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Abstract. We present a Bayesian translational model for matching pat-
terns in data sets which have neither co-occurring samples nor variables,
but only a similar experiment design dividing the samples into two or
more categories. The model estimates covariate effects related to this de-
sign and separates the factors that are shared across the data sets from
those specific to one data set. The model is designed to find similarities
in medical studies, where there is great need for methods for linking lab-
oratory experiments with model organisms to studies of human diseases
and new treatments.
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1 Introduction

We study the translational modeling problem, where the aim is to integrate
data sets which have neither co-occurring samples nor variables. The only known
commonality between the sets is that they have been collected from experiments
with a similar design.

Translational modeling has an increasingly important application in cross-
species analysis of biological experiments, where treatments to human diseases
are studied using model organisms. In cross-species analysis, the question is how
to integrate data sets with high dimensionality, small sample-size, and potentially
structured covariates, as illustrated in Figure 1a.

The basic experimental design in the search for disease biomarkers is one-way
comparison of healthy and diseased patient groups. At the simplest, biomarkers
can be translated across species by comparing lists of p-values of differential
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Fig. 1. (a) Data matrix representation of the translational problem. (b)
Plate diagram of the proposed Bayesian graphical model. The sets θs =
{αsh

s , αx
s , αy

s , (αβ)shs,b , (αβ)xs,b , (αβ)ys,b} contain all latent variables describing the cor-
responding HMM states. The state (category) of each sample j is determined by an
observed covariate bj and an unobserved covariate sj .

expression from a t-test. Most existing cross-species analysis tools are limited to
these simple designs [6].

Most biological experiments have, however, a multi-way experiment design,
where healthy and diseased groups are further divided into subgroups accord-
ing to additional covariates, such as treatment, gender, age, measurement time,
etc. The basic standard statistical methods capable of properly dealing with the
multi-way design are analysis of variance (ANOVA) and its multivariate gener-
alization (MANOVA) [8].

Taking all the covariates into account complicates the analysis only slightly,
but also allows us to extract considerably more information from the data. There
are no earlier tools for utilizing multiple covariates and estimating their effect
across data sets with neither co-occurring samples nor variables.

Time series experiments are becoming more and more common in clinical
studies searching for disease biomarkers. In our multi-way design, time is one of
the covariates, having a special structure. In a clinical follow-up study, such as
the Type 1 Diabetes prediction and prevention study [9], measurement times are
irregular due to practical reasons of data collection, and there are missing time
points. In addition, life spans of organisms, such as human and mouse, are very
different, resulting in very different measurement intervals. These complications
cause challenges for cross-species data analysis, and call for a possibility to align
the time series using machine learning techniques.

In this paper, we show how it is possible to integrate data sets with neither co-
occurring samples nor variables, only based on a similar experiment design. We
separate and identify shared covariate effects from data set-specific effects. We
do this by building on our recent work on high-dimensional multi-way modeling
and time series alignment [4]. We test the method on simulated data, and on
lipidomic and metabolomic data sets.
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2 Previous Work

A few iterative approaches have matched samples without taking covariate in-
formation into account. One of the methods matched only samples [10], and
another matched both samples and variables [1].

For cross-species analysis, there are methods that use and require side in-
formation about the possible matchings of the variables between the data sets.
Le & Bar-Joseph [5] utilized sequence similarities as a prior for clustering and
matching genes across data sets of two species. Lucas et al. [7] inferred a set of
factors that are active in one data set and used that as a starting point for the
inference in the other data set, requiring at least a subset of variables to be the
same across data sets. The model that we present next, does not require any
prior match across neither samples nor variables.

3 Model

We address the problem of translating covariate effects across two data sets
which have neither co-occurring samples nor variables. We develop a method that
handles traditional multi-way experimental designs, where samples have been
divided, for instance, into healthy-diseased and treated-untreated categories, or
more categories with possibly more levels. In addition, the model extends to time
series designs, where one covariate, the time point, is not necessarily matched
across the two data sets. Irregular time points are handled by aligning the time
series into latent states, which are then matchable across the data sets.

In our previous work [4], we were only able to estimate the covariate effects
shared by the data sets. In this paper we present a novel matching algorithm for
separating shared covariate effects from effects specific to one data set.

3.1 Dimensionality Reduction and Covariate Effects

We construct a unified multivariate model, where the inference is carried out
with Gibbs sampling. It is a single hierarchical Bayesian model capable of han-
dling uncertainty across the levels, in contrast to a straightforward successive
dimensionality reduction and MANOVA. In terms of estimation of multi-way
covariate effects and dimensionality reduction, the new approach builds on our
earlier work on high-dimensional multi-way modeling [3]: we assume that a single
latent factor vector xlat generates a group of correlated variables in the observed
data x, and the latent factors have a covariate-dependent prior structure for
each sample. These factors can thus be called clusters (of variables).

The model for sample j explained by K latent factors is

xj ∼ N
(
µ+ Vxlat

j ,Λ
)

xlat
j | (aj , bj) ∼ N

(
αaj + βbj

+ (αβ)aj ,bj
, I

)
, (1)

where xj is a p-dimensional data sample from the n × p data matrix, µ is a
p-vector of variable means, V is a p×K projection matrix, xlat

j the K-vector of
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latent factors from the K × n latent space matrix, and Λ is a diagonal residual
variance matrix with diagonal elements σ2

i . Covariate effects are estimated in the
K-dimensional latent space, and in Equation 1 the prior is presented for the two-
way case with particular covariate values aj and bj selecting the main effects αaj

and βbj
, and an interaction effect (αβ)aj ,bj

. In the notation, covariates aj and
bj independently select a corresponding row from the main effect matrices α and
β, respectively, and (αβ)aj ,bj

is an interaction effect vector of the combination
aj , bj .

3.2 Alignment of Irregular Time Series

When one of the “ways” is irregularly sampled time, underlying states in the
time series are inferred in the model by a hidden Markov model (HMM)-type
state projection. The learned state allocations s are used as a covariate and the
corresponding HMM latent variable is interpreted as the covariate effect for the
sample group [4].

Now, xlat
j is assumed to be generated by using the learned covariate sj instead

of a fixed covariate aj :

xlat
j | (sj , bj) ∼ N

(
αsj

+ βbj
+ (αβ)sj ,bj

, I
)
, (2)

where αsj
is the HMM-aligned time effect. We restrict the HMM to a linear

chain structure, which is reasonable for the biological patient progression data
of our experiment.

3.3 Estimation of Shared and Specific Covariate Effects

Now we have presented the model for dimensionality reduction and estimation
of covariate effects in the case of a single data set. Next, we will show how
this framework can be extended to the analysis of multiple data sets, and how
to identify latent factors that have a match across the data sets. We not only
estimate covariate effects of a single data set, but also probabilities of each latent
factor being generated either by data set-specific covariate effects or by effects
shared with a factor from the other data set. A plate diagram of the model is
shown in Figure 1b.

The model makes a flexible assumption [4] that the observed data vectors
in the two data sets X and Y are generated by the covariate effects through a
transformation fx and fy, respectively:

xj | (sj , bj) = µx + fx
(
αsh

sj
+ βsh

bj
+ (αβ)shsj ,bj

)
+ fx

(
αx

sj
+ βx

bj
+ (αβ)xsj ,bj

)
+ εx

yi| (si, bi) = µy + fy
(
αsh

si
+ βsh

bi
+ (αβ)shsi,bi

)
+ fy

(
αy

si
+ βy

bi
+ (αβ)ysi,bi

)
+ εy,

(3)

where symbols with superscript sh represent covariate effects shared by the two
data sets, and symbols with superscripts x and y represent data set X and Y-
specific covariate effects, respectively. The variable spaces of data sets X and Y
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are different, and therefore also the latent factor spaces xlat and ylat representing
groups of correlated variables need not match. For this reason, the covariate
effects have to be projected into the actual observed data spaces x and y through
the previously unknown projections fx and fy, which will be learned jointly.

Earlier, we have learned covariate effects from multiple data sets, where sam-
ples co-occur across the sets (views) [2]. The translational problem is now more
complicated, and we have to solve it in a different way.

The modeling question for two non-co-occurring data sets with a multi-way
experiment design becomes the following: Does some dimension of xlat respond
to the covariates s and b similarly as one of ylat? If it does, one can represent
this pattern with shared covariate effects θsh = {αsh,βsh, (αβ)sh}. The inter-
pretation is that a group of correlated variables in data set X matches with a
group in data set Y, represented by a dimension of xlat and ylat, respectively.
In biology, such factors can be considered as multi-species biomarkers. If there
is no match, the response to the covariates is modeled by species-specific covari-
ate effects θx = {αx,βx, (αβ)x}, and similarly for Y. Our modeling framework
estimates the confidence of the shared effects.

3.4 Matching

We propose the following measure for quantifying the quality of the match be-
tween two factors from different data sets: whether the matching is better than
an average matching (over other pairs). On a meta-level the measure is intu-
itively appealing in the spirit of permutation tests, and it can be formulated
more exactly by specifying what we mean by “better.” We will use probabilistic
modeling to measure the relative goodness below.

The matching problem of the clusters is a combinatorial problem, where pos-
sible configurations of pairs need to be evaluated, judging for each pair how
similarly they respond to multi-way covariates. We resort to an iterative algo-
rithm that attempts to change the matching of one cluster at a time.

After selecting a candidate pair, we compare its goodness to an average pair
(uniformly selected having one same endpoint), and accept forming a link be-
tween them by a Metropolis criterion that compares the likelihoods of the two
pairings. A reverse operation is to attempt to break a link by comparing an
existing link between two clusters to an average (random) pair. The goodness
(likelihood) of the linked pair is evaluated by comparing likelihoods of the two
shared covariate effect structures. Factors with no pairs are modeled by data set-
specific covariate effects. Averaging over sampling iterations, we can estimate the
probability for matchings and the patterns of the covariate effects. High prob-
ability of a particular pair indicates a found matching. Low probability of any
pair indicates that there might not be suitable match for the factor in the other
data set.
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4 Experiments

In this section, we demonstrate how the model works on high-dimensional toy
data, and on biological data from human blood samples.

4.1 Generated Data

We generated from the model two data sets X and Y with no pairing of samples
but only a shared two-way covariate structure. There are 11 separate time series
(“patients”) in both of the two data matrices, each series consisting of 5 to 15
time points. This results in 100 and 112 samples in total, and data matrices
are 200- and 210-dimensional. The latent factors xlat

j and ylat
j are 3- and 4-

dimensional, respectively. Two latent factors in each data set were generated
from a shared HMM chain with five states.
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Fig. 2. Matching results from generated time-series data. Shown are the main effects
of the HMM-aligned covariate a (α; left), and interaction effects of covariates a and b
((αβ); right). Topmost, the generated effects are illustrated. In both the lower parts, the
table of estimated covariate effects shows shared (top-right area) and data set-specific
(left column and bottom row) effects for both α and (αβ). Rows and columns in the
area of shared effects correspond to clusters in data sets X and Y, respectively. The
found true pairing is highlighted by a red box. The value on top of each plot shows
the percentage of posterior samples, where the matching was found. The boxplots
within each subplot represent posterior distributions of effects at different levels of
the covariate. A distribution above or below zero with 95 % confidence is considered
significant.

We used the proposed model to simultaneously align the samples into match-
able HMM states, learn the clusters of variables, search for the possible matches
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of the clusters between the two data sets, and model the ANOVA-type covariate
effects acting on the found clusters. We a priori chose a model with five HMM
states. During sampling, 150,000 burn-in samples and 150,000 posterior Gibbs
samples were collected, and every 50th sample was collected. The generated ef-
fects and the results are shown in Figure 2. Our model found the previously
generated clusters without mistakes and matched clusters across the datasets
correctly.

4.2 Biological Data

We analysed biological data from a follow-up study of type 1 diabetes, where
53 lipid and 74 metabolite concentrations from blood samples were measured
from two sets of human patients, respectively [9]. In total, we had 1153 and 417
samples from 124 and 37 patients, respectively.

We separated the normal development of young individuals from progression
of the disease by labeling samples of patients, who acquired the disease, into four
stages of progression of the disease using additional information of the antibody
levels in blood. These stages were fixed as the levels of covariate bj , while the
temporal alignment aj of all patients was learned within the model by the HMM.
We used a five-state HMM, and 6- and 15-dimensional latent variables to explain
the correlated groups of lipids and metabolites in the data, respectively.

Comparison of Matchings of Lipids to the Ground Truth. First, we
tested how the model finds matching, when the variables are actually co-occurring
across the data sets. We split the lipidomic data set into two groups of patients
and used the groups as data sets X and Y.

As a result, we found out that the three strongest matches out of the six
were correct.

Integration of Lipidomic and Metabolomic Data Sets. Next, we searched
for matching groups between the lipidomic and metabolomic data sets. Some of
the patients were the same in the two data sets, but we did not utilize this
information to help the model.

The main result was that the best match was a group of three glycerophos-
phocholine (GPCho) lipids to a group of four metabolites with probability of
19.7 % (see Table 1). Three first of the metabolites in the list are fatty acids,
which are building blocks for GPCho lipids. The found lipid and metabolite
groups had a similar covariate effect pattern in time (up-regulation) and in the
stages of the disease (down-regulation).

5 Conclusion

We presented a novel method for translating biomarkers between multiple species
from multi-way, time series experiments, which is applicable even in the ex-
tremely hard case of no a priori known matching between neither variables nor
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Table 1. The best-matched pair of a lipid and a metabolite cluster.

Lipids Metabolites

GPCho(14:0/18:2) X4.7.10.13.16.19.Docosahexaenoic.acid
GPCho(18:2/16:1) X9.Octadecenoic.acid..Z.
GPCho(16:0/20:5) Hexadecanoic.acid

Phosphoric.acid

samples across the two data sets, but only a similar experiment design. The
method estimates ANOVA-type multi-way covariate effects for clusters of vari-
ables, and identifies and separates covariate effects that are shared between the
data sets and effects that are specific to one data set.
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