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Introduction

Evaluation of potential toxicity of new drugs and other chemi-
cal compounds is highly important for safety reasons. The toxic 
effects of new drugs cannot be tested directly on humans due 
to the obvious ethical issues, and new drugs thus go through 
a series of in silico and in vitro analyses, and then an animal 
experimentation phase. Organisms from yeast1 to the worm  
C. elegans,2 zebrafish3 and murine animals4 are used in the drug 
development process, starting with simple organisms and moving 
toward organisms more similar to humans. All toxic effects are 
not visible in all the model organisms and experimental setups, 
and many of the effects are discovered only when the compound 
is experimented on humans. Even after the drug has entered the 
market, weak or rare effects can be discovered among the large 
population of consumers.

The earlier the toxic responses can be detected, the more poten-
tial harm can be avoided and resources saved. Computational 
tools for predictive toxicity have been developed and applied at 
each stage of the drug development cycle.5,6 Quantitative struc-
ture-activity relationship (QSAR) assessment has traditionally 
been the most prominent in silico toxicity prediction procedure, 
where toxicological profiles, such as lethal concentrations, are 
predicted based on structural descriptors of the compounds.7 
Recently, the focus has shifted to identification of critical per-
turbations in biological pathways that lead to adverse outcomes, 
based on high-throughput screening methods.8

Toxicogenomics
Toxicogenomics has emerged in the cross-section of toxicol-

ogy and bioinformatics, with the aim of finding predictive asso-
ciations between transcriptomic and toxicological responses.9,10 
The rationale is that drug-treatment transcriptional data consist 
of various response patterns, some of which are related to drug 
toxicity. The identification of these toxicity-associated tran-
scriptional response patterns is essential for understanding the 
molecular mechanisms behind toxicity and for enabling the pre-
diction of toxicity.11 However, distinguishing toxic adverse effects 
from intended therapeutic effects and from various types of noise 
factors, such as batch effects, is highly non-trivial. Moreover, 
transcriptomic response patterns vary over tissues and cell types, 
making this more complicated. As toxicogenomic studies are typ-
ically performed in vitro, it would be important to identify those 
toxicogenomic associations that generalize to humans as well.

The ToxCast project12 is an example of large-scale high-
throughput in vitro screening for predicting in vivo toxicity. The 
TG-GATEs database from the Japanese toxicogenomics project13 
is another interesting toxicogenomic resource with transcrip-
tional drug-treatment data available from organisms both in vitro 
and in vivo. Additionally, the database includes toxic outcome 
observations such as blood level measurements and observed liver 
injuries from rats in vivo.

Liver toxicity is among the most common types of drug tox-
icity in humans.5 The drug-induced liver injury (DILI) label-
ings14 have been designed to describe the risk of hepatotoxicity 
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We investigate the problem of detecting toxicogenomic associations that generalize across organisms, that is, sta-
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our approach can give relevant information about the properties of a drug even when direct prediction of toxicity is not 
feasible. Moreover, we show that a search from a cross-organism database can improve accuracy in the analysis.
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in humans: The labels are continuously updated as the Food and 
Drug Administration (FDA) acquires more information about 
the potential side effects of the drugs on the market. The DILI 
labels are available for most of the drug compounds with experi-
mental data at the TG-GATEs database.

Data translation with machine learning
The next step that follows detection of responses to drug com-

pounds in a model organism is translation of these responses to 
humans. In this work, we build on the hypothesis that responses 
shared across organisms are more likely to generalize to humans 
as well. This is analogous to searching for conserved genomic 
regions or responses, but on the more abstract level of statistical 
relationships in the response profiles.

To detect “conserved responses,” we need to examine data-
bases of drug-response experiments from multiple model organ-
isms, or “domains.” The conserved response patterns can then 
be utilized to make predictions about the human response based 
on experimental data from model organisms, that is, to carry out 
“data translation” from one domain to another.

We define “data translation” as an analog of language transla-
tion: of finding how a phenomenon in one domain or organism is 
expressed in another, assuming it generalizes across domains, and 
then predicting it. Data translation is a key part of “translational 
medicine,” which involves many additional aspects.

In summary, our goal is to develop machine learning meth-
ods for discovering responses conserved across organisms and for 
generalizing the responses to humans. The generalization of the 
responses has so far been an unsolved problem. For discovering con-
served responses, Le and Bar-Joseph15 have presented an approach 
for clustering genes across organisms based on their response pat-
terns. Suvitaival et  al.16 focused on quantifying the responses to 
external covariates, such as the drug treatment, that are conserved 
across organisms. Both of these approaches assume that a group of 
genes responds to the covariate in a coherent fashion.

In this article, we assume that drug responses can be mod-
eled as factors, each of which describes a biological process that 
is disturbed by the treatment. Individual genes may be members 
of many of these processes and the genes may be different across 
organisms. Also the level and direction of responses may vary 
across genes and organisms while still following the abstract con-
served pattern.

Generative model for cross-organism toxicogenomics
Inspired by the CAMDA challenge,17 we address the follow-

ing research questions: 1) Can we associate drug-induced toxico-
logical responses observed in humans or rats to changes observed 
at the molecular level, and are these associations predictive? 2) 
Can we find toxicogenomic associations that are conserved across 
organisms? Could these associations be utilized to replace animal 
studies with in vitro assays?

In other words, we seek simultaneous associations between 
transcriptional data and toxicological outcome data, and between 
transcriptional data from multiple organisms. Associations that 
generalize both across organisms and across levels of biological 
complexity have the potential of enabling the data translation 
between the molecular level and the organ level or the popula-
tion level.

The biological properties and their resemblance to the human 
vary across the cells extracted from animals grown in vivo and 
cell lines grown in vitro. Even though this resemblance to the 
human is still largely unkown, they all are grown with the pur-
pose of experimenting chemical compounds intended for human 
use. By taking a data-driven approach to identifying conserved 
responses, we do not make prior assumptions about the organ-
isms’ similarity to the human. To stress these points, we refer to 
each of the types of biological sample as a model organism, even 
though a cell line is not an entire representation of the animal 
from which it is originally extracted from. Moreover, we view a 
cell line grown in vitro as a different model organism than what 
a cell extract from an animal of the same species grown in vivo is.

We propose a generative model-based approach to answer 
the two research questions. To do this, we make the following 
modeling assumptions: 1) The data consist of drug-induced tran-
scriptional responses patterns, that is, consistent gene expression 
changes for a subset of the drugs and genes, and noise from vari-
ous sources. 2) Drugs may activate multiple response patterns, 
and the patterns may be partially overlapping in terms of affected 
genes. 3) We are especially interested in response patterns that 
are associated with observed toxic outcomes and are conserved 
across organisms.

It turns out that a recently introduced model family, group 
factor analysis18 (GFA), when applied to toxicogenomic data, 
matches these assumptions. It is a multi-view model that in an 
unsupervised fashion detects statistical dependencies between 
multiple data sets having co-occurring samples. In this context, 
samples correspond to drug treatments, which are the same in 
all the data sets. We call the data sets “views,” because they are 
matched by their samples.

The associations found by the model are represented by fac-
tors that are interpretable in terms of factor loadings of the data 
variables, in this case genes. This interpretability allows the user 
to formulate testable hypotheses, for instance about the mecha-
nisms of action of a drug and about their association to toxico-
logical outcomes. The associations can also be used for predicting 
one data view based on another, for example, predicting toxic 
outcomes based on transcriptomic responses.

For cross-organism toxicogenomic analysis, group sparsity is 
an especially useful feature of GFA. The model can distinguish 
patterns that are shared across all the data sources from patterns 
that are specific to a single source or shared by a subset of the 
sources. In this paper, we will apply GFA to studying biological 
responses that are conserved across organisms.

Results

We demonstrate the potential of the model to detect responses 
that generalize across organisms in two practical use cases with 
the TG-GATEs data,13 consisting of three sets of transcriptional 
drug-treatment measurements: human in vitro, rat in vitro and 
rat in vivo. In Case 1, the task is to find associations between 
transcriptional changes and pathological findings from in vivo 
rat livers. In Case 2, the task is to search for drugs having a 
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similar risk of DILI in humans at the population level, based on 
data about transcriptional changes in model organisms.

Case 1: Finding associations between transcriptomic 
responses and pathological findings

In the first case, we are interested in two types of associations 
to start with: First, associations between the molecular level and 
the organ-level, and second, molecular-level associations between 
the different organisms. In order to detect responses that are most 
likely to generalize to humans, we require both of these con-
straints to hold for the associations that we focus on. Focusing 
on these maximally conserved associations will also be beneficial 
for filtering out structured noise that arises from the laboratory 
effects and from the properties of the model organisms.

Applying GFA to the combination of three transcriptomic 
data sets and pathological findings for rat in vivo, we obtain a 
set of factors that capture the required kind of associations. Each 
factor is interpretable as a biological process associated with spe-
cific pathological findings at the organ-level and is generalized 
across a subset of the organisms at the molecular level (Fig. 1). 
This result indicates that the model learns biologically meaning-
ful response structure in the transcriptomic data. For example, 
Factor B associates changes in metabolic processes to degenera-
tion in the liver tissue, while Factor C associates changes in the 
cell-cycle to increased mitosis in the liver.

Although the associations are biologically meaningful, given 
the small amount of available data, their predictive power is 
not significant (results not shown; the low power was not due 
to the method, which was tested additionally using a standard 
L1-regularized regression model). As more toxicogenomic data 
accumulates, the predictive power of the associations needs to be 
revisited.

Case 2: Modeling-based data retrieval for human drug tox-
icity analysis

Direct prediction of toxicity for a new drug is not a trivial 
task, but we have demonstrated that the detected conserved 
associations are biologically meaningful. Predicting the toxicity 
of a drug on humans is even more difficult due to the lack of 
direct experimental data. Analyzing drug toxicity in humans is 
possible indirectly, using available drug toxicity classifications of 
approved drugs. These data are not perfect, however, as the toxic 
potential of many drugs has been over-estimated for increased 
safety.14 Some drugs have been categorized as risky based on only 
indirect evidence of other drugs, with similar therapeutic poten-
tial or chemical properties, having shown toxic outcomes.

Interactive toxicity analysis framework
We propose an alternative approach for the risk-analysis of a 

novel drug by formulating the prediction task as an information 
retrieval problem. We assume that transcriptomic response data 
in existing databases of model organism experiments carries rel-
evant information on drug toxicity in humans. The level of rel-
evance may, however, vary across different experimental practices 
and model organisms. For instance, in vivo experiments are likely 
to be more informative than in vitro experiments.

The interactive toxicity analysis takes place through a table-
lookup procedure: Given a query compound and a measure of 
similarity, the expert receives a ranked list of database compounds 

in the order of the similarity of transcriptomic response. To the 
extent there are associations between the molecular level and 
the organ-level, the properties of the top-ranked database com-
pounds are likely to be similar to the query compound. Based 
on the list, an expert user can then construct a hypothesis about 
the expected properties of the drug and about the uncertainty 
around these properties. In an illustrative example of the retrieval 
result for a query (Table 1), many of the top-ranked drug com-
pounds retrieved from the database are shown to share toxic and 
therapeutic properties with the query.

The idea of searching for similar drugs has earlier been intro-
duced as “connectivity mapping”19 and applied to drug discov-
ery and drug repositioning.20,21 It has also been applied to drug 
toxicity analysis.22,23 Recently, Xing et al.24 introduced an online 
resource for making queries to the TG-GATEs database. We use 
the retrieval method behind that tool as one of the two baseline 
approaches in the experiments that follow. In the connectivity 
mapping approaches the similarity measure for the retrieval rel-
evance is based on the gene set enrichment25 computed on the 
list of the most differentially expressed genes for the query drug. 
These approaches have either focused on a single cell type or sim-
ply averaged over multiple cell types, neglecting the likely differ-
ences between organisms.

We propose to carry out toxicity analysis by modeling-based 
retrieval that takes into account the translatability of data 
between different organisms. In particular, we use the GFA to 
detect shared transcriptomic responses between the three model 
organisms in the database: human in vitro, rat in vitro and rat 
in vivo. Now, we can examine the similarity in the responses in 
the lower-dimensional latent space of the model. More impor-
tantly, we can focus our examination into the part of the latent 
space that is shared between the model organisms (details in the 
Materials and Methods). The shared latent factors describe the 
drug-responses that are conserved across the model organisms, 
and thus are likely to have potential for the generalization to 
humans as well.

We evaluate the retrieval with ground truth from the DILI 
label and concern classes,14 as well as with more detailed infor-
mation about the drugs’ mechanism of action, described by the 
anatomical therapeutic chemical26 (ATC) classes. We compare 
with rank-based connectivity mapping19 and simple correlation 
between the differential expression profiles. As a measure of per-
formance, we use mean average precision.

Retrieval from single-organism database
Transcriptomic drug response data are informative about both 

the toxicity and mechanisms of action (Fig. 2), resulting from 
off-target and on-target effects of the drug, respectively. For all 
organisms, types of validation classes and used similarity mea-
sures, retrieval based on the transcriptomic database lead to a 
higher performance than expected by chance. This indicates that 
the transcriptomic response data on model organisms is informa-
tive of the toxicity of the drugs on humans at the population 
level. However, the results are not conclusive of the relative per-
formance of the individual organisms. Retrieval performance is 
observed to be almost as sensitive to the choice of the similarity 
measure as it is to the choice of the organism.
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Figure 1. The model detects drug response patterns that generalize across organisms and are associated to organ-level changes driven by toxicity. Also 
the biological interpretation of the associations represented by a factor generalizes across organisms: changes at the molecular level are interpretable 
as a biological process. The “eye diagram” shows identified associations between pathological findings (left) and enriched gene ontology (GO) terms 
(right), represented by factors of the model (middle). Line widths between pathological findings and factors indicate the magnitude of factor loadings 
learned by the model. Line widths between factors and GO terms indicate the strength of the enrichment. Associations are shown individually for each 
organism and factor: organisms are indicated as small nodes attached to the nodes of the factors. Factors are named alphabetically from A to H; organ-
isms are human in vitro (1), rat in vitro (2) and rat in vivo (3).
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Retrieval from cross-organism database
We study the potential of cumulating biological informa-

tion from existing model organism experiments to increase the 
amount of knowledge that can be extracted from human in vitro 
experiments. We focus on human in vitro experiments, because 
they are more ethical and less expensive than in vivo experiments 
and could potentially replace in vivo animal studies in the future.

We examine model-based retrieval performance from a cross-
organism database of transcriptional measurements, given a 
human in vitro sample as a query. The results show that retrieval 
performance is improved by using the cross-organism database of 
experiments compared with single-organism retrieval, when the 
retrieval is based on responses conserved across the model organ-
isms (Fig.  3). The outcome is consistent on all the three vali-
dation classes. This is indirect evidence for the hypothesis that 
compared with organism-specific responses, conserved responses 
of model organisms are more likely to generalize to humans at 
the population level.

Discussion

We have analyzed drug toxicity using a new machine learning 
approach that identifies cross-organism toxicogenomic associa-
tions. This is a key step toward developing methods for predic-
tive toxicology. The identification of associations that generalize 
reliably across multiple organisms, especially from in vitro to in 
vivo, is essential for toxicity analysis. This approach has potential 
for predicting drug toxicity in humans based on in vitro experi-
ments, thus reducing the need for animal studies in vivo.

The TG-GATEs data set with experiments on three model 
organisms has given us the opportunity to take a data-driven 
approach for cross-organism toxicogenomics. The group fac-
tor analysis model for toxicogenomic responses is flexible about 
the type of responses: neither genes nor biological pathways are 
restricted to be the same between the organisms. Minimum two 
model organisms are needed for identifying conserved responses. 
A new experiment in one organism can then be generalized via 

Table 1. An example retrieval result shows notable similarity to the query both by toxic and therapeutic properties

Rank Compound DILI concern DILI label ATC code

Query Imipramine Less Adverse reaction Non-selective monoamine reuptake inhibitors

1 Chlorpheniramine No Not mentioned

2 Amitriptyline Less Adverse reaction Non-selective monoamine reuptake inhibitors

3 Ranitidine Less Adverse reaction H2-receptor antagonists

4 Hydroxyzine No Not mentioned Diphenylmethane derivatives

5 Tacrine Most Warning and precaution Anticholinesterases

Using imipramine as a query, the five most similar compounds are retrieved based on the GFA model. The table shows the class labels of the 
retrieved compounds.

Figure 2. All model organisms are informative of the human population-level risk of toxicity. The figure shows how much information the retrieved simi-
lar drugs give about the DILI concern, DILI label and ATC level four class, of the query drug. The figure shows the top-10 mean average precision (y-axis) 
for each organism (x-axis) when used for the retrieval. Retrieval based on differential expression data gives above-random results for each organism 
using both the correlation and rank-based similarity measure. For the randomized results, shaded areas indicate the 95% confidence intervals.
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retrieval. The model can operate in the “small n, large p” regime 
thanks to the probabilistic approach and the sparsity assumptions.

We have shown how our probabilistic model finds biologically 
relevant associations between transcriptomic drug responses and 
pathological findings from rats, and that many of these associa-
tions generalize across in vivo and in vitro organisms. However, 
the predictive performance of these linear associations is very 
limited, probably due to limited amount of data, as the patho-
logical findings have been observed only for a few rat samples.

Since quantitative linear prediction of toxicological outcomes 
is limited in performance, we propose an alternative toxicity 
analysis scheme. It is based on information retrieval, where the 
task is to search for the most relevant drugs from the database of 
existing experiments, given a new query drug. Based on the most 
relevant drugs retrieved, the user can then construct a hypothesis 
of the toxicity and other properties of the query drug. This can 
support expert decision making.

We first studied the retrieval performance using the differen-
tial gene expression data only, and confirmed earlier findings22,23 
about the suitability of the retrieval approach to the task of identi-
fication of toxic drug compounds. We then showed that when we 
do retrieval based on cross-organism associations, we were able 
to improve the retrieval performance, as compared with single-
organism retrieval. This indicates that the cross-organism asso-
ciations detected by the model are relevant for human toxicity 
and give hope that the in vivo animal studies could be replaced 
with in vitro studies in the future.

Materials and Methods

We report the pre-processing done for the data before model-
ing, the model description, and the technical details of the two 
experiments (Cases 1 and 2). The details of Cases 1 and 2 are 

described in the subsections Model-based exploratory analysis and 
Retrieval of relevant experiments, respectively.

Data pre-processing
The data set of the Japanese Toxicogenomics Project (TGP) 

includes transcriptional data from three model organisms: pri-
mary hepatocyte cells from humans and rats grown in vitro, and 
similar cells extracted from rats in vivo. The conditions of the 
experiment can be summarized as three experimental covari-
ates: administered drug compound, its dosage and time from 
the administration of the compound. For the analysis in this 
work, we selected the subset of experimental covariate levels that 
are observed in all three organisms. This set includes 119 drug 
compounds administered at two dosage levels (middle and high) 
and measurements made at two time points after the treatment 
(8/9 h and 24 h). Histopathology of the liver had been exam-
ined from the extracted livers in the rat in vivo experiments at 
the same time points and dosage levels, providing a pathological 
finding class and severity grading for each sample. The data were 
downloaded from the website of the CAMDA challenge,27 where 
the transcriptional observations were provided in a FARMS-
summarized28 format.

For the modeling task, we considered each treatment—a com-
bination of compound, dose and time—as a single sample in the 
model. We selected transcriptomic probes, which have non-zero 
variance across the samples and which appear in all the three 
transcriptomic microarray data sets. This was done to make the 
data sets from different organisms balanced in their size in order 
to allow a fair comparison between the relevant information 
content in them. However, the model itself does not require the 
variables of the data sets to be matched and the analysis could 
alternatively be done on all probes as well.

We computed the average differential expression of the 
treated samples against the corresponding control samples. We 
represented the pathological finding classes for each sample as 

Figure 3. GFA-based cross-organism approach leads to a higher performance in the retrieval of similar compounds to a human in vitro query. The figure 
shows the top-k mean average precision as a function of the number k of retrieved highest-ranking samples. GFA utilizes the cross-organism associa-
tions learned from the database while the other methods rely on the human in vitro data only. For the randomized results, shaded areas indicate the 
95% confidence intervals.
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a grade-weighted count. As the four data matrices (differential 
gene expression X(human in vitro), X(rat in vitro), and X(rat in vivo), as well as 
pathological findings Y) are now matched by their samples, we 
call the matrices different views of the data.

Model
We have N observation vectors , corresponding to mea-

sured transcriptional and toxicological responses to drug 
treatments indexed as n = 1, …, N. Observations from one mea-
surement type m are concatenated as columns of a data set X(m). 
All data sets are matched by co-occurring observations, that is, 
they can be regarded as views. We assume the transcriptomic data 
contain complex drug-induced response patterns embedded in 
measurement noise. We are interested in finding these patterns 
and, more importantly, in associating them to toxic outcomes. 
Response patterns that are present in multiple views provide 
valuable information for interpretation and data translation. The 
task suits well to the problem formulation of GFA,18 which learns 
associations between matched data sets.

GFA is formulated as a Bayesian latent factor model, where the 
data are explained by factors. Each observation  from the mth 
view is generated from a multivariate normal distribution

			   (1)

where z
n
 are the latent factors for the nth observation, W(m) are the 

factor loadings for the mth view, and the noise covariance matrix 
is assumed to be diagonal, , with a view-specific pre-
cision τ

m
. The main task is to learn how factors are associated 

with the views: each factor describes associations between any 
combination of the views. Thus, some factors are shared across all 
the views, some are shared by a subset of the views, and the rest 
are specific to a single view. For a view m that is not associated 
with factor k, the kth column of W(m) is automatically set to zero 
by the model. With variables from each view seen as groups, this 
is equivalent to group-sparse factor loadings.

GFA learns the associations by employing a group-sparse prior 
distribution for the factor loadings. That is, each column of W(m) 
is generated from a normal distribution

			   (2)

where precision  is drawn from a gamma prior distribution,

				    (3)

with small values for the shape parameters α
0
 and β

0
. Gamma 

distribution is conjugate to normal distribution with a known 
mean. When the prior and the likelihood are conjugate, poste-
rior inference through Gibbs sampling is possible, as the poste-
rior is of the same form as the likelihood and the parameters of 
the posterior distribution can be directly calculated based on the 
parameters of the prior and the likelihood. The model learns the 
sought-for associations for factor k by setting the  of non-
associated views m close to zero, thus pushing all the elements in 
the factor loadings for those views jointly to zero. To complete 
the model description, a conjugate gamma prior,

				    (4)

is set for the noise precisions, and the latent variables are gener-
ated from a normal distribution

					     (5)

Factors capture response patterns in the observed data, for 
instance, sets of genes in the transcriptomic views that respond 
to sets of drug-treatments in a coherent fashion. Some of these 
patterns are shared across views. Each factor and the correspond-
ing loadings are assumed to represent a biological process and we 
are interested in interpreting them. Thus, each factor is assumed 
to be related to a sparse set of drugs and each loading to a sparse 
set of variables, for example genes. Further, we assume that each 
drug induces a sparse set of response patterns corresponding to 
sparsity of z

n
. Motivated by these assumptions, we modify the 

priors for GFA in a way that leads to a more easily interpretable 
model.

We extend the plain GFA by assuming that, in addition to the 
group sparsity, both the factors and the factor loadings are ele-
ment-wise sparse. With this extension, the GFA model becomes 
a multi-view biclustering model, generalizing the factor analysis-
based multiplicative biclustering model (FABIA)29 to multiple 
views of the data. Further, FABIA and GFA with the element-
wise sparsity structure extend the Bayesian plaid model30 from 
additive responses to multiplicative responses.

We modify the priors of the GFA model to achieve the ele-
ment-wise sparsity for the factors and the factor loadings by 
drawing them both from a two-component mixture distribu-
tion. In the mixture, the first component corresponds to a delta 
distribution δ

0
 with a peak at zero, and the second to a normal 

distribution with a zero mean and an unknown precision. This 
construction corresponds to a spike-and-slab prior,31,32 where the 
spike is a delta distribution and the slab is a normal distribution.

Mathematically, the spike-and-slab prior for the factors is 
written as

		  (6)

and for the factor loadings as

		  (7)

Binary variables  and  indicate whether z
n,k

 and , 
respectively, are set to zero or drawn from a normal distribution. 
The  are drawn from a Bernoulli distribution,

				   (8)

where the expectation  is specific to each factor k and view m. 
The  is drawn from a β distribution

				    (9)
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with shape parameters a
0
 and b

0
. The β prior distribution is 

conjugate to the Bernoulli distribution, leading to a posterior, 
which is Bernoulli-distributed. A similar construction is used 
for the  but now the expectation is shared across observa-
tions. When  is close to zero, the kth column of W(m) is 
suppressed to zero jointly, implementing group sparsity. We also 
find shared noise for each view too limiting and instead allow 
variable-wise independent noise by assuming a non-isotropic 
diagonal Σ(m) whose elements are drawn independently from a 
gamma distribution.

Since all the priors are conjugate, we implement inference 
using Gibbs sampling. The sampler learns the model for the 
TG-GATEs data set overnight on a standard desktop com-
puter. A variational Bayesian approximation, presented for the 
vanilla GFA model earlier,18 may be useful for larger data sets. An 
implementation of the model and a demo are available at http://
research.ics.aalto.fi/mi/software/GFAtoxgen/.

Model-based exploratory analysis
We study the biological interpretability of the learned asso-

ciations which are represented by factors of the model. More 
specifically, we focus on factors that are shared across all the 
views. In order to do that, we need to define a threshold for a 
factor to be considered shared by the views. We consider the kth 
factor as shared, if in each of the m views there exists at least 
one non-zero value in the loadings vector  of the kth fac-
tor. In Case 1, we study associations that generalize across the 
transcriptomic views X(human in vitro), X(rat in vitro) and X(rat in vivo), and 
the pathology view Y.

For the interpretation of the model, we want to study the 
importance of individual variables of the observed data to the 
detected association. For the kth factor representing an associa-
tion between the views, we do this by examining its loadings 

 across the m views.
For biological interpretation, we rank variables of the observed 

data for each factor-view pair (k,m). The ranking is done by sort-
ing the loadings  by their magnitude. For the transcriptomic 
data views, this procedure leads to a ranked list of transcriptomic 
microarray probes. The drug-response behavior of the top-
ranked probes can be seen as being explained by the factor based 
on which the ranking was done.

To detect biological processes, whose changes in the mth tran-
scriptomic view are explained by the kth factor, we computed the 
hyper-geometric enrichment test25 for gene ontology (GO) terms 
of the transcriptomic probes for the factor-transcriptomic view 
pair. The P values of the test were controlled for false discov-
ery with the Benjamini-Hochberg correction33 at the level 0.05. 
Associations between the enriched pathways and pathological 
findings were reported in Figure 1 based on factor loadings of 
the pathology view.

Retrieval of relevant items
Retrieval means the search of relevant items given a query 

item. Given the query, the relevance of the items in the database 
is computed based on a similarity measure, and the items are 
retrieved in the ranked order of similarity.

In Case 2, the items are drug-treatments. We retrieved drug-
treatments relevant to the query treatment from the database 

based on their similarity in transcriptomic responses, either using 
a single-view database X(human in vitro), X(rat in vitro) or X(rat in vivo), or 
using a multi-view database consisting of all the three transcrip-
tomic views.

For single-view retrieval, we considered two similarity mea-
sures. In the first measure (“correlation”), similarity is defined 
simply as the correlation between the transcriptomic profiles 
of the query and the database from the organism in question. 
As the second measure (“rank-based”), we used a ranked-based 
approach, also known as connectivity mapping.19 To compute 
the similarity of the items, we followed the procedure by Iorio 
et al.20 In brief, we used a signature of the 250 most differentially 
expressed genes, and computed the average enrichment score 
similarity between the query signature and the entire ranked list 
of genes of each of the database items.

Multi-view database
The simple approach used to compare the query against a 

single-view database is not directly applicable, when the database 
and query come from different views or from a different set of 
views. In either of the cases, we can utilize GFA to detect cross-
view associations that then enable the data translation between 
the query and the database domains and allow us to retrieve rel-
evant items across views.

The database contains data matrices  represent-
ing views m = 1, …, M. In each view, items are organized as rows 
and variables as columns. Items are co-occurring between the 
views. The query item X(query) may be observed in a subset of the 
database views. In the experiment of this article, the query item 
is an observation vector from the human in vitro transcriptomic 
view, while the database consist of all the three transcriptomic 
views.

Since the data domains of the query and the database now are 
different, similarity search cannot be done in the original data 
domain as it was done with a single-view database. Latent rep-
resentation of GFA allows us to carry out the similarity search 
between items that are observed in different domains. First, 
we learn a GFA model for the database items. Then, using the 
learned factors, we learn a latent representation for the query 
item. Having a latent representation for both the query item and 
the database items, we can carry out the similarity search in the 
latent space of the model. Again, we use correlation as a similar-
ity measure, but now in the latent space instead of the original 
data domain.

Validation
We validate the retrieval outcome using external information 

for the items. First, we use the DILI label and concern classes,14 
which describe the toxic risks of the drugs observed for the large 
population of consumers. Second, we use the ATC codes26 at level 
4 to give more detailed information about the drugs’ mechanisms 
of action.

We measure the retrieval performance in terms of mean aver-
age precision at retrieving items with the same class with the 
query. We compare the retrieval performance to the performance 
that follows the randomization of the class information. For the 
randomization, we report the mean and confidence intervals 
with the width of two standard deviations.



www.landesbioscience.com	S ystems Biomedicine	 e29291-9

References
1.	 Hartwell LH, Szankasi P, Roberts CJ, Murray 

AW, Friend SH. Integrating genetic approaches 
into the discovery of anticancer drugs. Science 
1997; 278:1064-8; PMID:9353181; http://dx.doi.
org/10.1126/science.278.5340.1064

2.	 Kaletta T, Hengartner MO. Finding function in 
novel targets: C. elegans as a model organism. Nat 
Rev Drug Discov 2006; 5:387-98; PMID:16672925; 
http://dx.doi.org/10.1038/nrd2031

3.	 Zon LI, Peterson RT. In vivo drug discovery in 
the zebrafish. Nat Rev Drug Discov 2005; 4:35-
44; PMID:15688071; http://dx.doi.org/10.1038/
nrd1606

4.	 Sharpless NE, Depinho RA. The mighty mouse: 
genetically engineered mouse models in cancer drug 
development. Nat Rev Drug Discov 2006; 5:741-
54; PMID:16915232; http://dx.doi.org/10.1038/
nrd2110

5.	 Collins FS, Gray GM, Bucher JR. Toxicology. 
Transforming environmental health protection. 
Science 2008; 319:906-7; PMID:18276874; http://
dx.doi.org/10.1126/science.1154619

6.	 Hardy B, Apic G, Carthew P, Clark D, Cook D, 
Dix I, Escher S, Hastings J, Heard DJ, Jeliazkova 
N, et  al. Toxicology ontology perspectives. ALTEX 
2012; 29:139-56; PMID:22562487; http://dx.doi.
org/10.14573/altex.2012.2.139

7.	 Willighagen EL, Wehrens R, Buydens 
LMC. Molecular chemometrics. Crit Rev 
Anal Chem 2006; 36:189-98; http://dx.doi.
org/10.1080/10408340600969601

8.	 Krewski D, Westphal M, Al-Zoughool M, Croteau 
MC, Andersen ME. New directions in toxicity 
testing. Annu Rev Public Health 2011; 32:161-
78; PMID:21219154; http://dx.doi.org/10.1146/
annurev-publhealth-031210-101153

9.	 Chen M, Zhang M, Borlak J, Tong W. A decade 
of toxicogenomic research and its contribution to 
toxicological science. Toxicol Sci 2012; 130:217-28; 
PMID:22790972; http://dx.doi.org/10.1093/toxsci/
kfs223

10.	 Zhou T, Chou J, Watkins PB, Kaufmann WK. 
Toxicogenomics: transcription profiling for toxi-
cology assessment. In: Luch A, editor. Vol. 1, 
Molecular, Clinical and Environmental Toxicology; 
Basel (Switzerland): Birkhäuser; 2009. p. 325–366. 
(Experientia Supplementum; vol. 99)

11.	 Hartung T, van Vliet E, Jaworska J, Bonilla L, 
Skinner N, Thomas R. Systems toxicology. ALTEX 
2012; 29:119-28; PMID:22562485; http://dx.doi.
org/10.14573/altex.2012.2.119

12.	 Thomas RS, Black MB, Li L, Healy E, Chu T-M, 
Bao W, Andersen ME, Wolfinger RD. A comprehen-
sive statistical analysis of predicting in vivo hazard 
using high-throughput in vitro screening. Toxicol Sci 
2012; 128:398-417; PMID:22543276; http://dx.doi.
org/10.1093/toxsci/kfs159

13.	 Uehara T, Ono A, Maruyama T, Kato I, Yamada H, 
Ohno Y, Urushidani T. The Japanese toxicogenom-
ics project: application of toxicogenomics. Mol Nutr 
Food Res 2010; 54:218-27; PMID:20041446; http://
dx.doi.org/10.1002/mnfr.200900169

14.	 Chen M, Vijay V, Shi Q, Liu Z, Fang H, Tong W. 
FDA-approved drug labeling for the study of drug-
induced liver injury. Drug Discov Today 2011; 
16:697-703; PMID:21624500; http://dx.doi.
org/10.1016/j.drudis.2011.05.007

15.	 Le H-S, Bar-Joseph Z. Cross species expression 
analysis using a Dirichlet process mixture model 
with latent matchings. In: Lafferty JD, Williams 
CKI, Shawe-Taylor J, Zemel RS, Culotta A, editors. 
Advances in Neural Information Processing Systems 
23. 24th Annual Conference on Neural Information 
Processing Systems; 2010 Dec 6–9; Vancouver, BC, 
Canada. Red Hook, NY: Curran Associates; 2011. p. 
1270–1278

16.	 Suvitaival T, Huopaniemi I, Oresic M, Kaski S. 
Cross-species translation of multi-way biomarkers. 
Honkela T, Duch W, Girolami M, Kaski S, editors. 
Artificial Neural Networks and Machine Learning 
– ICANN 2011. 21st International Conference on 
Artificial Neural Networks; 2011 June 14–17; Espoo, 
Finland. Berlin/Heidelberg (Germany): Springer; 
2011. Part I: p. 209–216. (Lecture Notes in Computer 
Science; vol 6791)

17.	 The CAMDA Organizing Committee. The CAMDA 
challenges [Internet]. [cited 2013 Sep 23]. Available 
from: http://dokuwiki.bioinf.jku.at/doku.php/
contest_dataset

18.	 Virtanen S, Klami A, Khan SA, Kaski S. Bayesian 
group factor analysis. In: Lawrence N, Girolami 
M, editors. JMLR W&CP 22. 15th International 
Conference on Artificial Intelligence and Statistics; 
2012 Apr 21–23; La Palma, Canary Islands. JMLR; 
2012. p. 1269–1277

19.	 Lamb J, Crawford ED, Peck D, Modell JW, Blat 
IC, Wrobel MJ, Lerner J, Brunet J-P, Subramanian 
A, Ross KN, et  al. The Connectivity Map: using 
gene-expression signatures to connect small mol-
ecules, genes, and disease. Science 2006; 313:1929-
35; PMID:17008526; http://dx.doi.org/10.1126/
science.1132939

20.	 Iorio F, Rittman T, Ge H, Menden M, Saez-Rodriguez 
J. Transcriptional data: a new gateway to drug 
repositioning? Drug Discov Today 2013; 18:350-
7; PMID:22897878; http://dx.doi.org/10.1016/j.
drudis.2012.07.014

21.	 Qu XA, Rajpal DK. Applications of Connectivity 
Map in drug discovery and development. Drug 
Discov Today 2012; 17:1289-98; PMID:22889966; 
http://dx.doi.org/10.1016/j.drudis.2012.07.017

22.	 Caiment F, Tsamou M, Jennen D, Kleinjans J. 
Assessing compound carcinogenicity in vitro using 
connectivity mapping. Carcinogenesis 2014; 35:201-
7; PMID:23940306; http://dx.doi.org/10.1093/
carcin/bgt278

23.	 Smalley JL, Gant TW, Zhang S-DD. Application 
of connectivity mapping in predictive toxicology 
based on gene-expression similarity. Toxicology 
2010; 268:143-6; PMID:19788908; http://dx.doi.
org/10.1016/j.tox.2009.09.014

24.	 Xing L, Wu L, Liu Y, Ai N, Lu X, Fan X. LTMap: a 
web server for assessing the potential liver toxicity by 
genome-wide transcriptional expression data. J Appl 
Toxicol 2013; (Forthcoming); PMID:24022982; 
http://dx.doi.org/10.1002/jat.2923

25.	 Subramanian A, Tamayo P, Mootha VK, Mukherjee 
S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, 
Golub TR, Lander ES, et  al. Gene set enrichment 
analysis: a knowledge-based approach for interpreting 
genome-wide expression profiles. Proc Natl Acad Sci 
U S A 2005; 102:15545-50; PMID:16199517; http://
dx.doi.org/10.1073/pnas.0506580102

26.	 ATC classification index with DDDs 2013. Oslo: 
WHO Collaborating Centre for Drug Statistics 
Methodology. 2012 [cited 2013 Sep 23]. Available 
from: http://www.whocc.no/atc_ddd_index/

27.	 The CAMDA Organizing Committee. Preprocessed 
TGP data [Internet]. 2013 [cited 2013 Mar 1]. 
Available from: http://dokuwiki.bioinf.jku.at/doku.
php/tgp_prepro /

28.	 Hochreiter S, Clevert D-A, Obermayer K. A new sum-
marization method for Affymetrix probe level data. 
Bioinformatics 2006; 22:943-9; PMID:16473874; 
http://dx.doi.org/10.1093/bioinformatics/btl033

29.	 Hochreiter S, Bodenhofer U, Heusel M, Mayr A, 
Mitterecker A, Kasim A, Khamiakova T, Van Sanden 
S, Lin D, Talloen W, et al. FABIA: factor analysis for 
bicluster acquisition. Bioinformatics 2010; 26:1520-
7; PMID:20418340; http://dx.doi.org/10.1093/
bioinformatics/btq227

30.	 Caldas J, Kaski S. Bayesian biclustering with the 
plaid model. In: Proceedings of the IEEE Workshop 
on Machine Learning for Signal Processing (MLSP); 
2008 Oct 16–19; Cancun, Mexico. IEEE 2008; p. 
291-6

31.	 Ishwaran H, Rao JS. Spike and slab vari-
able selection: Frequentist and Bayesian strate-
gies. Ann Stat 2005; 33:730-73; http://dx.doi.
org/10.1214/009053604000001147

32.	 Mitchell T, Beauchamp JJ. Bayesian variable selection 
in linear regression. J Am Stat Assoc 1988; 83:1023-
32; http://dx.doi.org/10.1080/01621459.1988.10478
694

33.	 Benjamini Y, Hochberg Y. Controlling the false dis-
covery rate: A practical and powerful approach to 
multiple testing. J R Stat Soc, B 1995; 57:289-300

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The Academy of Finland (Finnish Centre of Excellence 
in Computational Inference Research COIN, 251170; 
Computational Modeling of the Biological Effects of Chemicals, 
140057), Finnish Doctoral Programme in Computational 
Sciences FICS, and Helsinki Doctoral Programme in Computer 
Science.


