-analysis [3], but this is not straightforward.
Public repositories largely rely on annotation and meta-data from the submitter. Database curators
and ontologies help in harmonizing and standardizing annotation, but the user who wants to find
datasets combinable with her own most often must resort to searches in free text or in controlled
vocabularies, needing much downstream curation and data analysis before any meta-analysis [4].

Instead of searching for similar dataset descriptions only, we wish to search in a data-driven way,
querying with the dataset itself or its statistical description. This is implicitly done in multi-task
learning which builds a unified model of datasets. But as the number of datasets and the amount
of quantitative biological knowledge grow, building a unified model becomes computationally pro-
hibitive. We consider the scenario where future researchers increasingly develop hypotheses in
terms of (probabilistic) models of their data. A similar trend exists for sequence motif data, often
published as Hidden Markov models [5]. We ask what could be done with these models towards
cumulatively building knowledge from data in molecular biology? We propose a modeling-driven
dataset retrieval engine, which a researcher can use for positioning her data into context of earlier
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biology. Retrieval will be based on data, instead of keywords and ontologies, enabling unexpected
novel findings. The retrieval will use the models of the datasets, thus utilizing their built-in knowl-
edge, but will be more scalable than building a unified grand model of all data. Instead of matching
single observations [2] whole datasets, incorporating the experimental designs, will be matched.

We explain a new dataset by a combination of models of earlier datasets and a novelty term. This
mixture modeling scales well to large numbers of datasets, and modeling speed does not depend
on sizes of earlier datasets. The largest weights point at the most relevant earlier datasets. Mix-
ture components are stored models of each dataset, bringing their built-in knowledge. We apply the
method to an atlas from ArrayExpress [6]. Earlier work is restricted to pairwise dataset compar-
isons: representing each dataset by pairwise correlations [7] needs many samples for good estimates
and expensive computation in dataset comparisons; others assume specific case-control designs or
known biological processes [8]. Ours is the first approach that allows data-driven retrieval of rele-
vant datasets by decomposing a query dataset into contributions from several earlier datasets, with-
out needing specific designs for earlier datasets or their models. Our approach is scalable and not
limited to available dataset annotation; unlike Pfam [5] we use models in retrieval; we match whole
datasets, not only individual observations; we fully decompose datasets instead of only computing
pairwise similarities; and we allow arbitrary models without restrictive assumptions.

2 Combination of stored models for dataset retrieval

Our goal is to infer data-driven relationships between a new “query” dataset q and earlier datasets.

The query is a dataset of Nq samples {xqi }
Nq

i=1
; in our ArrayExpress study, samples are gene expres-

sion profiles, element x
q
ij being expression of gene set j in sample i of query q, but the setup applies

to other data as well. Assume a dataset repository of NS earlier datasets, where each dataset sj ,
j = 1, . . . , NS , has already been modeled with a base model denoted by Msj . The base models are
probabilistic generative models, capturing prior knowledge and data-driven discoveries. Base mod-
els for different datasets may come from different model families, as chosen by the dataset authors.
We build a combination model for the query dataset as a mixture model of the base distributions

p(x|Msj ), parameterized by Θ
q = {θqj}

NS+1

j=1
. The likelihood of observing the query is

p({xqi }
Nq

i=1
;Θq) =

Nq
∏

i=1

[(

NS
∑

j=1

θ
q
jp(x

q
i |M

sj )
)

+ θ
q
NS+1

p(xqi |ψ)
]

(1)

where θ
q
j is the mixture proportion or weight of the jth base distribution (model of dataset sj), and

θ
q
NS+1

is the weight for the novelty term. The novelty is modeled by a background model ψ, a
broad distribution covering overall gene-set activity across the repository. Weights are non-negative

and
∑NS+1

j=1
θ
q
j = 1. This representation approximately explains biological activity in the query

dataset as a combination of earlier datasets and a novelty term. For each query q, given the known
models Msj of datasets in the repository, we infer a maximum a posteriori (MAP) estimate of the

combination weights {θqj}
NS+1

j=1
. Alternatively, we could sample over the posterior, but MAP infer-

ence already yielded good results. We optimize the weights to maximize their posterior probability,

proportional to p({xqi }
Nq

i=1
;Θq) · p({θqj}) where p({θqj}) = N (0, λ−1

I) is a naturally non-sparse

L2 prior for the weights with regularization term λ. The cost is strictly concave and weights can be
optimized by standard constrained convex optimization; details and and convergence proof for the
Frank-Wolfe algorithm are given in [1]. After computing the MAP estimate, we rank the datasets
for retrieval by decreasing weights. Advantages of our approach: 1) approximations become more
accurate as more datasets enter the repository; 2) it is fast and scalable— computation time is linear
in NS and an approximate variant can run in sublinear time [1]; 3) any model types can be included,
as long as likelihoods can be computed; 4) relevant datasets are not assumed naı̈vely similar to the
query, they only need explain part of it; 5) relevance scores have natural meaning as mixture weights.

3 Results

We used the human gene expression atlas [6], ArrayExpress accession number E-MTAB-62. Data
were preprocessed by gene set enrichment analysis using pathway collection C2-CP from the Molec-
ular Signatures Database. Each sample was represented by top enriched gene sets.
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Figure 1: Top left: Data-driven retrieval outperforms keyword search. Blue: Precision-recall
curve. Experiments sharing a biological category were considered relevant. In keyword retrieval,
category names (“Keyword: 96 classes”) or disease annotations (“Keyword: disease”) were used as
keywords. Datasets with ≥ 10 samples used as queries; curves are averages over queries. Bottom:
Relevance network of datasets. Left: each dataset was used as a query to retrieve earlier datasets;
a link from an earlier dataset to a later one means the earlier dataset is relevant as a partial model
of activity in the later dataset. Link width is proportional to normalized relevance weight (θ

q
j ; links

with θ
q
j ≥ 0.025 shown, datasets without links discarded). Right: links are direct (gray) and indirect

(purple) citations, node size proportional to estimated influence (total outgoing weight), colors:
tissue types. Node layout details in [1]. Top Right: Data-driven prediction of usefulness of
datasets vs. their citation counts. Manual checks comparing sets for which the two scores differed
revealed inconsistent database records for two datasets; the blue arrows point to their corrected
locations, which are more in line with the data-driven model. Regions A, B, and C: see [1].

Data-driven retrieval of experiments is more accurate than standard keyword search: We com-
pared our model to state-of-the-art dataset retrieval by keyword search, in a scenario where a user
queries with new datasets against a database of earlier released datasets. As base models, we used
Latent Dirichlet Allocation and mixture of unigrams, for each data whichever had larger predictive
likelihood. Retrieval by combination weight was consistently better than keyword search (Fig. 1, top
left). We checked the result was not due to laboratory effects by discarding same-laboratory results:
mean average precision decreased from 0.44 to 0.42 but supports the same conclusion. Network
of computationally recommended dataset connections reveals biological relationships: When
each dataset in turn is used as a query, the estimated combination weights form a “relevance net-
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work” between datasets (Fig. 1, left side of the bottom subfigure), where each dataset is linked to
the relevant earlier datasets. The network structure is dominated but not fully explained by tissue
type. Normal and neoplastic solid tissues (cluster 1) are separate from cell lines (cluster 2) and
hematopoietic tissue (cluster 4). The model has not seen the tissue types but found them from data.
Finer structure is evident; muscle and heart datasets (gray) form a connected subnetwork with nodes
at bottom of the image explained by upper nodes, those explained by nodes further up. Numerous
links go across clusters and across tissue categories, e.g., the strongest link between two homo-
geneous datasets of different tissue types connects GSE3307 (comparing skeletal muscle samples
from healthy individuals with patients having muscle diseases) to GSE5392 (measuring transcrip-
tome profiles of normal brain and brain with bipolar disorder). Shortening of telomeres has been
associated both with bipolar disorder muscular disorder, and treatment of bipolar disorder has been
found to also slow down the onset of skeletal muscle disorder. We also investigated “outlier” datasets
where the tissue type does not match the main tissue types of a cluster, and found reasonable expla-
nations for them, see [1]. Top dataset links overlap well with citation graph: We compared the
model-driven network to citation links (Fig. 1, right side of bottom subfigure) to find out to what
extent citation practice matches the data-driven relationships. Of the top 200 data-driven edges,
50% overlapped with direct or indirect citation links. We compared densely connected sets of ex-
periments between the two networks: e.g., for a citation clique of breast cancer datasets, and another
clique of leukocyte datasets, for both cliques the corresponding edges in the relevance network are
among the strongest for those datasets; see [1] for more analysis. Datasets with large weighted out-
degree in the data-driven relevance network explain many other datasets; we checked whether their
publications are highly cited. There is a statistically significant correlation between weighted out-
degree and citation count (Fig. 1, top right; Spearman ρ(169) = 0.2656, p < 0.001). We examined
whether influence of publication venue impact factor and h-index of the senior author could explain
the low correlation; the answer was affirmative. Manual publication record check for datasets with
low citation counts but high outdegrees (area A in Fig. 1, top right) revealed inconsistent publica-
tion records for two datasets (blue arrows in the figure point from original to corrected positions
confirmed by Gene Expression Omnibus and ArrayExpress); the data-driven network revealed the
inconsistency, and the new positions validate that the datasets are good explainers for others.

Conclusions

We tested feasibility of letting the data speak for themselves when relating new research to earlier
studies, with positive conclusion: our scalable mixture modeling found both expected relationships
such as tissue types, and relationships hard to find by keyword search such as treatments resem-
bling conditions in other cell types. Such retrieval lessens the need for manual search. Data-driven
relationships corresponded to citations when available but were richer and spotted errors in citations.
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