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ABSTRACT

Lahti, L. (2010): Probabilistic analysis of the human transcriptome with
side information Doctoral thesis, Aalto University School of Science and Tech-
nology, Dissertations in Information and Computer Science, TKK-ICS-D19, Espoo,
Finland.

Keywords: data integration, exploratory data analysis, functional genomics,
probabilistic modeling, transcriptomics

Recent advances in high-throughput measurement technologies and efficient
sharing of biomedical data through community databases have made it possible to
investigate the complete collection of genetic material, the genome, which encodes
the heritable genetic program of an organism. This has opened up new views to
the study of living organisms with a profound impact on biological research.

Functional genomics is a subdiscipline of molecular biology that investigates the
functional organization of genetic information. This thesis develops computational
strategies to investigate a key functional layer of the genome, the transcriptome.
The time- and context-specific transcriptional activity of the genes regulates the
function of living cells through protein synthesis. Efficient computational tech-
niques are needed in order to extract useful information from high-dimensional
genomic observations that are associated with high levels of complex variation.
Statistical learning and probabilistic models provide the theoretical framework
for combining statistical evidence across multiple observations and the wealth of
background information in genomic data repositories.

This thesis addresses three key challenges in transcriptome analysis. First,
new preprocessing techniques that utilize side information in genomic sequence
databases and microarray collections are developed to improve the accuracy of
high-throughput microarray measurements. Second, a novel exploratory approach
is proposed in order to construct a global view of cell-biological network acti-
vation patterns and functional relatedness between tissues across normal human
body. Information in genomic interaction databases is used to derive constraints
that help to focus the modeling in those parts of the data that are supported
by known or potential interactions between the genes, and to scale up the analy-
sis. The third contribution is to develop novel approaches to model dependency
between co-occurring measurement sources. The methods are used to study can-
cer mechanisms and transcriptome evolution; integrative analysis of the human
transcriptome and other layers of genomic information allows the identification of
functional mechanisms and interactions that could not be detected based on the
individual measurement sources. Open source implementations of the key method-
ological contributions have been released to facilitate their further adoption by the
research community.
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Mittausmenetelmien kehitys ja tutkimustiedon laajentunut saatavuus ovat mah-
dollistaneet ihmisen perimén eli genomin kokonaisvaltaisen tarkastelun. Tama on
avannut uusia ndkokulmia biologiseen tutkimukseen ja auttanut ymmértdmaan
elaméan syntyé ja rakennetta uusin tavoin. Toiminnallinen genomiikka on molekyyli-
biologian osa-alue, joka tutkii perimén toiminnallisia ominaisuuksia. Periman
toimintaan liittyvaa mittausaineistoa on runsaasti saatavilla, mutta korkeaulot-
teisiin mittauksiin liittyy monimutkaisia ja tuntemattomia taustatekijoita, joiden
huomiointi mallituksessa on haasteellista. Tehokkaat laskennalliset menetelmat
ovat avainasemassa pyrittaessd jalostamaan uusista havainnoista kayttokelpoista
tietoa.

Tasséa vaitoskirjassa on kehitetty yleiskayttoisia laskennallisia menetelmia, joilla
voidaan tutkia ihmisen geenien ilmentymistd koko perimén tasolla. Geenien il-
mentyminen viittaa ldhetti-RNA-molekyylien tuottoon solussa perimén sisaltdmén
informaation nojalla. Tdma& on keskeinen perinnéllisen informaation séitelytaso,
jonka avulla solu saételee proteiinien tuottoa ja solun toimintaa ajasta ja tilanteesta
riippuen. Tilastollinen oppiminen ja todennakoéisyyksin perustuva probabilistinen
mallitus tarjoavat teoreettisen kehyksen, jonka avulla rinnakkaisiin mittauksiin
ja taustatietoihin sisaltyvaé informaatiota voidaan kayttaa kasvattamaan mallien
tilastollista voimaa. Kehitetyt menetelméat ovat yleiskdyttoisia laskennallisen tie-
teen tutkimusvélineité, jotka tekevat vahan, mutta selkedsti ilmaistuja mallitusole-
tuksia ja sietavat korkeaulotteisiin toiminnallisen genomiikan havaintoaineistoihin
sisaltyvia epavarmuuksia.

Viitoskirjassa kehitetyt menetelmét tarjoavat ratkaisuja kolmeen keskeiseen
mallitusongelmaan toiminnallisessa genomiikassa. Luotettavien esikésittelymene-
telmien kehittdminen on tyon ensimméinen paatulos, jossa tietokantoihin sisalty-
vaa taustatietoa kaytetddn periménlaajuisten mittausaineistojen epavarmuuksien
vahentamiseksi. Toisena paidtuloksena vaitoskirjassa kehitetdan uusi aliavaruus-
kasautukseen perustuva menetelma, jonka avulla voidaan tutkia ja kuvata solu-
biologisen vuorovaikutusverkon kayttaytymista kokonaisvaltaisesti ihmiskehon eri
osissa. Taustatietoa geenien vuorovaikutuksista kaytetddn ohjaamaan ja nopeut-
tamaan mallitusta. Menetelmalla saadaan uutta tietoa geenien sadtelysta ja ku-
dosten toiminnallisista yhteyksistd. Kolmanneksi vaitoskirjatyossa kehitetaan uu-
sia menetelmia periménlaajuisten mittausaineistojen yhdistelyyn. Thmisen geenien
ilmentymisen ja muiden aineistojen riippuvuuksien mallitus mahdollistaa sellaisten
toiminnallisten yhteyksien ja vuorovaikutusten havaitsemisen, joiden tutkimiseksi
yksittdiset havaintoaineistot ovat riittdmattomia. Aineistojen yhdistelyyn kehitet-
tyjd menetelmia sovelletaan syopamekanismien ja lajien valisten eroavaisuuksien
tutkimiseen. Julkaistuilla avoimen lahdekoodin toteutuksilla on pyritty varmista-
maan kehitettyjen menetelmien saatavuus ja laajempi kayttoonotto laskennallisen
biologian tutkimuksessa.
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Chapter 1

Introduction

Revolutions in measurement technologies have led to revolutions in science and
society. Introduction of the microscope in the 17th century opened a new view to
the world of living organisms and enabled the study of life processes at cellular
level. Since then, new techniques have been developed to investigate ever smaller
objects. The discovery of the molecular structure of the DNA in 1953 (Watson
and Crick, 1953) led to the establishment of genes as fundamental units of ge-
netic information that is passed on between generations. The draft sequence of
the human genome, covering three billion DNA base pairs, was published in 2001
(International human genome sequencing consortium, 2001; Venter et al., 2001).
Modern measurement technologies provide researchers with large volumes of data
concerning the structure, function, and interactions of genes and their products.
Rapid accumulation of genomic data in shared community databases has accel-
erated biological research (Cochrane and Galperin, 2010), but the structural and
functional organization of genetic information is still poorly understood. While
functional roles of individual genes have been characterized, little is known re-
garding the higher-level regularities and interactions from which the complexity
and diversity of life emerges. The quest for systems-level understanding of genome
function is a major paradigm in modern biology (Collins et al., 2003).

Computational science has a key role in transforming the genomic data collec-
tions into new biological knowledge (Cohen, 2004). New observations allow the
formulation of new research questions, but also bring new challenges (Barbour
et al., 2005). The sheer size of high-throughput data sets makes them incompre-
hensible for human mind, and the complexity of biological phenomena and high
levels of uncontrolled variation set specific challenges for computational analysis
(Tilstone, 2003; Troyanskaya, 2005). Filtering relevant information from statisti-
cally uncertain high-dimensional data is a challenging task where new computa-
tional methods are needed to organize and summarize the overwhelming volumes
of observational data into a comprehensible form to make new discoveries about
the structure of life; computation is a new microscope for studying massive data
sets.

This thesis develops principled exploratory methods to investigate the human
transcriptome. It is a central functional layer of the genome and a significant
source of phenotypic variation. The transcriptome refers to the complete collec-
tion of messenger-RNA transcripts of an organism. The essentially static genome
sequence regulates the time- and context-specific patterns of transcriptional ac-



CHAPTER 1. INTRODUCTION

tivity of the genes, and subsequently the function of living cells through protein
synthesis. An average cell contains over 300,000 mRNA molecules and the expres-
sion levels of individual genes span 4-5 orders of magnitude (Carninci, 2009). A
wealth of associated genomic information resources are available in public reposi-
tories (Cochrane and Galperin, 2010). By combining heterogeneous information
sources and utilizing the wealth of background information in public repositories,
it is possible to solve some of the problems that are related to the statistical uncer-
tainties and small sample size of individual data sets, as well as to form a holistic
picture of the genome (Huttenhower and Hofmann, 2010).

The observational data can provide the starting point to discover novel research
hypotheses of poorly characterized large-scale systems; the analysis proceeds from
general observations of the data toward more detailed investigations and hypothe-
ses. This differs from traditional hypothesis testing where the investigation pro-
ceeds from hypotheses to measurements that target particular research questions,
in order to support or reject a given hypothesis. Ezploratory data analysis refers
to the use of computational tools to summarize and visualize the data in order to
identify potentially interesting structure, and to facilitate the generation of new
research hypotheses when the search space would be otherwise exhaustively large
(Tukey, 1977). When the system is poorly characterized, there is a need for meth-
ods that can adapt to the data and extract features in an automated way. This
is useful since application-oriented models often require careful preprocessing of
the data and a timely model fitting process. They may also require prior know-
ledge of the investigated system, which is often not available. Statistical learning
investigates solutions to these problems.

1.1 Contributions and organization of the thesis

This thesis introduces computational strategies for genome- and organism-wide
analysis of the human transcriptome. The thesis provides novel tools (i) to in-
crease the reliability of high-throughput microarray measurements by combining
statistical evidence from genome sequence databases and across multiple microar-
ray experiments, (ii) to model context-specific transcriptional activation patterns
of genome-scale interaction networks across normal human body by using back-
ground information of genetic interactions to guide the analysis, and (iii) to inte-
grate measurements of the human transcriptome to other layers of genomic infor-
mation with novel dependency modeling techniques for co-occurring data sources.
The three strategies address widely recognized challenges in functional genomics
(Collins et al., 2003; Troyanskaya, 2005).

Obtaining reliable measurements is the crucial starting point for any data anal-
ysis task. The first contribution of this thesis is to develop computational strategies
that utilize side information in genomic sequence and microarray data collections
in order to reduce noise and improve the quality of high-throughput observations.
Publication 1 introduces a probe-level strategy for microarray preprocessing, where
updated genomic sequence databases are used in order to remove erroneously tar-
geted probes to reduce measurement noise. The work is extended in Publication 2,
which introduces a principled probabilistic framework for probe-level analysis. A
generative model for probe-level observations combines evidence across multiple
experiments, and allows the estimation of probe performance directly from mi-
croarray measurements. The model detects a large number of unreliable probes
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contaminated by known probe-level error sources, as well as many poorly per-
forming probes where the source of contamination is unknown and could not be
controlled based on existing probe-level information. The model provides a prin-
cipled framework to incorporate prior information of probe performance. The
introduced algorithms outperform widely used alternatives in differential gene ex-
pression studies.

A novel strategy for organism-wide analysis of transcriptional activity in genome-
scale interaction networks in Publication 3 forms the second main contribution of
this thesis. The method searches for local regions in a network exhibiting coordi-
nated transcriptional response in a subset of conditions. Constraints derived from
genomic interaction databases are used to focus the modeling on those parts of
the data that are supported by known or potential interactions between the genes.
Nonparametric inference is used to detect a number of physiologically coherent
and reproducible transcriptional responses, as well as context-specific regulation
of the genes. The findings provide a global view on transcriptional activity in
cell-biological networks and functional relatedness between tissues.

The third contribution of the thesis is to integrate measurements of the human
transcriptome to other layers of genomic information. Novel dependency modeling
techniques for co-occurrence data are used to reveal regularities and interactions,
which could not be detected in individual observations. The regularized depen-
dency modeling framework of Publication 4 is used to detect associations between
chromosomal mutations and transcriptional activity. Prior biological knowledge
is used to constrain the latent variable model and shown to improve cancer gene
detection performance. The associative clustering, introduced in Publications 5
and 6, provides tools to investigate evolutionary divergence of transcriptional ac-
tivity.

Open source implementations of the key methodological contributions of this
thesis have been released in order to guarantee wide access to the developed al-
gorithmic tools and to comply with the emerging standards of transparency and
reproducibility in computational science, where an increasing proportion of re-
search details are embedded in code and data accompanying traditional publi-
cations (Boulesteix, 2010; Carey and Stodden, 2010; Ioannidis et al., 2009) and
transparent sharing of these resources can form valuable contributions to public
knowledge (Sommer, 2010; Sonnenburg et al., 2007; Stodden, 2010).

The thesis is organized as follows: In Chapter 2, there is an overview of func-
tional genomics, related measurement techniques, and genomic data resources.
General methodological background, in particular of exploratory data analysis and
the probabilistic modeling paradigm, is provided in Chapter 3. The methodological
contributions of the thesis are presented in Chapters 4-6. In Chapter 4, strategies
to improve the reliability of high-throughput microarray measurements are pre-
sented. In Chapter 5 methods for organism-wide analysis of the transcriptome are
considered. In Chapter 6, two general-purpose algorithms for dependency model-
ing are introduced and applied in investigating functional effects of chromosomal
mutations and evolutionary divergence of transcriptional activity. The conclusions
of the thesis are summarized in Chapter 7.



Chapter 2

Functional genomics

From all we have learnt about the structure of living matter, we must be
prepared to find it working in a manner that cannot be reduced to the ordi-
nary laws of physics - - because the construction is different from anything
we have yet tested in the physical laboratory.

E. Schrédinger (1956)

Living organisms are controlled not only by natural laws but also by inheritable
genetic programs (Mayr, 2004; Schrodinger, 1944). Such double causation is a
unique feature of life, and in fundamental contrast to purely physical processes
of the inanimate world. Life may have emerged on earth more than 3.4 billion
years ago (Schopf, 2006; Tice and Lowe, 2004). Genetic information evolves by
means of natural selection (Darwin, 1859). Living organisms maintain homeostasis,
adapt to changing environments, respond to external stimuli, and communicate.
Peculiar features of living systems include metabolism, growth and hierarchical
organization, as well as the ability to replicate and reproduce. All known life
forms share fundamental mechanisms at molecular level, which suggests a common
evolutionary origin of the living organisms.

The complete collection of genetic material, the genome, encodes the herita-
ble genetic program of an organism. Advances in measurement technology and
computational science have opened up new views to the large-scale organization of
the genome (Carroll, 2003; Lander, 1996). Functional genomics is a subdiscipline
of molecular biology investigating the functional organization and properties of
genetic information. In this thesis, new computational approaches are developed
for investigation of a central functional layer of the genome of our own species,
the human transcriptome. This chapter gives an overview to the relevant concepts
in genome biology in eukaryotic organisms and associated genomic data resources.
For further background in molecular genome biology, see Alberts et al. (2002);
Brown (2006).

2.1 Universal genetic code
Cells are fundamental building blocks of living organisms. All known life forms

maintain a carbon-based cellular form that carries the genetic program (Alberts
et al., 2002). Each cell carries a copy of the heritable genetic code, the genome.
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The human genome is divided in 23 pairs of chromosomes, located in the nu-
cleus of the cell, as well as in additional mitochondrial genome. Chromosomes are
macroscopic deoxyribonucleic acid (DNA) molecules in which the DNA is wrapped
around histone molecules and packed into a peculiar chromatin structure that will
ultimately constitute chromosomes. The genetic code in the DNA consists of four
nucleotides: adenosine (A), thymine (T), guanine (G), and cytosine (C). In ribonu-
cleic acid (RNA), the thymine is replaced by uracil (U). Ordering of the nucleotides
carries genetic information. Nucleic acid sequences have a peculiar base pairing
property, where only A-T/U and G-C pairs can hybridize with each other. This
leads to the well-known double-stranded structure of the DNA, and forms the basis
for cellular information processing. The central dogma of molecular biology (Crick,
1970) states that DNA encodes the information to construct proteins through the
irreversible process of protein synthesis. This is a central paradigm in molecular
biology, describing the functional organization of life at the cellular level.

2.1.1 Protein synthesis

Genes are basic units of genetic information. The gene is a sequence of DNA that
contains the information to manufacture a protein or a set of related proteins.
Genetic variation and regulation of gene activity has therefore major phenotypic
consequences. The regulatory region and coding sequence are two key elements of
a gene. The regulatory region regulates gene activity, while the coding sequence
carries the instructions for protein synthesis (Alberts et al., 2002). Interestingly,
the concept of a gene remains controversial despite comprehensive identification
of the protein-coding genes in the human genome and detailed knowledge of their
structure and function (Pearson, 2006).

Proteins, encoded by the genes, are key functional entities in the cell. They
form cellular structures, and participate in cell signaling and functional regula-
tion. Protein synthesis refers to the cell-biological process that converts genetic
information into final functional protein products (Figure 2.1.1A). Key steps in
protein synthesis include transcription, pre-mRNA splicing, and translation. In
transcription, the double-stranded DNA is opened in a proximity of the gene se-
quence and the process is initiated on the regulatory region of the gene. The
DNA sequence of the gene is then converted into a complementary pre-mRNA
by a polymerase enzyme. The pre-mRNA sequence contains both protein coding
and non-coding segments. These are called exons and introns, respectively. In
pre-mRNA splicing, the introns are removed and the exons are joined together to
form mature messenger-RNA (mRNA). A gene can encode multiple splice vari-
ants, corresponding to different exon definitions and their combinations; this is
called alternative splicing. The mature mRNA is exported from nucleus to the
cell cytoplasm. In translation the mRNA is converted into a corresponding amino
acid sequence in ribosomes based on the universal genetic code that defines a map-
ping between nucleic acid triplets, so-called codons, and amino acids. The code
is common for all known life forms. Fach consecutive codon on the mRNA se-
quence corresponds to an amino acid, and the corresponding sequence of amino
acids constitutes a protein. In the final stage of protein synthesis, the amino acid
sequence folds into a three-dimensional structure and undergoes post-translational
modifications. The structural characteristics of a protein molecule will ultimately
determine its functional properties (Alberts et al., 2002).
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Figure 2.1: A Key steps of protein synthesis. The two key processes in protein synthesis are
called transcription and translation, respectively. In transcription, the DNA sequence of the gene
is transcribed into pre-mRNA based on the base pairing property of nucleic acid sequences. The
pre-mRNA is modified to produce mature messenger-RNA (mRNA), which is then transported
to cytoplasm. Transfer-RNA (tRNA) carries the mRNA to ribosomes, where it is translated
into an amino acid sequence based on the universal genetic code where each nucleotide triplet
of the mRNA sequence, so-called codon, corresponds to a particular amino acid. The amino
acid sequence is subsequently modified to form the final functional protein product. B Or-
ganization of the genetic material in an eukaryotic cell. The nucleotide base pairs form the
double helix structure of DNA. This is wrapped around histone molecules to form nucleosomes,
and the chromatin sequence. The chromatin is tightly packed to form chromosomes that carry
the genetic material and are located in the cell nucleus. The image has been modified from
http://commons.wikimedia.org/wiki/File:Chromosome_en.svg.

2.1.2 Layers of regulation

Phenotypic changes can rarely be attributed to changes in individual genes; cell
function is ultimately determined by coordinated activation of genes and other bio-
molecular entities in response to changes in cell-biological environment (Hartwell
et al., 1999). Gene activity is regulated at all levels of protein synthesis and cellu-
lar processes. A major portion of functional genome sequence and protein coding-
genes themselves participate in the regulatory system itself (Lauffenburger, 2000).

Epigenetic requlation refers to chemical and structural modifications of chro-
mosomal DNA, the chromatin, for instance through methylation, acetylation, and
other histone-binding molecules. Such modifications affect the packing of the DNA
molecule around histones in the cell nucleus. The combinatorial regulation of such
modifications regulates access to the gene sequences (Gibney and Nolan, 2010).
Epigenetic changes are believed to be heritable and they constitute a major source
of variation at individual and population level (Johnson and Tricker, 2010). Tran-
scriptional requlation is the next major regulatory layer in protein synthesis. So-
called transcription factor proteins can regulate the transcription rate by binding
to control elements in gene regulatory region in a combinatorial fashion. Post-
transcriptional modifications will then regulate pre-mRNA splicing. Up to 95%
of human multi-exon genes are estimated to have alternative splice variants (Pan
et al., 2008). Consequently, a variety of related proteins can be encoded by a single
gene. This contributes to the structural and functional diversity of cell function
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(Stetefeld and Ruegg, 2005). Several mechanisms will then affect mRNA degra-
dation rates. For instance, micro-RNAs that are small, 21-25 basepair nucleotide
sequences can inactivate specific mRNA transcripts through complementary base
pairing, leading to mRNA degradation, or prevention of translation. Finally, post-
translational modifications, protein degradation, and other mechanisms will affect
the three-dimensional structure and life cycle of a protein. The proteins will par-
ticipate in further cell-biological processes. The processes are in continuous inter-
action and form complex functional networks, which regulate the life processes of
an organism (Alberts et al., 2002).

2.2 Organization of genetic information

The understanding of the structure and functional organization of the genome
is rapidly accumulating with the developing genome-scanning technologies and
computational methods. This section provides an overview to key structural and
functional layers of the human genome.

2.2.1 Genome structure

The genome is a dynamic structure, organized and regulated at multiple levels
of resolution from individual nucleotide base pairs to complete chromosomes (Fig-
ure 2.1.1B; Brown (2006)). A major portion of heritable variation between individ-
uals has been attributed to differences in the genomic DNA sequence. Tradition-
ally, main genetic variation was believed to arise from small point mutations, so-
called single-nucleotide polymorphisms (SNPs), in protein-coding DNA. Recently,
it has been increasingly recognized that structural variation of the genome makes
a remarkable contribution to genetic variation. Structural variation is observed at
all levels of organization from single-nucleotide polymorphisms to large chromo-
somal rearrangements, including deletions, insertions, duplications, copy-number
variants, inversions and translocations of genomic regions (Feuk et al., 2006; Sharp
et al., 2006). Such modifications can directly and indirectly influence transcript-
ional activity and contribute to human diversity and health (Collins et al., 2003;
Hurles et al., 2008).

The draft DNA sequence of the complete human genome was published in 2001
(International human genome sequencing consortium, 2001; Venter et al., 2001).
The human genome contains three billion base pairs and approximately 20,000-
25,000 protein-coding genes (International Human Genome Sequencing Consor-
tium, 2004). The protein-coding exons comprise less than 1.5% of the human
genome sequence. Approximately 5% of the human genome sequence has been
conserved in evolution for more than 200 million years, including the majority of
protein-coding genes (The ENCODE Project Consortium, 2007; Mouse Genome
Sequencing Consortium, 2002). Half of the genome consists of highly repetitive
sequences. The genome sequence contains structural elements such as centromeres
and telomeres, repetitive and mobile elements, (Prak and Kazazian Jr., 2000),
retroelements (Bannert and Kurth, 2004), and non-coding, non-repetitive DNA
(Collins et al., 2003). The functional role of intergenic DNA, which forms 75% of
the genome, is to a large extent unknown (Venter et al., 2001). Recent evidence
suggests that the three-dimensional organization of the chromosomes, which is to
a large extent regulated by the intergenic DNA is under active selection, can have
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a remarkable regulatory role (Lieberman-Aiden et al., 2009; Parker et al., 2009).
Comparison of the human genome with other organisms, such as the mouse (Mouse
Genome Sequencing Consortium, 2002) can highlight important evolutionary dif-
ferences between species. For a comprehensive review of the structural properties
of the human genome, see Brown (2006).

2.2.2 Genome function

In protein synthesis, the gene sequence is transcribed into pre-mRNA, which is
then further modified into mature messenger-RNA and transported to cytoplasm.
An average cell contains over 300,000 mRNA molecules, and the mRNA concen-
tration, or expression levels of individual genes, vary according to Zipf’s law, a
power-law distribution where most genes are expressed at low concentrations, per-
haps only one or few copies of the mRNA per cell on average, and a small number
of genes are highly expressed, potentially with thousands of copies per cell (see
Carninci, 2009; Furusawa and Kaneko, 2003). Cell-biological processes are re-
flected at the transcriptional level. Transcriptional activity varies by cell type,
environmental conditions and time. Different collections of genes are active in
different contexts. Gene expression, or mRNA expression, refers to the expression
level of an mRNA transcript at particular physiological condition and time point.
In addition to protein-coding mRNA molecules that are the main target of analy-
sis in this thesis, the cell contains a variety of other functional and non-functional
mRNA transcripts, for instance micro-RNAs, ribosomal RNA and transfer-RNA
molecules (Carninci, 2009; Johnson et al., 2005).

The transcriptome refers to the complete collection of mRNA sequences of an
organism. This is a central functional layer of the genome that regulates protein
production in the cells, with a significant role in creating genetic variation (Jordan
et al., 2005). According to current estimates, up to 90% of the eukaryotic genome
can be transcribed (Consortium, 2005; Gagneur et al., 2009). The protein-coding
mRNA transcripts are translated into proteins at ribosomes during protein syn-
thesis.

The proteome refers to the collection of protein products of an organism. The
proteome is a main functional layer of the genome. Since the final protein products
carry out a main portion of the actual cell functions, techniques for monitoring
the concentrations of all proteins and their modified forms in a cell simultane-
ously would significantly help to improve the understanding of the cellular systems
(Collins et al., 2003). However, sensitive, reliable and cost-efficient genome-wide
screening techniques for measuring protein expression are currently not available.
Therefore genome-wide measurements of the mRNA expression levels are often
used as an indirect estimate of protein activity.

In addition to the DNA, RNA and proteins, the cell contains a variety of other
small molecules. The extreme functional diversity of living organisms emerges from
the complex network of interactions between the biomolecular entities (Barabési
and Oltvai, 2004; Hartwell et al., 1999). Understanding of these networks and their
functional properties is crucial in understanding cell function (Collins et al., 2003;
Schadt, 2009). However, the systemic properties of the interactome are poorly
characterized and understood due to the complexity of biological phenomena and
incomplete information concerning the interactions. The cell-biological processes
are inherently modular (Hartwell et al., 1999; Thmels et al., 2002; Lauffenburger,
2000), and they exhibit complex pathway cross-talk between the cell-biological
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processes (Li et al., 2008). In modular systems, small changes can have significant
regulatory effects (Espinosa-Soto and Wagner, 2010).

2.3 Genomic data resources

Systematic observations from the various functional and regulatory layers of the
genome are needed to understand cell-biological systems. Efficient sharing and
integration of genomic information resources through digital media has enabled
large-scale investigations that no single institution could afford. The public human
genome sequencing project (International human genome sequencing consortium,
2001) is a prime example of such project. Results from genome-wide transcriptio-
nal profiling studies are routinely deposited to public repositories (Barrett et al.,
2009; Parkinson et al., 2009). Sharing of original data is increasingly accepted as
the scientific norm, often following explicit data release policies. The establishment
of large-scale databases and standards for representing biological information sup-
port the efficient use of these resources (Bammler et al., 2005; Brazma et al., 2006).
A continuously increasing array of genomic information is available in these data-
bases, concerning aspects of genomic variability across individuals, disease states,
and species (Brent, 2008; Church, 2005; Cochrane and Galperin, 2010; G10KCOS
consortium, 2009; The Cancer Genome Atlas Research Network, 2008).

2.3.1 Community databases and evolving biological know-
ledge

Genomic sequence databases

During the human genome project and preceding sequencing projects DNA se-
quence reads were among the first sources of biological data that were collected
in large-scale public repositories, such as GenBank (Benson et al., 2010). Gen-
Bank contains comprehensive sequence information of genomic DNA and RNA
for a number of organisms, as well as a variety of information concerning the
genes, non-coding regions, disease associations, variation and other genomic fea-
tures. Online analysis tools, such as the Ensembl Genome browser (Flicek et al.,
2010), facilitate efficient use of these annotation resources. Next-generation se-
quencing technologies provide rapidly increasing sequencing capacity to investigate
sequence variation between individuals, populations and disease states (Ledford,
2010; McPherson, 2009). In particular, the human and mouse transcriptome se-
quence collections at the Entrez Nucleotide database of GenBank are utilized in
this thesis, in Publications 1 and 2.

Transcriptome databases

Gene expression measurement provides a snapshot of mRNA transcript levels in a
cell population at a specific time and condition, reflecting the activation patterns
of the various cell-biological processes. While gene expression measurements pro-
vide only an indirect view to cellular processes, their wide availability provides a
unique resource for investigating gene co-regulation on a genome- and organism-
wide scale. Versatile collections of microarray data in public repositories, such
as the Gene Expression Omnibus (GEO; Barrett et al. (2009)) and ArrayExpress
(Parkinson et al., 2009) are available for human and model organisms, and they
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contain valuable information of cell function (Consortium, 2005; DeRisi et al.,
1997; Russ and Futschik, 2010; Zhang et al., 2004).

Several techniques are available for quantitative and highly parallel measure-
ments of mRNA or gene expression, allowing the measurement of the expression
levels of tens of thousands of mRNA transcripts simultaneously (Bradford et al.,
2010). Microarray techniques are routinely used to measure the expression levels
of tens of thousands of mRNA transcripts in a given sample, and transcriptio-
nal profiling is currently a main high-throughput technique used to investigate
gene function at genome- and organism-wide scale (Gershon, 2005; Yauk et al.,
2004). Increasing amounts of transcriptional profiling data are being produced
by sequencing-based methods (Carninci, 2009). A main difference between the
microarray- and sequencing-based techniques is that gene expression arrays have
been designed to measure predefined mRNA transcripts, whereas sequencing-based
methods do not require prior information of the measured sequences, and enable
de novo discovery of expressed transcripts (Bradford et al., 2010; 't Hoen et al.,
2008). Large-scale microarray repositories provide currently the most mature tools
for data processing and retrieval, and form the main source of transcriptome data
in this thesis.

Microarray technology is based on the base pairing property of nucleic acid se-
quences where the DNA or RNA sequences in a sample bind to the complementary
nucleotide sequences on the array. This is called hybridization. The measurement
process begins by the collection of cell samples and isolation of the sample mRNA.
The isolated mRNA is converted to cDNA, labeled with specific marker molecules,
and hybridized on complementary probe sequences on the array. The array sur-
face may contain hundreds of thousands of spots, each containing specific probe
sequences designed to uniquely match with particular mRNA sequences. The hy-
bridization level reflects the target mRNA concentration in the sample, and it is
estimated by measuring the intensity of light emitted by the label molecules with
a laser scanner. Short oligonucleotide arrays (Lockhart et al., 1996) are among
the most widely used microarray technologies, and they are the main source of
mRNA expression data in this thesis. Short oligonucleotide arrays utilize multi-
ple, typically 10-20, probes for each transcript target that bind to different regions
of the same transcript sequence. Use of several 25-nucleotide probes for each target
leads to more robust estimates of transcript activity. Each probe is expected to
uniquely hybridize with its intended target, and the detected hybridization level is
used as a measure of the activity of the transcript. A short oligonucleotide array
measures absolute expression levels of the mRNA sequences; relative differences
between conditions can be investigated afterwards by comparing these measure-
ments. A standard whole-genome array measures typically ~20,000-50,000 unique
transcript sequences. A single microarray experiment can therefore produce hun-
dreds of thousands of raw observations.

Comparison and integration of individual microarray experiments is often chal-
lenging due to remarkable experimental variation between the experiments. Com-
mon standards have been developed to advance the comparison and integration
(Brazma et al., 2001, 2006). Carefully controlled integrative datasets, so-called
gene expression atlases, contain thousands of genome-wide measurements of tran-
scriptional activity across diverse conditions in a directly comparable format. Ex-
amples of such data collections include GeneSapiens (Kilpinen et al., 2008), the
human gene expression atlas of the European Bioinformatics Institute (Lukk et al.,
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2010), as well as the NCI-60 cell line panel (Scherf et al., 2000). Integrative anal-
ysis of large and versatile transcriptome collections can provide a holistic view of
transcriptional activity of the various cell-biological processes, and opens up possi-
bilities to discover previously uncharacterized cellular mechanisms that contribute
to human health and disease.

Other types of microarray data

Microarray techniques can also be used to study other functional aspects of the
genome, including epigenetics and micro-RNA regulation, chromosomal aberra-
tions and polymorphisms, alternative splicing, as well as transcription factor bind-
ing (Butte, 2002; Hoheisel, 2006). For instance, chromosomal aberrations can be
measured with the array comparative genome hybridization method (aCGH; Pinkel
and Albertson 2005), which is based on hybridization of DNA sequences on the
array surface. Copy number changes are a particular type of chromosomal aber-
rations, which are a major mechanism for cancer development and progression.
Copy number alterations can cause changes in gene- and micro-RNA expression,
and ultimately cell-biological processes (Beroukhim et al., 2010). A public reposi-
tory of copy number measurement data is provided for instance by the CanGEM
database (Scheinin et al., 2008). In Publication 4, microarray measurements of
DNA copy number changes are integrated with transcriptional profiling data to
discover potential cancer genes for further biomedical analysis.

Pathway and interaction databases

Curated information concerning cell-biological processes is valuable in both exper-
imental design and validation of computational studies (Blake, 2004). Represen-
tation of dynamic biochemical reactions in their full richness is a challenging task
beyond a mere listing of biochemical events; a variety of proteins and other com-
pounds interact in a hierarchical manner through various molecular mechanisms
(Hartwell et al., 1999; Przytycka et al., 2010). Standardized database formats
such as the BioPAX (BioPAX workgroup, 2005) and SBML (Strombéck and Lam-
brix, 2005) advance the accumulation of highly structured biological knowledge
and automated analysis of such data. A huge body of information concerning
cell-biological processes is available in public repositories. The most widely used
annotation resources include the Gene Ontology (GO) database (Ashburner et al.,
2000) and the KEGG pathway database (Kanehisa et al., 2010). The GO database
provides functional annotations for genes and can be used for instance to detect
enrichment of certain functional categories among the key findings from compu-
tational analysis, as in Publication 6, where enrichment analysis is used for both
validation and interpretation purposes. Pathways are more structured represen-
tations concerning cellular processes and interactions between molecular entities.
Such prior information can be used to guide computational modeling, as in Pub-
lication 3, where pathway information derived from the KEGG pathway database
is used to guide organism-wide discovery and analysis of transcriptional response
patterns.

Evolving biological knowledge

The collective knowledge about genome organization and function is constantly
updated and refined by improved measurement techniques and accumulation of
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data (Sebat, 2007). This can alter the analysis and interpretation of results from
large-scale genomic screens. For instance, evolving gene and transcript defini-
tions are known to significantly affect microarray interpretation. Probe design
on microarray technology relies on sequence annotations that may have changed
significantly after the original array design. Reinterpretation of microarray data
based on updated probe annotations has been shown to improve the accuracy
and comparability of microarray results (Dai et al., 2005; Hwang et al., 2004;
Mecham et al., 2004b). Bioinformatics studies routinely take into account updates
in genome version, genome build, in new analyses. The constantly refined bio-
logical data highlights the need to account for this uncertainty in computational
analyses. In Publications 1 and 2, explicit computational strategies that are robust
against evolving transcript definitions are developed for microarray data analysis.

2.3.2 Challenges in high-throughput data analysis

High-throughput genetic screens are inherently noisy. Controlling all potential
sources of variation in the measurement process is increasingly difficult when au-
tomated measurement techniques can produce millions of data points in a single
experiment, concerning extremely complex living systems that are to a large extent
poorly understood.

Noise arises from both technical and biological sources (Butte, 2002), and sys-
tematic variation between laboratories, measurement batches and measurement
platforms has to be taken into account when combining the results across individ-
ual studies (Heber and Sick, 2006; MAQC Consortium, 2006). Moreover, genomic
knowledge is constantly evolving, which can potentially change the interpretation
of previous experiments (see e.g. Dai et al., 2005). The various sources of noise
and uncertainty in microarray studies are discussed in more detail in Chapter 4.

High dimensionality of the data and small sample size form another challenge
for the analysis of high-throughput functional genomics data. Tens of thousands
of transcripts can be measured simultaneously in a single microarray experiment,
which greatly exceeds the number of available samples in most biomedical studies.
Small sample sizes leave considerable uncertainty in the analyses; few observations
contain very limited information concerning the complex and high-dimensional
phenomena and potential interactions between different parts of the system. Over-
fitting of the models and the problem of multiple testing forms considerable chal-
lenges in such situations. While automated analysis methods can generate thou-
sands of hypotheses concerning the system, prioritizing the findings and charac-
terizing uncertainty in the predictions become central issues in the analysis. The
curse of dimensionality, coupled with the high levels of noise in functional genomics
studies, is therefore posing particular challenges for computational modeling (Saeys
et al., 2007).

The challenges in controlling the various sources of uncertainty have led to
remarkable problems in reproducing microarray results (Ioannidis et al., 2009),
but maturing technology and the development of common standards and analyti-
cal procedures are constantly improving the reliability of high-throughput screens
(Allison et al., 2006; Reimers, 2010; MAQC Consortium, 2006). The models de-
veloped in this thesis combine statistical evidence across related experiments to
improve the reliability of the analysis and to increase modeling power. Gener-
ative probabilistic models provide a rigorous framework for handling noise and
uncertainty in the data and models.
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2.4 Genomics and health

Genomic variation between individuals has remarkable and to a large extent un-
known contribution to health and disease susceptibility. Large-scale characteriza-
tion of the variability between individuals and populations is expected to elucidate
genomic mechanisms associated with disease, as well as to lead to the discovery
of novel medical treatments. High-throughput genomics can provide new tools
to understand disease mechanisms (Braga-Neto and Marques, 2006; Lage et al.,
2008), to 'hack the genome’ (Evanko, 2006) to treat diseases (Volinia et al., 2010),
and to guide personalized therapies that take into account the individual variabil-
ity in sensitivity and responses to treatments (Church, 2005; Downward, 2006;
Foekens et al., 2008; Ocana and Pandiella, 2010; van 't Veer and Bernards, 2008).
Disease signatures are potentially robust across tissues and experiments (Dudley
et al., 2009; Hu et al., 2006). Genomic screens have revealed new disease subtypes
(Bhattacharjee et al., 2001), and led to the discovery of various diagnostic (Lee
et al., 2008; Su et al., 2009; Tibshirani et al., 2002) and prognostic (Beer et al.,
2002) biomarkers. Diseases cause coordinated changes in gene activity through
biomolecular networks (Cabusora et al., 2005). Integration of chemical, genomic
and pharmacological functional genomics data can also help to predict new drug
targets and responses (Lamb et al., 2006; Yamanishi et al., 2010). Genomic mu-
tations can also affect genome function and cause diseases (Taylor et al., 2008).
Cancer is an example of a prevalent genomic disease. Boveri (1914) discovered that
cancer cells have chromosomal imbalances, and since then the understanding of ge-
nomic changes associated with cancer has continuously improved (Stratton et al.,
2009; Wunderlich, 2007). For instance, many human micro-RNA genes are located
at cancer-associated genomic regions and are functionally altered in cancers (see
Calin and Croce, 2006). Genomic changes also affect transcriptional activity of the
genes (Myllykangas et al., 2008). Publication 4 introduces a novel computational
approach for screening cancer-associated DNA mutations with functional implica-
tions by genome-wide integration of chromosomal aberrations and transcriptional
activity.

This chapter has provided an overview to central modeling challenges and re-
search topics in functional genomics. In the following chapters, particular method-
ological approaches are introduced to solve research tasks in large-scale analysis
of the human transcriptome. In particular, methods are introduced to increase
the reliability of high-throughput measurements, to model large-scale collections
of transcriptome data and to integrate transcriptional profiling data to other lay-
ers of genomic information. The next chapter provides general methodological
background for these studies.
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Chapter 3

Statistical learning and
exploratory data analysis

Essentially, all models are wrong, but some are useful.

G.E.P. Box and N.R. Draper (1987)

Models are condensed, simplified representations of observed phenomena. Mod-
els can be used to describe observations and to predict future events. Two key
aspects in modeling are the construction and learning of formal representations
of the observed data. Complex real-world observations contain large amounts of
uncontrolled variation, which is often called noise; all aspects of the data cannot
be described within a single model. Therefore, a modeling compromise is needed
to decide what aspects of data to describe and what to ignore. The second step
in modeling is to fill in, to learn, details of the formal representation based on the
actual empirical observations. Various learning algorithms are typically available
that differ in efficiency and accuracy. For instance, improvements in computation
time can often be achieved by potential decrease in accuracy. An inference com-
promise is needed to decide how to balance between these and other potentially
conflicting objectives of the learning algorithm; the relative importance of each
factor depends on the particular application and available resources, and affects
the choice of the learning procedure. The modeling and inference compromises are
at the heart of data analysis. Ultimately, the value of a model is determined by
its ability to advance the solving of practical problems.

This chapter gives an overview of the key concepts in statistical modeling cen-
tral to the topics of this thesis. The objectives of exploratory data analysis and
statistical learning are considered in Section 3.1. The methodological framework is
introduced in Section 3.2, which contains an overview of central concepts in proba-
bilistic modeling and the Bayesian analysis paradigm. Key issues in implementing
and validating the models are discussed in Section 3.3.

3.1 Modeling tasks

Understanding requires generalization beyond particular observations. While em-
pirical observations contain information of the underlying process that generated
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the data, a major challenge in computational modeling is that empirical data is al-
ways finite and contains only limited information of the system. Traditional statis-
tical models are based on careful hypothesis formulation and systematic collection
of data to support or reject a given hypothesis. However, successful hypothesis
formulation may require substantial prior knowledge. When minimal knowledge of
the system is available, there is a need for exploratory methods that can recognize
complex patterns and extract features from empirical data in an automated way
(Baldi and Brunak, 1999). This is a central challenge in computational biology,
where the investigated systems are extremely complex and contain large amounts
of poorly characterized and uncontrolled sources of variation. Moreover, the data
of genomic systems is often very limited and incomplete. General-purpose algo-
rithms that can learn relevant features from the data with minimal assumptions are
therefore needed, and they provide valuable tools in functional genomics studies.
Classical examples of such exploratory methods include clustering, classification
and visualization techniques. The extracted features can provide hypotheses for
more detailed experimental testing and reveal new, unexpected findings. In this
work, general-purpose exploratory tools are developed for central modeling tasks
in functional genomics.

3.1.1 Central concepts in data analysis

Let us start by defining some of the basic concepts and terminology. Data set in
this thesis refers to a finite collection of observations, or samples. In experimental
studies, as in biology, a sample typically refers to the particular object of study,
for instance a patient or a tissue sample. In computational studies, sample refers
to a numerical observation, or a subset of observations, represented by a numerical
feature vector. Each element of the feature vector describes a particular feature of
the observation. Given D features and N samples, the data set is presented as a
matrix X € RP*Y  where each column vector x € RP represents a sample and each
row corresponds to a particular feature. The features can represent for instance
different experimental conditions, time points, or particular summaries about the
observations. This is the general structure of the observations investigated in this
work.

The observations are modeled in terms of probability densities; the samples are
modeled as independent instances of a random variable. A central modeling task is
to characterize the underlying probability density of the observations, p(x). This
defines a topology in the sample space and provides the basis for generalization
beyond empirical observations. As explained in more detail in Section 3.2, the
models are formulated in terms of observations X, model parameters 8, and latent
variables Z that are not directly observed, but characterize the underlying process
that generated the data.

Ultimately, all models describe relationships between objects. Similarity is
therefore a key concept in data analysis; the basis for characterizing the relations,
for summarizing the observations, and for predicting future events. Measures of
similarity can be defined for different classes of objects such as feature vectors,
data sets, or random variables. Similarity in general is a vague concept. Euclidean
distance, induced by the Euclidean metrics, is a common (dis-)similarity mea-
sure for multivariate observations. Correlation is a standard choice for univariate
random variables. Mutual information is an information-theoretic measure of sta-
tistical dependency between two random variables, characterizing the decrease in
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the uncertainty concerning the realization of one variable, given the other one. The
uncertainty of a random variable X is measured in terms of entropy' (Shannon,
1948). The mutual information between two random variables is then given by
I(X,Y) = H(X) — H(X|Y) (see e.g. Gelman et al., 2003). The Kullback-Leibler
divergence, or KL—divergence, is a closely related non—symmetric dissimilarity mea-
sure for probability distributions p, g, defined as dg 1, (p, ¢ f p(x) log q(g dx (see
e.g. Bishop, 2006). Mutual information between two random variables can be al-
ternatively formulated as the KL—divergence between their joint density p(x,y)
and the product of their independent marginal densities, ¢(x,y) = pa(x)py(¥),
which gives the connection I(X,)) = drr(p(X,¥), Pz (X)py(y)). Mutual informa-
tion and KL-divergence are central information-theoretic measures of dependency
employed in the models of this thesis.

It is important to notice that measures of similarity are inherently coupled
to the statistical representation of data and to the goals of the analysis; differ-
ent representations can reveal different relationships between observations. For
instance, the Euclidean distance is sensitive to scaling of the features; represen-
tation in natural or logarithmic scale, or with different units can potentially lead
to very different analysis results. Not all measures are equally sensitive; mutual
information can naturally detect non-linear relationships, and it is invariant to
the scale of the variables. On the other hand, estimating mutual information is
computationally demanding.

Feature selection refers to computational techniques for selecting, scaling and
transforming the data into a suitable form for further analysis. Feature selection
has a central role in data analysis, and it is implicitly present in all analysis tasks
in selecting the investigated features for the analysis.

There are no universally optimal stand-alone feature selection techniques, since
the problem is inherently entangled with the analysis task and multiple equally op-
timal feature sets may be available for instance in classification or prediction tasks
Guyon and Elisseeft (2003); Saeys et al. (2007). Successful feature selection can re-
duce the dimensionality of the data with minimal loss of relevant information, and
focus the analysis on particular features. This can reduce model complexity, which
is expected to yield more efficient, generalizable and interpretable models. Feature
selection is particularly important in genome-wide profiling studies, where the di-
mensionality of the data is large compared to the number of available samples, and
only a small number of features are relevant for the studied phenomenon. This is
also known as the large p, small n problem (West, 2003). Advanced feature selec-
tion techniques can take into account dependencies between the features, consider
weighted combinations of them, and can be designed to interact with the more
general modeling task, as for instance in the nearest shrunken centroids classifier
of Tibshirani et al. (2002). The constrained subspace clustering model of Publi-
cation 3 can be viewed as a feature selection procedure, where high-dimensional
genomic observations are decomposed into distinct feature subsets, each of which
reveals different relationships of the samples. In Publication 4, identification of
maximally informative features between two data sets forms a central part of a
regularized dependency modeling framework. In Publications 3-4 the procedure
and representations are motivated by biological reasoning and analysis goals.

I Entropy is defined as H(X) = — f p(x) log p(x)dx for a continuous variable.
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3.1.2 Exploratory data analysis

Ezploratory data analysis refers to the use of computational techniques to sum-
marize and visualize data in order to facilitate the generation of new hypotheses
for further study when the search space would be otherwise exhaustively large
(Tukey, 1977). The analysis strategy takes the observations as the starting point
for discovering interesting regularities and novel research hypotheses for poorly
characterized large-scale systems without prior knowledge. The analysis can then
proceed from general observations of the data toward confirmatory data analysis,
more detailed investigations and hypotheses that can be tested in independent
data sets with standard statistical procedures. Exploratory data analysis differs
from traditional hypothesis testing where the hypothesis is given. Light-weight ex-
ploratory tools are particularly useful with large data sets when prior knowledge on
the system is minimal. Standard exploratory approaches in computational biology
include for instance clustering, classification and visualization techniques (Evanko,
2010; Polanski and Kimmel, 2007).

Cluster analysis refers to a versatile family of methods that partition data into
internally homogeneous groups of similar data points, and often at the same time
minimize the similarity between distinct clusters. Clustering techniques enable
class discovery from the data. This differs from classification where the target
is to assign new observations into known classes. The partitions provided by
clustering can be nested, partially overlapping or mutually exclusive, and many
clustering methods generalize the partitioning to cover previously unseen data
points (Jain and Dubes, 1988). Clustering can provide compressed representations
of the data based on a shared parametric representation of the observations within
each cluster, as for instance in K-means or Gaussian mixture modeling (see e.g.
Bishop, 2006). Certain clustering approaches, such as the hierarchical clustering
(see e.g. Hastie et al., 2009), apply recursive schemes that partition the data into
internally homogeneous groups without providing a parametric representation of
the clusters. Cluster structure can be also discovered by linear algebraic operations
on the distance matrices, as for instance in spectral clustering. The different
approaches often have close theoretical connections. Clustering in general is an ill-
defined concept that refers to a set of related but mutually incompatible objectives
(Ben-David and Ackerman, 2008; Kleinberg, 2002). Cluster analysis has been
tremendously popular in computational biology, and a comprehensive review of the
different applications are beyond the scope of this thesis. It has been observed, for
instance, that genes with related functions have often similar expression profiles
and are clustered together, suggesting that clustering can be used to formulate
hypotheses concerning the function of previously uncharacterized genes (DeRisi
et al., 1997; Eisen et al., 1998), or to discover novel cancer subtypes with biomedical
implications (Sgrlie et al., 2001).

Visualization techniques are another widely used exploratory approach in com-
putational biology. Visualizations can provide compact and intuitive summaries
of complex, high-dimensional observations on a lower-dimensional display, for in-
stance by linear projection methods such as principal component analysis, or by
explicitly optimizing a lower-dimensional representation as in the self-organizing
map (Kohonen, 1982). Visualization can provide the first step in investigating
large data sets (Evanko, 2010).
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3.1.3 Statistical learning

Statistical learning refers to computational models that can learn to recognize
structure and patterns from empirical data in an automated way. Unsupervised
and supervised models form two main categories of learning algorithms.

Unsupervised learning approaches seek compact descriptions of the data with-
out prior knowledge. In probabilistic modeling, unsupervised learning can be for-
mulated as the task of finding a probability distribution that describes the observed
data and generalizes to new observations. This is also called density estimation.
The parameter values of the model can be used to provide compact representa-
tions of the data. Examples of unsupervised analysis tasks include methods for
clustering, visualization and dimensionality reduction. In cluster analysis, groups
of similar observations are sought from the data. Dimensionality reduction tech-
niques provide compact lower-dimensional representations of the original data,
which is often useful for subsequent modeling steps. Not all observations of the
data are equally valuable, and assessing the relevance of the observed regularities
is problematic in fully unsupervised analysis.

In supervised learning the task is to learn a function that maps the inputs x
to the desired outputs y based on a set of training examples in a generalizable
fashion, as in regression for continuous outputs, and classification for discrete
output variables. The supervised learning tasks are inherently asymmetric; the
inference proceeds from inputs to outputs, and prior information of the modeling
task is used to supervise the analysis; the training examples also include a desired
output of the model.

The models developed in this thesis can be viewed as unsupervised exploratory
techniques. However, the distinction between supervised and unsupervised models
is not strict, and the models in this thesis borrow ideas from both categories. The
models in Publications 2-3 are unsupervised algorithms that utilize prior infor-
mation derived from background databases to guide the modeling by constraining
the solutions. However, since no desired outputs are available for these models,
the modeling tasks differ from supervised analysis. The dependency modeling al-
gorithms of Publications 4-6 have close theoretical connections to the supervised
learning task. In contrast to supervised learning, the learning task in these algo-
rithms is symmetric; modeling of the co-occurring data sets is unsupervised, but
coupled. Each data set affects the modeling of the other data set in a symmet-
ric fashion, and, in analogy to supervised learning, prediction can then proceed
to either direction. Compared to supervised analysis tasks, the emphasis in the
dependency detection algorithms introduced in this thesis is in the discovery and
characterization of symmetric dependencies, rather than in the construction of
asymmetric predictive models.

3.2 Probabilistic modeling paradigm

The main contributions of this thesis follow the generative probabilistic modeling
paradigm. Generative probabilistic models describe the observed data in terms
of probability distributions. This allows the calculation of expectations, variances
and other standard summaries of the model parameters, and at the same time
allows to describe the independence assumptions and relations between variables,
and uncertainty in the modeling process in an explicit manner. Measurements
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are regarded as noisy observations of the general, underlying processes; generative
models are used to characterize the processes that generated the observations.

The first task in modeling is the selection of a model family - a set of potential
formal representations of the data. As discussed in Section 3.2.2, the representa-
tions can also to some extent be learned from the data. The second task is to define
the objective function, or cost function, which is used to measure the descriptive
power of the models. The third task is to identify the optimal model within the
model family that best describes the observed data with respect to the objective
function. This is called learning or model fitting. The details of the modeling pro-
cess are largely determined by the exact modeling task and particular nature of
the observations. The objectives of the modeling task are encoded in the selected
model family, the objective function and to some extent to the model fitting proce-
dure. The model family determines the space of possible descriptions for the data
and has therefore a major influence on the final solution. The objective function
can be used to prefer simple models or other aspects in the modeling process. The
model fitting procedure affects the efficiency and accuracy of the learning process.
For further information of these and related concepts, see Bishop (2006). A general
overview of the probabilistic modeling framework is given in the remainder of this
section.

3.2.1 Generative modeling

Generative probabilistic models view the observations as random samples from an
underlying probability distribution. The model defines a probability distribution
p(x) over the feature space. The model can be parameterized by model parame-
ters @ that specify a particular model within the model family. For convenience,
we assume that the model family is given, and leave it out from the notation.
In this thesis, the appropriate model families are selected based on biological hy-
potheses and analysis goals. Generative models allow efficient representation of
dependencies between variables, independence assumptions and uncertainty in the
inference (Koller and Friedman, 2009). Let us next consider central analysis tasks
in generative modeling.

Finite mixture models

Classical probability distributions provide well-justified and convenient tools for
probabilistic modeling, but in many practical situations the observed regularities
in the data cannot be described with a single standard distribution. However, a
sufficiently rich mixture of standard distributions can provide arbitrarily accurate
approximations of the observed data. In mizture models, a set of distinct, latent
processes, or components, is used to describe the observations. The task is to
identify and characterize the components and their associations to the individual
observations. The standard formulation assumes independent and identically dis-
tributed observations where each observation has been generated by exactly one
component. In a standard mixture model the overall probability density of the
data is modeled as a weighted sum of component distributions:

R
p(X) = Zﬂ-Tpr(x|07')7 (3'1)
r=1
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where the components are indexed by r, and [ p(x)dx = 1. Each mixture compo-
nent can have a different distributional form. The mixing proportion, or weight,
and model parameters of each component are denoted by m, and 6,., respectively,
with > m. = 1. Many applications utilize convenient standard distributions,
such as Gaussians, or other distributions from the exponential family. Then the
mixture model can be learned for instance with the EM algorithm described in
Section 3.3.1.

In practice, the mixing proportions of the components are often unknown. The
mixing proportions can be estimated from the data by considering them as stan-
dard model parameters to be fitted with a ML estimate. However, the procedure
is potentially prone to overfitting and local optima, i.e., it may learn to describe
the training data well, but fails to generalize to new observations. An alternative,
probabilistic way to determine the weights is to treat the mixing proportions as
latent variables with a prior distribution p(s). A standard choice is a symmetric
Dirichlet prior? m ~ Dir(%). This gives an equal prior weight for each com-
ponent and guarantees the standard exchangeability assumption of the mixture
component labels. A label determines cluster identity. Intuitively, exchangeability
corresponds to the assumption that the analysis is invariant to the ordering of the
data samples and mixture components. Compared to standard mixture models,
probabilistic mixture models have increased computational complexity.

Further prior knowledge can be incorporated in the model by defining prior
distributions for the other parameters of the mixture model. This can also be used
to regularize the learning process to avoid overfitting. A typical prior distribution
for the components of a Gaussian mixture model, parameterized by 0, = {u,., %, },
is the normal-inverse-Gamma prior (see e.g. Gelman et al., 2003).

Interpreting the mixture components as clusters provides an alternative, prob-
abilistic formulation of the clustering task. This has made probabilistic mixture
models a popular choice in the analysis of functional genomics data sets that
typically have high dimensionality but small sample size. Probabilistic analysis
takes the uncertainties into account in a rigorous manner, which is particularly
useful when the sample size is small. The number of mixture components is of-
ten unknown in practical modeling tasks, however, and has to be inferred based
on the data. A straightforward solution can be obtained by employing a suffi-
ciently large number of components in learning the mixture model, and selecting
the components having non-zero weights as a post-processing step. An alternative,
model-based treatment for learning the number of mixture components from the
data is provided by infinite mixture models considered in Section 3.2.2.

Latent variables and marginalization

The observed variables are often affected by latent variables that describe relevant
structure in the model, but are not directly observed. The latent variable values
can be, to some extent, inferred based on the observed variables. Combination of
latent and observed variables allows the description of complex probability spaces
in terms of simple component distributions and their relations. Use of simple
component distributions can provide an intuitive and computationally tractable
characterization of complex generative processes underlying the observations.

2 Dirichlet distribution is the probability density Dir(w|n) ~ [],. 777~ where the multivariate
random variable 7t and the positive parameter vector n have their elements indexed by r, 0 <
m < 1,and >, m = 1.
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A generative latent variable model specifies the distributional form and rela-
tionships of the latent and observed variables. As a simple example, consider the
probabilistic interpretation of probabilistic component analysis (PCA), where the
observations x are modeled with a linear model x = Wz 4 £ where a normally
distributed latent variable z ~ N(0,1) is transformed with the parameter matrix
W and isotropic Gaussian noise (&) is assumed on the observations. More com-
plex models can be constructed by analogous reasoning. A complete-data likelihood
p(X,Z|0) defines a joint density for the observed and latent variables. Only a sub-
set of variables in the model is typically of interest for the actual analysis task. For
instance, the latent variables may be central for describing the generative process
of the data, but their actual values may be irrelevant. Such variables are called
nuisance variables. Their integration, or marginalization, provides probabilistic
averaging over the potential realizations. Marginalization over the latent variables
in the complete-data likelihood gives the likelihood

p(X|0) = /Z p(X, Z|0)dZ. (3.2)

Marginalization over the latent variables collapses the modeling task to finding
optimal values for model parameters @, in a way that takes into account the un-
certainty in latent variable values. This can reduce the number of variables in the
learning phase, yield more straightforward and robust inferences, as well as speed
up computation. However, marginalization may lead to analytically intractable
integrals. As certain latent variables may be directly relevant, marginalization de-
pends on the overall goals of the analysis and may cover only a subset of the latent
variables. In this thesis latent variables are utilized for instance in Publication 3,
which treats the sample-cluster assignments as discrete latent variables, as well as
in Publication 4, where a regularized latent variable model is introduced to model
dependencies between co-occurring observations.

3.2.2 Nonparametric models

Finite mixture models and latent variable models require the specification of model
structure prior to the analysis. This can be problematic since for instance the
number and distributional shape of the generative processes is unknown in many
practical tasks. However, the model structure can also to some extent be learned
from the data. Non-parametric models provide principled approaches to learn the
model structure from the data. In contrast to parametric models, the number and
use of the parameters in nonparametric models is flexible (see e.g. Hjort et al.,
2010; Miiller and Quintana, 2004). The infinite mixture of Gaussians, used as a
part of the modeling process in Publication 3, is an example of a non-parametric
model where both the number of components, as well as mixture proportions of
the component distributions are inferred from the data. Learning of Bayesian
network structure is another example of nonparametric inference, where relations
between the model variables are learned from the data (see e.g. Friedman, 2003).
While more complex models can describe the training data more accurately, an
increasing model complexity needs to be penalized to avoid overfitting and to
ensure generalizability of the model.

Nonparametric models provide flexible and theoretically principled approaches
for data-driven exploratory analysis. However, the flexibility often comes with
an increased computational cost, and the models are potentially more prone to
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overfitting than less flexible parametric models. Moreover, complex models can be
difficult to interpret.

Many nonparametric probabilistic models are defined by using the theory of
stochastic processes to impose priors over potential model structures. Stochas-
tic processes can be used to define priors over function spaces. For instance, the
Dirichlet process (DP) defines a probability density over the function space of
Dirichlet distributions®. The Chinese Restaurant Process (CRP) provides an in-
tuitive description of the Dirichlet process in the cluster analysis context. The
CRP defines a prior distribution over the number of clusters and their size distri-
bution. The CRP is a random process in which n customers arrive in a restaurant,
which has an infinite number of tables. The process goes as follows: The first
customer chooses the first table. Each subsequent customer m will select a ta-
ble based on the state F;,,_; of the restaurant tables after m — 1 customers have
arrived. The new customer m will select a previously occupied table ¢ with a
probability which is proportional to the number of customers seated at table i, i.e.
p(i|Fy—;) o< n;. Alternatively, the new customer will select an empty table with a
probability which is proportional to a constant a. The model prefers tables with
a larger number of customers, and is analogous to clustering, where the customers
and tables correspond to samples and clusters, respectively. This provides an in-
tuitive prior distribution for clustering tasks. The prior prefers compact models
with relatively few clusters, but the number of clusters is potentially infinite, and
ultimately determined based on the data.

Infinite mixture models

Infinite mixture models are a general class of nonparametric methods where the
number of mixture components are determined in a data-driven manner; the num-
ber of components is potentially infinite (see e.g. Miiller and Quintana, 2004; Ras-
mussen, 2000). An infinite mixture is obtained by letting R — oo in the finite
mixture model of Equation 3.1 and replacing the Dirichlet distribution prior of
the mixing proportions 7 by a Dirichlet process. The formal probability distri-
bution of the Dirichlet process can be intuitively derived with the so-called stick-
breaking presentation. Consider a unit length stick and a stick-breaking process,
where the breakpoint § is stochastically determined, following the beta distribu-
tion § ~ Beta(l,a), where « tunes the expected breaking point. The process
can be viewed as consecutively breaking off portions of a unit length stick to
obtain an infinite sequence of stick lengths m = Gy; m; = 5; ;;}(1 — 01), with
Yoo, m =1 (Ishwaran and James, 2001). This defines the probability distribution
Stick(ar) over potential partitionings of the unit stick. A truncated stick-breaking
representation considers only the first T' elements. Setting the prior 7w ~ Stick(«),
defined by the stick-breaking representation in Equation 3.1 assigns a prior on the
number of mixture components and their mixing proportions that are ultimately
learned from the observed data. The prior helps to find a compromise between
increasing model complexity and likelihood of the observations.

Traditional approaches used to determine the number mixture components are
based on objective functions that penalize increasing model complexity, for in-
stance in certain variants of the K-means or in spectral clustering (see e.g. Hastie

31f G is a distribution drawn from a Dirichlet process with the probability measure P over the
sample space, G ~ DP(P), then each finite partition { Ay}, of the sample space is distributed as
(G(Ar), ..., G(Ag)) ~ Dir(P(A1), ..., P(Ag)).
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et al., 2009). Other model selection criteria include cross-validation and com-
parison of the models in terms of their likelihood or various information-theoretic
criteria that seek a compromise between model complexity and fit (see e.g. Gelman
et al., 2003). However, the sample size may be insufficient for such approaches,
and the models may lack a rigorous framework to account for uncertainties in
the observations and model parameters. Modeling uncertainty in the parameters
while learning the model structure can lead to more robust inference in nonpara-
metric probabilistic models but also adds inherent computational complexity in
the learning process.

3.2.3 Bayesian analysis

The term ’Bayesian’ refers to interpretation of model parameters as variables. The
uncertainty over the parameter values, arising from limited empirical evidence, is
described in terms of probability distributions. This is in contrast to the traditional
view where parameters have fixed values with no distribution and the uncertainty
is ignored. The Bayesian approach leads to a learning task where the objective is
to estimate the posterior distribution p(0|X) of the model parameters 6, given the
observations X. The posterior is given by the Bayes’ rule (Bayes, 1763):

pX|0)p(9)

p(X)
The two key elements of the posterior are the likelihood and the prior. The like-
lihood p(X|0) describes the probability of the observations, given the parameter
values 8. The parameters can also characterize alternative model structures. The
prior p(€) encodes prior beliefs about the model and rewards solutions that match
with the prior assumptions or yield simpler models. Such regularizing properties
can be particularly useful when training data is scarce and there is considerable
uncertainty in the parameter estimates. With strong, informative priors, new ob-
servations have little effect on the posterior. In the limit of large sample size the
posterior converges to the ordinary likelihood p(X|0). The Bayesian inference pro-
vides a robust framework for taking the uncertainties into account when the data
is scarce, as it often is in practical modeling tasks. Moreover, the Bayes’ rule pro-
vides a formal framework for sequential update of beliefs based on accumulating
evidence. The prior predictive density p(X) = [ p(X,0)d6 is a normalizing con-
stant, which is independent of the parameters @ and can often be ignored during
model fitting.

The involved distributions can have complex non-standard forms and limited
empirical data can only provide partial evidence regarding the different aspects
of the data-generating process. Often only a subset of the parameters and other
variables and their interdependencies can be directly observed. The Bayesian ap-
proach provides a framework for making inferences on the unobserved quantities
through hierarchical models, where the probability distribution of each variable
is characterized by higher-level parameters, so-called hyperparameters. A similar
reasoning can be used to model the uncertainty in the hyperparameters, until the
uncertainties become modeled at an appropriate detail. Prior information can help
to compensate the lack of data on certain aspects of a model, and explicit models
for the noise can characterize uncertainty in the empirical observations. Distribu-
tions can also share parameters, which provides a basis for pooling evidence from
multiple sources, as for instance in Publication 4. In many applications only a

p(01X) = (3.3)
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subset of the parameters in the model are of interest and the modeling process
can be considerably simplified by marginalizing over the less interesting nuisance
variables to obtain an expectation over their potential values.

The Bayesian paradigm provides a principled framework for modeling the un-
certainty at all levels of statistical inference, including the parameters, the observed
and latent variables and the model structure; all information of the model is in-
corporated in the posterior distribution, which summarizes empirical evidence and
prior knowledge, and provides a complete description of the expected outcomes of
the data-generating process. When the data does not contain sufficient informa-
tion to decide between the alternative model structures and parameter values, the
Bayesian framework provides tools to take expectations over all potential models,
weighted by their relative evidence.

A central challenge in the Bayesian analysis is that the models often include
analytically intractable posterior distributions, and learning of the models can be
computationally demanding. Widely-used approaches for estimating posterior dis-
tributions include Markov Chain Monte Carlo (MCMC) methods and variational
learning. Stochastic MCMC methods provide a widely-used family of algorithms
to estimate intractable distributions by drawing random samples from these distri-
butions (see e.g. Gelman et al., 2003); a sufficiently large pool of random samples
will converge to the underlying distribution, and sample statistics can then be used
to characterize the distribution. However, sampling-based methods are computa-
tionally intensive and slow. In variational learning, considered in Section 3.3.1,
the intractable distributions are approximated by more convenient tractable dis-
tributions, which yields faster learning procedure, but potentially less accurate
results. While analysis of the full posterior distribution will provide a complete
description of the uncertainties regarding the parameters, simplified summary sta-
tistics, such as the mean, variance and quantiles of the posterior can provide a
sufficient characterization of the posterior in many practical applications. They
can be obtained for instance by summarizing the output of sampling-based or vari-
ational methods. Moreover, when the uncertainty in the results can be ignored,
point estimates can provide simple, interpretable summaries that are often useful
in further biomedical analysis, as for instance in Publication 2. Point estimates are
single optimal values with no distribution. However, point estimates are not nec-
essarily sufficient for instance in biomedical diagnostics and other prediction tasks,
where different outcomes are associated with different costs and it may be crucial
to assess the probabilities of the alternative outcomes. For further discussion on
learning the Bayesian models, see Section 3.3.1.

In this thesis the Bayesian approach provides a formal framework to perform
robust inference based on incomplete functional genomics data sets and to incor-
porate prior information of the models in the analysis. The Bayesian paradigm
can alternatively be interpreted as a philosophical position, where probability is
viewed as a subjective concept (Cox, 1946), or considered a direct consequence
of making rational decisions under uncertainty (Bernardo and Smith, 2000). For
further concepts in model selection, comparison and averaging in the Bayesian
analysis, see Gelman et al. (2003). For applications in computational biology, see
Wilkinson (2007).
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3.3 Learning and inference

The final stage in probabilistic modeling is to learn the optimal statistical presen-
tation for the data, given the model family and the objective function. This section
highlights central challenges and methodological issues in statistical learning.

3.3.1 Model fitting

Learning in probabilistic models often focuses on optimizing the model parame-
ters 6. In addition, posterior distribution of the latent variables, p(z|x, 0), can be
calculated. Estimating the latent variable values is called statistical inference. In
the Bayesian analysis, the model parameters can also be treated as latent vari-
ables with a prior probability density, in which case the distinction between model
parameters and latent variables will disappear. A comprehensive characterization
of the variables and their uncertainty would be achieved by estimating the full
posterior distribution. However, this can be computationally very demanding, in
particular when the posterior is not analytically tractable. The posterior is often
approximated with stochastic or analytical procedures, such as stochastic MCMC
sampling methods or variational approximations, and appropriate summary sta-
tistics. In many practical settings, it is sufficient to summarize the full posterior
distribution with a point estimate. Point estimates do not characterize the uncer-
tainties in the analysis result, but are often more convenient to interpret than full
posterior distributions.

Various optimization algorithms are available to learn statistical models, given
the learning procedure. The potential challenges in the optimization include com-
putational complexity and the presence of local optima on complex probability
density topologies, as well as unidentifiability of the models. Finding a global op-
timum of a complex model can be computationally exhaustive, and it can become
intractable with increasing sample size. In unidentifiable models, the data does
not contain sufficient information to choose between alternative models with equal
statistical evidence. Ultimately, the uncertainty in inference arises from limited
sample size and the lack of computational resources.

In the remainder of this section, let us consider more closely the particular
learning procedures central to this thesis: point estimates and variational approx-
imation, and the standard optimization algorithms used to learn such representa-
tions.

Point estimates

Assuming independent and identically distributed observations, the likelihood of
the data, given model parameters, is p(X|0) = [[, p(x;|@). This provides a prob-
abilistic measure of model fit and the objective function to maximize. Maximiza-
tion of the likelihood p(X|0) with respect to @ yields a mazimum likelihood (ML)
estimate of the model parameters, and specifies an optimal model that best de-
scribes the data. This is a standard point estimate used in probabilistic modeling.
Practical implementations typically operate on log-likelihood, the logarithm of the
likelihood function. As a monotone function, this yields the same optima, but has
additional desirable properties: it factorizes the product into a sum and is less
prone to numerical overflows during optimization.
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The mazimum a posteriori (MAP) estimate additionally takes prior informa-
tion of the model parameters into account. While the ML estimate maximizes
the likelihood p(X|0) of the observations, the MAP estimate maximizes the pos-
terior p(0]X) ~ p(X|0)p(0) of the model parameters. The objective function to
maximize is the log-likelihood

logp(0]X) ~ logp(X]|0) + logp(8). (3.4)

The prior is explicit in MAP estimation and the model contains the ML esti-
mate as a special case; assuming large sample size, or non-informative, uniform
prior p(@) ~ 1, the likelihood of the data p(X]|@) will dominate and the MAP esti-
mation becomes equivalent to optimizing p(X|0), yielding the traditional ML esti-
mate. The ML and MAP estimates are asymptotically consistent approximations
of the posterior distribution, since the posterior will converge a point distribution
with a large sample size. The computation and interpretation of point estimates is
straightforward compared to the use of posterior distributions in the full Bayesian
treatment. The differences between ML and MAP estimates highlight the role of
prior information in the modeling when training data is limited.

Variational inference

In certain modeling tasks the uncertainty in the model parameters needs to be
taken into account. Then point estimates are not sufficient. The uncertainty is
characterized by the posterior distribution p(8|X). However, the posterior distri-
butions are often intractable and need to be estimated by approximative methods.
Variational approzimations provide a fast and principled optimization scheme (see
e.g. Bishop, 2006) that yields only approximative solutions, but can accelerate
posterior inference by orders of magnitude compared to stochastic, sampling-based
MCMC methods that can in principle provide exact solutions, assuming that in-
finite computational resources are available. The potential decrease in accuracy
in variational approximations is often acceptable, given the gains in efficiency.
Variational approximation characterizes the uncertainty in @ with a tractable dis-
tribution ¢(0) that approximates the full, potentially intractable posterior p(6|X),

Variational inference is formulated as an optimization problem where an in-
tractable posterior distribution p(Z, 8|X) is approximated by a more easily tract-
able distribution ¢(Z, @) by minimizing the KL—-divergence between the two distri-
butions. This is also shown to maximize a lower bound of the marginal likelihood
p(X), and subsequently the likelihood of the data, yielding an approximation of
the overall model. The log-likelihood of the data can be decomposed into a sum
of the lower bound £(q) of the observed data and the KL-divergence dxr(q,p)
between the approximative and the exact posterior distributions:

logp(X) = L(q) + dr1(q,p), (3.5)
where
Lla) = J,a(Z 0)log”Tre; (3.6)
drr(q,p) = - J,4(Z,0) lOQP(Zze‘G))()'

The KL-divergence is non-negative, and equals to zero if and only if the ap-
proximation and the exact distribution are identical. Therefore L£(g) gives a
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lower bound for the log-likelihood logp(X) in Equation 3.5. Minimization of dgr,
with respect to ¢ will provide an analytically tractable approximation ¢(Z, ) of
p(Z,0]X). Minimization of dx, will also maximize the lower bound £(q) since the
log-likelihood logp(X) is independent of q. The approximation typically assumes
independent parameters and latent variables, yielding a factorized approximation
q(Z,0) = q.(Z)qe(0) based on tractable standard distributions. It is also possi-
ble to factorize ¢, and gg into further components. Variational approximations
are used for efficient learning of infinite multivariate Gaussian mixture models in
Publication 3.

Expectation—-Maximization (EM)

The EM algorithm is a general procedure for learning probabilistic latent variable
models (Dempster et al., 1977), and a special case of variational inference. The
algorithm provides an efficient algorithm for finding point estimates for model
parameters in latent variable models. The objective of the EM algorithm is to
maximize the marginal likelihood

p(XI6) = [ p(X.ZI0)iz (3.7)

of the observations X with respect to the model parameters 8. Marginalization
over the probability density of the latent variables provides an inference procedure
that is robust to uncertainty in the latent variable values. The algorithm iterates
between estimating the posterior of the latent variables, and optimizing the model
parameters (see e.g. Bishop, 2006). Given initial values 8¢ of the model param-
eters, the expectation step evaluates the posterior density of the latent variables,
p(z|x,0:), keeping 6, fixed. If the posterior is not analytically tractable, varia-
tional approximation ¢(z) can be used to obtain a lower bound for the likelihood
in Equation 3.7. The mazimization step optimizes the model parameters 8 with
respect to the following objective function:

Q(0,6,) = / W(ZIX., 6,)logp(X. Z|6)dZ. (3.8)

This is the expectation of the complete-data log-likelihood logp(X,Z|0) over the
latent variable density p(Z|X,8;), obtained from the previous expectation step.
The new parameter estimate is then

0:11 = argmaxgQ(0,0;).

The expectation and maximization steps determine an iterative learning pro-
cedure where the latent variable density and model parameters are iteratively
updated until convergence. The maximization step will also increase the target
likelihood of Equation 3.7, but potentially with a remarkably smaller computa-
tional cost (Dempster et al., 1977). In contrast to the marginal likelihood in
Equation 3.7, the complete-data likelihood in Equation 3.8 is logarithmized be-
fore integration in the maximization step. When the joint distribution p(x,z|0)
belongs to the exponential family, the logarithm will cancel the exponential in
algebraic manipulations. This can considerably simplify the maximization step.
When the likelihoods in the optimization are of suitable form, the iteration steps
can be solved analytically, which can considerably reduce required evaluations of
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the objective function. Convergence is guaranteed, if the optimization can increase
the likelihood at each iteration. However, the identification of a global optimum
is not guaranteed in the EM algorithm.

Incorporating prior information of the parameter values through Bayesian pri-
ors can be used to avoid overfitting and focus the modeling on particular features
in the data, as in the regularized dependency modeling framework of Publication 4,
where the EM algorithm is used to learn Gaussian latent variable models.

Standard optimization methods

Optimization methods provide standard tools to implement selected learning pro-
cedures. Optimization algorithms are used to identify parameter values that min-
imize or maximize the objective function, either globally, or in local surroundings
of the optimized value. Selection of optimization method depends on smooth-
ness and continuity properties of the objective function, required accuracy, and
available resources.

Gradient-based approaches optimize the objective function by assuming smooth,
continuous topology over the probability density where setting the derivatives to
zero will yield local optima. If a closed form solution is not available, it is of-
ten possible to estimate gradient directions in a given point. Optimization can
then proceed by updating the parameters towards the desired direction along the
gradient, gradually improving the objective function value in subsequent gradient
ascent steps. So-called quasi-Newton methods use function values and gradients
to characterize the optimized manifold, and to optimize the parameters along the
approximated gradients. An appropriate step length is identified automatically
based on the curvature of the objection function surface. The Broyden-Fletcher-
Goldfarb-Shanno (BFGS) (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970) method is a quasi-Newton approach used for standard optimization tasks in
this thesis.

3.3.2 Generalizability and overlearning

Probabilistic models are formulated in terms of probability distributions over the
sample space and parameter values. This forms the basis for generalization to
new, unobserved events. A generalizable model can describe essential character-
istics of the underlying process that generated the observations; a generalizable
model is also able to characterize future observations. Owverlearning, or overfitting
refers to models that describe the training data well, but do not generalize to new
observations. Such models describe not only the general processes underlying the
observations, but also noise in the particular observations. Avoiding overfitting
is a central aspect in modeling. Overlearning is particularly likely when training
data is scarce. While overfitting could in principle be avoided by collecting more
data, this is often not feasible since the cost of data collection can be prohibitively
large.

Generalizability can be measured by investigating how accurately the model
describes new observations. A standard approach is to split the data into a training
set, used to learn the model, and a test set, used to measure model performance on
unseen observations that were not used for training. In cross-validation the test
is repeated with several different learning and test sets to assess the variability
in the testing procedure. Cross-validation is used for instance in Publication 5 of
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this thesis. Bootstrap analysis (see, for instance, Efron and Tibshirani, 1994) is
another widely used approach to measure model performance. The observed data
is viewed as a finite realization of an underlying probability density. New samples
from the underlying density are obtained by re-sampling the observed data points
with replacement to simulate variability in the original data; observations from
the more dense regions of the probability space become re-sampled more often
than rare events. Each bootstrap sample resembles the probability density of the
original data. Modeling multiple data sets obtained with the bootstrap helps to
estimate the sensitivity of the model to variations in the data. Bootstrap is used
to assess model performance in Publication 6.

3.3.3 Regularization and model selection

In general, increasing model complexity will yield more flexible models, which have
higher descriptive power but are, on the other hand, more likely to overfit. There-
fore relatively simple models can often outperform more complex models in terms
of generalizability. A compromise between simplicity and descriptive power can be
obtained by imposing additional constraints or soft penalties in the modeling to
prefer compact solutions, but at the same time retain the descriptive power of the
original, flexible model family. This is called reqularization. Regularization is par-
ticularly important when the sample size is small, as demonstrated for instance in
Publication 4, where explicit and theoretically principled regularization is achieved
by setting appropriate priors on the model structure and parameter values. The
priors will then affect the MAP estimate of the model parameters. One commonly
used approach is to prefer sparse solutions that allow only a small number of the
potential parameters to be employed at the same time to model the data (see e.g.
Archambeau and Bach, 2008). A family of probabilistic approaches to balance
between model fit and model complexity is provided by information-theoretic cri-
teria (see e.g. Gelman et al., 2003). The Bayesian Information Criterion (BIC) is
a widely used information criterion that introduces a penalty term on the number
of model parameters to prefer simpler models. The log-likelihood L of the data,
given the model, is balanced by a measure of model complexity, qlog(N), in the
final objective function —2L + qlog(N). Here ¢ denotes the number of model pa-
rameters and N is the constant sample size of the investigated data set. The BIC
has been criticized since it does not address changes in prior distributions, and
its derivation is based on asymptotic considerations that hold only approximately
with finite sample size (see e.g. Bishop, 2006). On the other hand, BIC provides a
principled regularization procedure that is easy to implement. In this thesis, the
BIC has been used to regularize the algorithms in Publication 3.

3.3.4 Validation

After learning a probabilistic model, it is necessary to confirm the quality of the
model and verify potential findings in further, independent experiments. Valida-
tion refers to a versatile set of approaches used to investigate model performance,
as well as in model criticism, comparison and selection. Internal and external
approaches provide two complementary categories for model validation. Inter-
nal validation refers to procedures to assess model performance based on training
data alone. For instance, it is possible to estimate the sensitivity of the model
to initialization, parameterization, and variations in the data, or convergence of
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the learning process. Internal analysis can help to estimate the weaknesses and
generalizability of the model, and to compare alternative models. Bootstrap and
cross-validation are widely used approaches for internal validation and the analysis
of model performance (see e.g. Bishop, 2006). Bootstrap can provide information
about the sensitivity of the results to sampling effects in the data. Cross-validation
provides information about the model generalization performance and robustness
by comparing predictions of the model to real outcomes. FEzternal validation ap-
proaches investigate model predictions and fit on new, independent data sets and
experiments. Exploratory analysis of high-throughput data sets often includes
massive multiple testing, and provides potentially thousands of automatically gen-
erated hypotheses. Only a small set of the initial findings can be investigated more
closely by human intervention and costly laboratory experiments. This highlights
the need to prioritize the results and assess the uncertainty in the models.
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Chapter 4

Reducing uncertainty in
high-throughput microarray
studies

As far as the laws of mathematics refer to reality, they are not certain,
as far as they are certain, they do not refer to reality.

A. Einstein (1956)

Gene expression microarrays are currently the most widely used technology for
genome-wide transcriptional profiling, and they constitute the main source of data
in this thesis. An overview of microarray technology is provided in Section 2.3.1.
Microarray measurements are associated with high levels of noise from technical
and biological sources. Appropriate preprocessing techniques can help to reduce
noise and obtain reliable measurements, which is the crucial starting point for
any data analysis task. This chapter presents the first main contribution of the
thesis, preprocessing techniques that utilize side information in genomic sequence
databases and microarray data collections in order to improve the accuracy of high-
throughput gene expression data. The chapter is organized as follows: Section 4.1
gives an overview of the various sources of noise in high-throughput microarray
studies. Section 4.2 introduces a strategy for noise reduction based on side infor-
mation in external genomic sequence databases. Section 4.3 extends this model by
describing a model-based approach that additionally combines statistical evidence
across multiple microarray experiments in order to provide quantitative informa-
tion of probe performance and utilizes this information to improve the reliability
of high-throughput observations. The results are summarized in Section 4.4.

4.1 Sources of uncertainty

Measurement data obtained with novel high-throughput technologies comes with
high levels of uncontrolled biological and technical variation. This is often called
noise as it obscures the measurements, and adds potential bias and variance on
the signal of interest. Biological noise is associated with natural biological varia-
tion between cell populations, cellular processes and individuals. Single-nucleotide
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polymorphisms, alternative splicing and non-specific hybridization add biological
variation in the data (Dai et al., 2005; Zhang et al., 2005). More technical sources
of noise in the measurement process include RNA extraction and amplification,
experiment-specific variation, as well as platform- and laboratory-specific effects
(Choi et al., 2003; MAQC Consortium, 2006; Tu et al., 2002).

A significant source of noise on gene expression arrays comes from individ-
ual probes that are designed to measure the activity of a given transcript in a
biological sample. Figure 4.1A shows probe-level observations of differential gene
expression for a collection of probes designed to target the same mRNA transcript.
One of the probes is highly contaminated and likely to add unrelated variation to
the analysis. A number of factors affect probe performance. For instance, it has
been reported in Publication 1 and elsewhere (Hwang et al., 2004; Mecham et al.,
2004b) that a large portion of microarray probes may target unintended mRNA
sequences. Moreover, although the probes have been designed to uniquely hy-
bridize with their intended mRNA target, remarkable cross-hybridization with the
probes by single-nucleotide polymorphisms (Dai et al., 2005; Sliwerska et al., 2007)
and other mRNAs with closely similar sequences (Zhang et al., 2005) have been
reported; high-affinity probes with high GC-content may have higher likelihood of
cross-hybridization with nonspecific targets (Mei et al., 2003). Alternative splic-
ing (MAQC Consortium, 2006) and mRNA degradation (Auer et al., 2003) may
cause differences between probes targeting different positions of the gene sequence.
Such effects will contribute to probe-level contamination in a probe- and condition-
specific manner. However, sources of probe-level noise are still poorly understood
(Irizarry et al., 2005; Li et al., 2005) despite their importance for expression anal-
ysis and probe design.

High levels of noise set specific challenges for analysis. Better understanding of
the technical aspects of the measurement process will lead to improved analytical
procedures and ultimately to more accurate biological results (Reimers, 2010).
Publication 2 provides computational tools to investigate probe performance and
the relative contributions of the various sources of probe-level contamination on
short oligonucleotide arrays.

4.2 Preprocessing microarray data with side in-
formation

Preprocessing of the raw data obtained from the original measurements can help
to reduce noise and improve comparability between microarray experiments. Pre-
processing can be defined in terms of statistical transformations on the raw data,
and this is a central part of data analysis in high-throughput studies. This sec-
tion outlines the standard preprocessing steps for short oligonucleotide arrays, the
main source of transcriptional profiling data in this thesis. However, the general
concepts also apply to other microarray platforms (Reimers, 2010).

Standard preprocessing steps

A number of preprocessing techniques for short oligonucleotide arrays have been
introduced (Irizarry et al., 2006; Reimers, 2010). The standard preprocessing steps
in microarray analysis include quality control, background correction, normaliza-
tion and summarization.
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Figure 4.1: A Example of a probe set that contains a probe with high contamination levels
(dashed line) detected by the probabilistic RPA model. The probe-level observations of differen-
tial gene expression for the different probes that measure the same target transcript are indicated
by gray lines. The black line shows the estimated signal of the target transcript across a number
of conditions. B Increase in the average variance of the probes associated with the investigated
noise sources: mistargeted probes having errors in the genomic alignment, most 5’/3’ probes
of each probe set, GC-rich, and SNP-associated probes. The variances were estimated by RPA
and describe the noise level of the probes. The results are shown for the individual ALL and
GEA data sets, and for their combined results on both platforms (133A and 95A/Av2). ©IEEE.
Reprinted with permission from Publication 2.

Microarray quality control is used to identify arrays with remarkable experi-
mental defects, and to remove them from subsequent analysis. The typical tests
consider RNA degradation levels and a number of other summary statistics to
guarantee that the array data is of reasonable quality. The arrays that pass the
microarray quality control are preprocessed further. Each array typically has spa-
tial biases that vary smoothly across the array, arising from technical factors in
the experiment. Background correction is used to detect and remove such spatial
effects from the array data, and to provide a uniform background signal, enhanc-
ing the comparability of the probe-level observations between different parts of
the array. Moreover, background correction can estimate the general noise level
on the array; this helps to detect probes whose signal differs significantly from the
background noise. Robust multi-array averaging (RMA) is one of the most widely
used approaches for preprocessing short oligonucleotide array data (Irizarry et al.,
2003a). The background correction in RMA is based on a global model for probe
intensities. The observed intensity, Y, is modeled as a sum of an exponential
signal component, S and Gaussian noise B. Background corrected data is then
obtained as the expectation Ep(S]Y’). While background correction makes the
observations comparable within array, normalization is used to improve the com-
parability between arrays. Quantile normalization is a widely used method that
forces all arrays to follow the same empirical intensity distribution (see e.g. Bol-
stad et al., 2003). Quantile normalization makes the measurements across different
arrays comparable, assuming that the overall distribution of mRNA concentration
is approximately the same in all cell populations. This has proven to be a feasible
assumption in transcriptional profiling studies. As always, there are exceptions.
For instance, human brain tissues have systematic differences in gene expression
compared to other organs. On short oligonucleotide arrays, a number of probes
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target the same transcript. In the final summarization step, the individual probe-
level observations of each target transcript are summarized into a single summary
estimate of transcript activity. Standard algorithmic implementations are available
for each preprocessing step.

Probe-level preprocessing methods

Differences in probe characteristics cause systematic differences in probe perfor-
mance. The use of several probes for each target leads to more robust estimates
on transcript activity but it is clear that probe quality may significantly affect
the results of a microarray study (Irizarry et al., 2003b). Widely used prepro-
cessing algorithms utilize probe-specific parameters to model probe-specific effects
in the probe summarization step. Some of the first and most well-known probe-
level preprocessing algorithms include dChip/MBEI (Li and Wong, 2001), RMA
(Irizarry et al., 2003a), and gMOS (Milo et al., 2003). Taking probe-level effects
into account can considerably improve the quality of a microarray study (Reimers,
2010). Publications 1 and 2 incorporate side information of the probes to prepro-
cessing, and introduce improved probe-level analysis methods for differential gene
expression studies.

In order to introduce probe-level preprocessing methods in more detail, let
us consider the probe summarization step of the RMA algorithm (Irizarry et al.,
2003a). RMA has a Gaussian model for probe effects with probe-specific mean
parameters and a shared variance parameter for the probes. The mean parameters
characterize probe-specific binding affinities that cause systematic differences in
the signal levels captured by each probe. Estimating the probe-specific effects
helps to remove this effect in the final probeset-level summary of the probe-level
observations. To briefly outline the algorithm, let us consider a collection of probes
(a probeset) that measure the expression level of the same target transcript g
in condition i. The probe-level observations are modeled as a sum of the true,
underlying expression signal g;, which is common to all probes, probe-specific
binding affinity 4, and Gaussian noise e. A probe-level observation for probe j in
condition 4 is then modeled in RMA as

Sij = gi + pj + € (4.1)
Measurements from multiple conditions are needed to estimate the probe-
specific effects p;. RMA and other models that measure absolute gene expression
have an important drawback: the probe affinity effects {4} are unidentifiable. In
order to obtain an identifiable model, the RMA algorithm includes an additional
constraint that the probe affinity effects are zero on average: ¥;p; = 0. This yields
a well-defined algorithm that has been shown to produce accurate measurements
of gene expression in practical settings. Further extensions of the RMA algorithm
include gcRMA, which has a more detailed chemical model for the probe effects
(Wu and Irizarry, 2004), refRMA (Katz et al., 2006), which utilizes probe-specific
effects derived from background data collections, and fRMA (McCall et al., 2010),
which also models batch-specific effects in microarray studies. The estimation of
unidentifiable probe affinities is a main challenge for most probe-level preprocess-
ing models.
RMA and other probe-level models for short oligonucleotide arrays have been
designed to estimate absolute expression levels of the genes. However, gene expres-
sion studies are often ultimately targeted at investigating differential expression
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levels, that is, differences in gene expression between experimental conditions.
Measurements of differential expression is obtained for instance by comparing the
expression levels, obtained through the RMA algorithm or other methods, between
different conditions. However, the summarization of the probe-level values is then
performed prior to the actual comparison. Due to the unidentifiability of the probe
affinity parameters in the RMA and other probe-level models, this is potentially
suboptimal. Publication 1 demonstrates that reversing the order, i.e., calculat-
ing differential gene expression already at the probe level before probeset-level
summarization, leads to improved estimates of differential gene expression. The
explanation is that the procedure circumvents the need to estimate the unidentifi-
able probe affinity parameters. This is formally described in Publication 2, which
provides a probabilistic extension of the Probe-level Expression Change Averag-
ing (PECA) procedure of Publication 1. In PECA, a standard weighted average
statistics summarizes the probe level observations of differential gene expression.
PECA does not model probe-specific effects, but it is shown to outperform widely
used probe-level preprocessing methods, such as the RMA, in estimating differen-
tial expression. Publication 2, considered in more detail in Section 4.3, provides
an extended probabilistic framework that also models probe-specific effects.

Utilizing side information in transcriptome databases

Probe-level preprocessing models and microarray analysis can be further improved
by utilizing external information of the probes (Eisenstein, 2006; Hwang et al.,
2004; Katz et al., 2006). Although any given microarray is designed on most up-
to-date sequence information available, rapidly evolving genomic sequence data
can reveal inaccuracies in probe annotations when the body of knowledge grows.
In recent studies, including Publication 1, a remarkable number of probes on var-
ious oligonucleotide arrays have been detected not to uniquely match their in-
tended target (Hwang et al., 2004; Mecham et al., 2004a). A remarkable portion
of probes on several popular microarray platforms in human and mouse did not
match with their intended mRNA target, or were found to target unintended
mRNA transcripts in the Entrez Nucleotide (Wheeler et al., 2005) sequence da-
tabase in Publication 1 (Table 4.2). The observations are in general concordant
with other studies, although the exact figures vary according to the utilized data-
base and comparison details (Gautier et al., 2004; Mecham et al., 2004b). In this
thesis, strategies are developed to improve microarray analysis with background
information from genomic sequence databases, and with model-based analysis of
microarray collections.

Probe verification is increasingly used in standard preprocessing, and to con-
firm the results of a microarray study. Matching the probe sequences of a given
array to updated genomic sequence databases and constructing an alternative in-
terpretation of the array data based on the most up-to-date genomic annotations
has been shown to increase the accuracy and cross-platform consistency of mi-
croarray analyses in Publication 1 and elsewhere (Dai et al., 2005; Gautier et al.,
2004).

Publication 1 combines probe verification with a novel probe-level preprocess-
ing method, PECA, to suggest a novel framework for comparing and combining
results across different microarray platforms. While huge repositories of microarray
data are available, the data for any particular experimental condition is typically
scarce, and coming from a number of different microarray platforms. Therefore
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reliable approaches for integrating microarray data are valuable. Integration of
results across platforms has proven problematic due to various sources of technical
variation between array technologies. Matching of probe sequences between mi-
croarray platforms has been shown to increase the consistency of microarray mea-
surements (Hwang et al., 2004; Mecham et al., 2004b). However, probe matching
between array platforms guarantees only technical comparability (Irizarry et al.,
2005). Probe verification against external sequence databases is needed to con-
firm that the probes are also biologically accurate. This can also improve the
comparability across array platforms, as confirmed by the validation studies in
Publication 1 (Figure 4.2A).

The PECA method of Publication 1 utilizes genomic sequence databases to
reduce probe-level noise by removing erroneous probes based on updated genomic
knowledge. The strategy relies on external information in the databases and can
therefore only remove known sources of probe-level contamination. Publication 2
introduces a probabilistic framework to measure probe reliability directly based on
microarray data collections. The analysis can reveal both well-characterized and
unknown sources of probe-level contamination, and leads to improved estimates of
gene expression. This model, coined Robust Probabilistic Averaging (RPA), also
provides a theoretically justified framework for incorporating prior knowledge of
the probes into the analysis.

Array type Number of probes  Verified probes (%)
HG-U133 Plus2.0 604,258 58.2
HG-U133A 247,965 82.5
HG-U95Av2 199,084 82.6
MOE430 2.0 496,468 68.2
MG-U74Av2 197,993 73.1

Table 4.1: The proportion of sequence-verified probes on three popular human microarray plat-
forms and two mouse platforms, as observed in Publication 1. Probes that matched to mRNA
sequences corresponding to unique genes (defined by a GenelD identifier) in the Entrez database
are considered verified. A remarkable portion of the probes on the investigated arrays did not
match the Entrez transcript sequences, or had ambiguous targets.

4.3 Model-based noise reduction

Standard approaches for investigating probe performance typically rely on external
information, such as genomic sequence data (see Mecham et al. 2004b; Zhang et al.
2005 and Publication 1) or physical models (Naef and Magnasco, 2003; Wu et al.,
2005). However, such models cannot reveal probes with uncharacterized sources of
contamination, such as cross-hybridization with alternatively spliced transcripts or
closely related mRNA sequences. Vast collections of microarray data are available
in public repositories. These large-scale data sets contain valuable information
of both biological and technical aspects of gene expression studies. Publication 2
introduces a data-driven strategy to extract and utilize probe-level information in
microarray data collections.
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Figure 4.2: A Effect of sequence verification on comparability between microarray platforms.
Correlations between RMA-preprocessed technical replicates on two array platforms where the
same samples have been hybridized on the two array types. The Pearson correlations were
calculated for each pair of arrays measuring the same biological sample. The gray lines show
correlations obtained with the different probe matching criteria. In the hESC array comparison,
the best match probe sets contained exactly the same probes on both array generations, which
resulted in very high correlations. The advantages of probe verification and alternative mappings
were largest when arrays with different probe collections were compared in the mCPI, ALL and
IM array comparisons. B Reproducibility of signal estimates in real data sets between the
technical replicates, i.e., the ’best match’ probe sets between the HG-U95Av2 and HG-U133A
platforms. The consistency was measured by the Pearson correlation between the pairs of arrays,
to which the same sample was hybridized. ©Published by Oxford University Press. Reprinted
with permission from Publication 1.

The model, Robust Probabilistic Averaging (RPA), is a probabilistic prepro-
cessing procedure that is based on explicit modeling assumptions to analyze probe
reliability and quantify the uncertainty in measurement data based on gene ex-
pression data collections, independently of external information of the probes. The
model can be viewed as a probabilistic extension of the probe-level preprocessing
approach for differential gene expression studies presented in Publication 1. The
explicit Bayesian formulation quantifies the uncertainty in the model parameters,
and allows the incorporation of prior information concerning probe reliability into
the analysis. RPA provides estimates of probe reliability, and a probeset-level
estimate of differential gene expression directly from expression data and indepen-
dently of the noise source. The RPA model is independent of physical models or
external and constantly updated information such as genomic sequence data, but
provides a framework for incorporating such prior information of the probes in
gene expression analysis.

Other probabilistic methods for microarray preprocessing include BGX (Hein
et al., 2005), gMOS (Milo et al., 2003) and its extensions (Liu et al., 2005). The
key difference to the RPA procedure of Publication 2 is that these methods are
designed to provide probeset-level summaries of absolute gene expression levels,
and suffer from the same unidentifiability problem of probe affinity parameters
as the RMA algorithm (Irizarry et al., 2003a). In contrast, RPA models probe-
level estimates of differential gene expression. This removes the unidentifiability
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issue, which is advantageous when the objective is to compare gene expression
levels between experimental conditions. Another important difference is that the
other preprocessing methods do not provide explicit estimates of probe-specific
parameters, or tools to investigate probe performance. Publication 2 assigns an
explicit probabilistic measure of reliability to each probe. This gives tools to
analyze probe performance and to guide probe design.

Robust Probabilistic Averaging

Let us now consider in more detail the probabilistic preprocessing framework,
RPA, introduced in Publication 2. Probe performance is ultimately determined
by its ability to accurately measure the expression level of the target transcript,
which is unknown in practical situations. Although the performance of individual
probes varies, the collection of probes designed to measure the same transcript
will provide ground truth for assessing probe performance (Figure 4.1A). RPA
captures the shared signal of the probes within a probeset, and assumes that
the shared signal characterizes the expression of the common target transcript
of the probes. The reliability of individual probes is estimated with respect to
the strongest shared signal of the probes. RPA assumes normally distributed
probe effects, and quantifies probe reliability based on probe variance around the
probeset-level signal across a large number of arrays. This extends the formulation
of the RMA model in Equation 4.1 by introducing an additional probe-specific
Gaussian noise component:

Sij = gi + Ky + €ij. (42)
In contrast to RMA, the variance is probe-specific in this model, and distributed
as €5 ~ N(0,77). The variance parameters {77} are of interest in probe reli-
ability analysis; they reflect the noise level of the probe, in contrast to probe-
level preprocessing methods that focus on estimating the unidentifiable mean pa-
rameter of the Gaussian noise model, corresponding to probe affinity (see e.g.
Irizarry et al., 2003a; Li and Wong, 2001). In Publication 2, probe-level cal-
culation of differential expression avoids the need to model unidentifiable probe
affinities, the key probe-specific parameter in other probe-level preprocessing meth-
ods. More formally, the unidentifiable probe affinity parameters u. cancel out in
RPA when the signal log-ratio between a user-specified 'reference’ array and the
remaining arrays is computed for each probe: the differential expression signal
between arrays ¢t = {1,...,T} and the reference array ¢ for probe j is obtained
by my; = 8tj — S¢j = gt — ge + €tj — €¢j = dit + €t; — €¢j. In vector notation,
the differential expression profile of probe j across the T" arrays is then written as
m; = d+¢g;, i.e., a noisy observation of the true underlying differential expression
signal d and probe-specific noise €.

The unidentifiable probe affinity parameters cancel out in the RPA model of
Publication 2. This can partly explain the previous empirical observations that
calculating differential expression already at probe-level improves the analysis of
differential gene expression (Zhang et al., 2002; Elo et al., 2005). However, the
previous models are non-probabilistic preprocessing methods that do not aim at
quantifying the uncertainty in the probes. Use of a single parameter for probe
effects in RPA also gives more straightforward interpretations of probe reliability.

Posterior estimates of the model parameters are derived to estimate probe
reliability and differential gene expression. The differential expression vector d =
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{d:} and the probe-specific variances 7> = {77} are estimated simultaneously. The
posterior density of the model parameters is obtained from the likelihood of the
data and the prior according to Bayes’ rule (Equation 3.3) as

p(d, 7*/m) ~ p(m|d, 7%)p(d, 7%). (4.3)

To obtain this posterior, let us consider the likelihood p(m|d, 72) of the data and
the prior p(d, 72) of the model parameters. The noise on the selected control array
€cj is a latent variable, and marginalized out in the model to obtain the likelihood:

p(m|d, 72 H/N myjlde — €cj, J) (€¢10, 7 )dec]

mys—dyg)]? (44)
3 (i — dy)? — pe Il
2712 )
J

~ H(27T7']2)_%emp(—
J

Let us assume independent priors, p(d, 72) = p(d)p(72), flat non-informative prior
p(d) ~ 1 and conjugate priors for the variance parameters in 72 (inverse Gamma
function, see Gelman et al. 2003). With these standard assumptions, the prior
takes the form

) ~ 1G5 05, 8)), (4.5)
J

where o; and 3; are the shape and scale parameters of the inverse Gamma dis-
tribution. Prior information of the probes can be incorporated in the analysis
through these parameters. Probe-level differential expression is then described
by two sets of parameters; the differential gene expression vector d = [d; ... dr],
and the probe-specific variances 72 = [r...72%]. High variance Tj2 indicates that
the probe-level observation m; is strongly deviated from the estimated true signal
d. Denoting &; = a; + £ and B = B; + L3 (myy —dy)? — 3 m%dt)), the
posterior of the model parameters in Equation 4.3 takes the form

(. 7m) ~ [2) @ Deap(-25), (46)

i i

The formulation allows estimating the uncertainty in the expression estimates and
probe-level parameters. In practice, a MAP point estimate of the parameters,
obtained by maximizing the posterior, is often sufficient. In the limit of a large
sample size (T' — o00), the model will converge to estimating ordinary mean and
variance parameters. With limited sample sizes that are typical in microarray
studies the prior parameters provide regularization that makes the probabilistic
formulation more robust to overfitting and local optima, compared to direct esti-
mation of the mean and variance parameters. Moreover, the probabilistic analysis
takes the uncertainty in the data and model parameters into account in an explicit
manner.

The model also provides a principled framework for incorporating prior know-
ledge probe reliability in microarray preprocessing through the probe-specific hy-
perparameters «, 3. Estimation and use of probe-specific effects from external
microarray data collections has been previously suggested in the context of the
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refRMA method by Katz et al. (2006), where such side information was shown to
improve gene expression estimates. The RPA method of Publication 2 provides
an alternative probabilistic treatment.

Model validation

The probabilistic RPA model introduced in Publication 2 was validated by compar-
ing the preprocessing performance to other preprocessing methods, and addition-
ally by comparing the estimates of probe-level noise to known sources of probe-level
contamination. The comparison methods include the FARMS (Hochreiter, 2006),
MAS5 (Hubbell et al., 2002), PECA (Publication 1), and RMA (Irizarry et al.,
2003a) preprocessing algorithms. FARMS has a more detailed model for probe
effects than the other methods, and it contains implicitly a similar probe-specific
variance parameter than our RPA model. FARMS is based on a factor analysis
model, and is defined as s;; = z;Aj + p; + €45, where z; captures the underlying
gene expression. In contrast to RMA and RPA that have a single probe-specific
parameter, FARMS has three probe-specific parameters {\;, p1;,;5}. MAS5 is a
standard preprocessing algorithm provided by the array manufacturer. The algo-
rithm performs local background correction, utilizes so-called mismatch probes to
control for non-specific hybridization, and scales the data from each array to the
same average intensity level to improve comparability across arrays. MAS5H sum-
marizes probe-level observations of absolute gene expression levels using robust
summary statistics, Tukey biweight estimate, but unlike FARMS, RMA and RPA,
MAS5 does not model probe-specific effects.

The preprocessing performance of these methods was investigated in spike-in
experiments where certain target transcripts measured by the array have been
spiked in at known concentrations, as well as on real data sets. The results from
the spike-in experiments were compared in terms of receiver operating characteris-
tics (ROC). The standard RMA, PECA (Publication 1) and RPA (Publication 2)
had comparable performance in spike-in data, and they outperformed the MAS5
(Hubbell et al., 2002) and FARMS (Hochreiter, 2006) preprocessing algorithms in
estimating differential gene expression. On real data sets, PECA and RPA out-
performed the other methods, providing higher reproducibility between technical
replicates measured on different microarray platforms (Figure 4.2B).

In contrast to standard preprocessing algorithms, RPA provides explicit quan-
titative estimates of probe performance. The model has been validated on widely
used human whole-genome arrays by comparing the estimates of probe reliability
with known probe-level error sources: errors in probe-genome alignment, interro-
gation position of a probe on the target sequence, GC-content, and the presence
of SNPs in the probe target sequences; a good model for assessing probe reliabil-
ity should detect probes contaminated by the known error sources. The results
from our analysis can be used to characterize the relative contribution of differ-
ent sources of probe-level noise (Figure 4.1B). In general, the probes with known
sources of contamination were more noisy than the other probes, with 7-39% in-
crease in the average variance, as detected by RPA. Any single source of error
seems to explain only a fraction of the most highly contaminated probes. A large
portion (35-60%) of the detected least reliable probes were not associated with the
investigated known noise sources. This suggests that previous methods that re-
move probe-level noise based on external information, such as genomic alignments
will fail to detect a significant portion of poorly performing probes. The RPA
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model of Publication 2 provides rigorous algorithmic tools to investigate the vari-
ous probe-level error sources. Better understanding of the factors affecting probe
performance can advance probe design and contribute to reducing probe-related
noise in future generations of gene expression arrays.

4.4 Conclusion

The contributions presented in this Chapter provide improved preprocessing strate-
gies for differential gene expression studies. The introduced techniques utilize
probe-level analysis, as well as side information in sequence and microarray data-
bases. Probe-level studies have led to the establishment of probe verification and
alternative microarray interpretations as a standard step in microarray prepro-
cessing and analysis. The alternative interpretations for microarray data based on
updated genomic sequence data (Gautier et al., 2004; Dai et al., 2005) are now im-
plemented as routine tools in popular preprocessing algorithms such as the RMA|
or the RPA method of Publication 2. The probe-level analysis strategy has been
recently extended to exon array context, where expression levels of alternative
splice variants of the same genes are compared under particular experimental con-
ditions. The probe-level approach has shown superior preprocessing performance
also with exon arrays (Laajala et al., 2009). A convenient access to the algo-
rithmic tools developed in Publications 1 and 2 for microarray preprocessing and
probe-level analysis is provided by the accompanied open source implementation
in BioConductor.!

Thttp:/ /www.bioconductor.org/packages/release/bioc/html/RPA.html
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Chapter 5

Global analysis of the human
transcriptome

When we try to pick out anything by itself, we find that it is bound fast
by a thousand invisible cords that cannot be broken, to everything in the
universe.

J. Muir (1869)

Measurements of transcriptional activity provide only a partial view to physio-
logical processes, but their wide availability provides a unique resource for investi-
gating gene activity at a genome- and organism-wide scale. Versatile and carefully
controlled gene expression atlases have become available for normal human tissues,
cancer as well as for other diseases (see, for instance, Kilpinen et al., 2008; Lukk
et al., 2010; Roth et al., 2006; Su et al., 2004). These data sources contain valuable
information about shared and unique mechanisms between disparate conditions,
which is not available in smaller and more specific experiments (Lage et al., 2008;
Scherf et al., 2000). While standard methods for gene expression analysis have
focused on comparisons between particular conditions, versatile transcriptome at-
lases allow for global organism-wide characterization of transcriptional activation
patterns (Levine et al., 2006). Novel methodological approaches are needed in
order to realize the full potential of these information sources, as many tradi-
tional methods for expression analysis are not applicable to versatile large-scale
collections. This chapter provides an overview to current approaches for global
transcriptome analysis in Section 5.1 and introduces the second main contribution
of the thesis, a novel exploratory approach that can be used to investigate context-
specific responses in genome-scale interaction networks across organism-wide col-
lections of measurement data in Section 5.2. The conclusions are summarized in
Section 5.3.

5.1 Standard approaches
Global observations of transcriptional activity reflect known and previously un-

characterized cell-biological processes. Exploratory analysis of the transcriptome
can provide research hypotheses and material for more detailed investigations.
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Widely-used standard approaches for global transcriptome analysis include various
clustering, dimensionality reduction and visualization techniques (see e.g. Hutten-
hower and Hofmann, 2010; Polanski and Kimmel, 2007; Quackenbush, 2001). The
large data collections open up new possibilities to investigate functional related-
ness between physiological conditions, disease states, as well as cellular processes,
and to discover previously uncharacterized connections and functional mechanisms
(Bergmann et al., 2004; Kilpinen et al., 2008; Lukk et al., 2010).

Gene expression studies have traditionally focused on the analysis of relatively
small and targeted data sets, such as particular diseases or cell types. A typical ob-
jective is to detect genes, or gene groups, that are differentially expressed between
particular conditions, for instance to predict disease outcomes, or to identify poten-
tially unknown disease subtypes. The increasing availability of large and versatile
transcriptome collections that may cover thousands of experimental conditions al-
lows global, data-driven analysis, and the formulation of novel research questions
where the traditional analysis methods are often insufficient (Huttenhower and
Hofmann, 2010).

A variety of approaches have been proposed and investigated in the recent
years in the global transcriptome analysis context. An actively studied modeling
problem in transcriptome analysis is the discovery of transcriptional modules, i.e.,
identification of coherent gene groups that show coordinated transcriptional re-
sponses under particular conditions (Segal et al., 2003a, 2004; Stuart et al., 2003).
Models have also been proposed to predict gene regulators (Segal et al., 2003b),
and to infer cellular processes and networks based on transcriptional activation
patterns (Friedman, 2004; Segal et al., 2003c). An increasing number of models
are being developed to integrate transcriptome measurements to other sources of
genomic information, such as regulation and interactions between the genes to
detect and characterize cellular processes and disease mechanisms (Barash and
Friedman, 2002; Chari et al., 2010; Vaske et al., 2010). Findings from transcrip-
tome analysis have potential biomedical implications, as in Lamb et al. (2006),
where chemically perturbed cancer cell lines were screened to enhance the detec-
tion of drug targets based on shared functional mechanisms between disparate
conditions, or in Sgrlie et al. (2001), where cluster analysis of cancer patients
based on genome-wide transcriptional profiling experiments led to the discovery
of a novel breast cancer subtype. In the remainder of this section, the modeling
approaches that are particularly closely related to the contributions of this thesis
are considered in more detail.

Investigating known processes

A popular strategy for genome-wide gene expression analysis is to consider known
biological processes and their activation patterns across diverse collections mea-
surement data from various experimental conditions. Biomedical databases con-
tain a variety of information concerning genes and their interactions. For in-
stance, the Gene Ontology database (Ashburner et al., 2000) provides functional
and molecular classifications for the genes in human and a number of other organ-
isms. Other categories are based on micro-RNA regulation, chromosomal locations,
chemical perturbations and other features (Subramanian et al., 2005). Joint anal-
ysis of functionally related genes can increase the statistical power of the analysis.
So-called gene set-based approaches are typically designed to test differential ex-
pression between two particular conditions (Goeman and Buhlmann, 2007; Nam
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and Kim, 2008), but they can also be used to build global maps of transcriptional
activity of the known processes (Levine et al., 2006). However, gene set-based
approaches typically ignore more detailed information of the interactions between
individual genes. Pathway and interaction databases contain more detailed infor-
mation concerning molecular interactions and cell-biological processes (Kanehisa
et al., 2008; Vastrik et al., 2007). Network-based methods utilize relational infor-
mation of the genes to guide expression analysis. For instance, Draghici et al.
(2007) demonstrated that taking into account aspects of pathway topology, such
as gene and interaction types, can improve the estimation of pathway activity be-
tween two predefined conditions. Another recent approach which utilizes pathway
topology in inferring pathway activity is PARADIGM (Vaske et al., 2010), which
also integrates other sources of genomic information in pathway analysis. How-
ever, these methods have been designed for the analysis of particular experimental
conditions, rather than comprehensive expression atlases. MATISSE (Ulitsky and
Shamir, 2007) is a network-based approach that searches for functionally related
genes that are connected in the network, and have correlated expression profiles
across many conditions. The potential shortcoming of this approach is that it as-
sumes global correlation across all conditions between the interacting genes, while
many genes can have multiple, context-sensitive functional roles. Different condi-
tions induce different responses in the same genes, and the definition of 'gene set’
is vague (Montaner et al., 2009; Nacu et al., 2007). Therefore methods have been
suggested to identify ’key condition-responsive genes’ of predefined gene sets (Lee
et al., 2008), or to decompose predefined pathways into smaller and more specific
functional modules (Chang et al., 2009). These approaches rely on predefined
functional classifications for the genes. The data-driven analysis in Publication 3
provides a complementary approach where the gene sets are learned directly from
the data, guided by prior knowledge of genetic interactions. This avoids the need
to refine suboptimal annotations, and enables the discovery of new processes. The
findings demonstrate that simply measuring whether a gene set, or a network,
is differentially expressed between particular conditions is often not sufficient for
measuring the activity of cell-biological processes. Since gene function and inter-
actions are regulated in a context-specific manner, it is important to additionally
characterize how, and in which conditions the expression changes. Global analysis
of transcriptional activation patterns interaction networks, introduced in Publica-
tion 3, can address such questions.

Biclustering and subspace clustering

Approaches that are based on previously characterized genes and processes are
biased towards well-characterized phenomena. This limits their value in de novo
discovery of functional patterns. Unsupervised methods provide tools for such
analysis, but often with an increased computational cost and a higher proportion
of false positive findings.

Cluster analysis is widely used for unsupervised analysis of gene expression
data, providing tools for class discovery, gene function prediction and for visualiza-
tion purposes. Examples of widely used clustering approaches include hierarchical
clustering and K-means (see e.g. Polanski and Kimmel, 2007). Clustering of pa-
tient samples with similar expression profiles has led to the discovery of novel can-
cer subtypes with biomedical implications (Serlie et al., 2001); clustering of genes
with coordinated activation patterns can be used, for instance, to predict novel
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functional associations for poorly characterized genes (Allocco et al., 2004). The
self-organizing map (Kohonen, 1982, 2001) is a related approach that provides effi-
cient tools to wvisualize high-dimensional data on lower-dimensional displays, with
particular applications in transcriptional profiling studies (Tamayo et al., 1999;
Toronen et al., 1999). The standard clustering methods are based on comparison
of global expression patterns, and therefore are relatively coarse tools for analyz-
ing large transcriptome collections. Different genes respond in different ways, as
well as in different conditions. Therefore it is problematic to find clusters in high-
dimensional data spaces, such as in whole-genome expression profiling studies;
different gene groups can reveal different relationships between the samples. De-
tection of smaller, coherent subspaces with a particular structure can be useful in
biomedical applications, where the objective is to identify sets of interesting genes
for further analysis. Both genes and the associated conditions may be unknown,
and the learning task is to detect them from the data. This can help, for instance,
in identifying responses to drug treatments in particular genes (Thmels et al., 2002;
Tanay et al., 2002), or in identifying functionally coherent transcriptional modules
in gene expression databases (Segal et al., 2004; Tanay et al., 2005).

Subspace clustering methods (Parsons et al., 2004) provide a family of algo-
rithms that can be used to identify subsets of dependent features revealing coher-
ent clustering for the samples; this defines a subspace in the original feature space.
Subspace clustering models are a special case of a more general family of biclus-
tering algorithms (Madeira and Oliveira, 2004). Closely related models are also
called co-clustering (Cho et al., 2004), two-way clustering Gad et al. (2000), and
plaid models (Lazzeroni and Owen, 2002). Biclustering methods provide general
tools to detect co-regulated gene groups and associated conditions from the data,
to provide compact summaries and to aid interpretation of transcriptome data
collections. Biclustering models enable the discovery of gene expression signa-
tures (Hu et al., 2006) that have emerged as a central concept in global expression
analysis context. A signature describes a co-expression state of the genes, asso-
ciated with particular conditions. Established signatures have been found to be
reliable indicators of the physiological state of a cell, and commercial signatures
have become available for routine clinical practice (Nuyten and van de Vijver,
2008). However, the established signatures are typically designed to provide op-
timal classification performance between two particular conditions. The problem
with the classification-based signatures is that their associations to the underlying
physiological processes are not well understood (Lucas et al., 2009). In Publica-
tion 3 the understanding is enhanced by deriving transcriptional signatures that
are explicitly connected to well-characterized processes through the network.

Role of side information

Standard clustering models ignore prior information of the data, which could be
used to supervise the analysis, to connect the findings to known processes, as well
as to improve scalability. For instance, standard model-based feature selection, or
subspace clustering techniques would consider all potential connections between
the genes or features (Law et al., 2004; Roth and Lange, 2004). Without addi-
tional constraints on the solution space they can typically handle at most tens
or hundreds of features, which is often insufficient in high-throughput genomics
applications. Use of side information in clustering can help to guide unsupervised
analysis, for instance based on known or potential interactions between the genes.
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This has been shown to improve the detection of functionally coherent gene groups
(Hanisch et al., 2002; Shiga et al., 2007; Ulitsky and Shamir, 2007; Zhu et al.,
2005). However, while these methods provide tools to cluster the genes, they
do not model differences between conditions. Extensions of biclustering models
that can utilize relational information of the genes include cMonkey (Reiss et al.,
2006) and a modified version of SAMBA biclustering (Tanay et al., 2004). How-
ever, cMonkey and SAMBA are application-oriented tools that rely on additional,
organism-specific information, and their implementation is currently not available
for most organisms, including that of the human. Further application-oriented
models for utilizing side information in the discovery of transcriptional modules
have recently been proposed for instance by Savage et al. (2010) and Suthram et al.
(2010). Publication 3 introduces a complementary method where the exhaustively
large search space is limited with side information concerning known relations be-
tween the genes, derived from genomic interaction databases. This is a general
algorithmic approach whose applicability is not limited to particular organisms.

Other approaches

Prior information on the cellular networks, regulatory mechanisms, and gene func-
tion is often available, and can help to construct more detailed models of gene
function and network analysis, as well as to summarize functional aspects of ge-
nomic data collections (Huttenhower et al., 2009; Segal et al., 2003b; Troyanskaya,
2005). Versatile transcriptome collections also enable network reconstruction, i.e.,
de novo discovery (Lezon et al., 2006; Myers et al., 2005) and augmentation (Novak
and Jain, 2006) of genetic interaction networks. Other methodological approaches
for global transcriptome analysis are provided by probabilistic latent variable mod-
els (Rogers et al., 2005; Segal et al., 2003a), hierarchical Dirichlet process algo-
rithms (Gerber et al., 2007), as well as matrix and tensor computations (Alter and
Golub, 2005). These methods provide further model-based tools to identify and
characterize transcriptional programs by decomposing gene expression data sets
into smaller, functionally coherent components.

5.2 Global modeling of transcriptional activity in
interaction networks

Molecular interaction networks cover thousands of genes, proteins and small mo-
lecules. Coordinated regulation of gene function through molecular interactions
determines cell function, and is reflected in transcriptional activity of the genes.
Since individual processes and their transcriptional responses are in general un-
known (Lee et al., 2008; Montaner et al., 2009), data-driven detection of condition-
specific responses can provide an efficient proxy for identifying distinct transcript-
ional states of the network with potentially distinct functional roles. While a
number of methods have been proposed to compare network activation patterns
between particular conditions (Draghici et al., 2007; Ideker et al., 2002; Cabusora
et al., 2005; Noirel et al., 2008), or to use network information to detect function-
ally related gene groups (Segal et al., 2003d; Shiga et al., 2007; Ulitsky and Shamir,
2007), general-purpose algorithms for a global analysis of context-specific network
activation patterns in a genome- and organism-wide scale have been missing.
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Figure 5.1: Organism-wide analysis of transcriptional responses in a human pathway interaction
network reveals physiologically coherent activation patterns and condition-specific regulation.
One of the subnetworks and its condition-specific responses, as detected by the NetResponse
algorithm is shown in the Figure. The expression of each gene is visualized with respect to its
mean level of expression across all samples. (©The Author 2010. Published by Oxford University
Press. Reprinted with permission from Publication 3.

Publication 3 introduces and validates two general-purpose algorithms that
provide tools for global modeling of transcriptional responses in interaction net-
works. The motivation is similar to biclustering approaches that detect function-
ally coherent gene groups that show coordinated response in a subset of condi-
tions (Madeira and Oliveira, 2004). The network ties the findings more tightly to
cell-biological processes, focusing the analysis and improving interpretability. In
contrast to previous network-based biclustering models for global transcriptome
analysis, such as cMonkey (Reiss et al., 2006) or SAMBA (Tanay et al., 2004),
the algorithms introduced in Publication 3 are general-purpose tools, and do not
depend on organism-specific annotations.

A two-step approach

The first approach in Publication 3 is a straightforward extension of network-based
gene clustering methods. In this two-step approach, the functionally coherent sub-
networks, and their condition-specific responses are detected in separate steps. In
the first step, a network-based clustering method is used to detect functionally co-
herent subnetworks. In Publication 3, MATISSE, a state-of-the-art algorithm de-
scribed in Ulitsky and Shamir (2007), is used to detect the subnetworks. MATISSE
finds connected subgraphs in the network that have high internal correlations be-
tween the genes. In the second step, condition-specific responses of each identified
subnetwork are searched for by a nonparametric Gaussian mixture model, which
allows a data-driven detection of the responses. However, the two-step approach,
coined MATISSE+, can be suboptimal for detecting subnetworks with particular
condition-specific responses. The main contribution of Publication 3 is to intro-
duce a second general-purpose algorithm, coined NetResponse, where the detection
of condition-specific responses is used as the explicit key criterion for subnetwork
search.
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The NetResponse algorithm

The network-based search procedure introduced in Publication 3 searches for lo-
cal subnetworks, i.e., functionally coherent network modules where the interacting
genes show coordinated responses in a subset of conditions (Figure 5.1). Side in-
formation of the gene interactions is used to guide modeling, but the algorithm
is independent of predefined classifications for genes or measurement conditions.
Transcriptional responses of the network are described in terms of subnetwork
activation. Regulation of the subnetwork genes can involve simultaneous activa-
tion and repression of the genes: sufficient amounts of mRNA for key proteins
has to be available while interfering genes may need to be silenced. The model
assumes that a given subnetwork n can have multiple transcriptional states, as-
sociated with different physiological contexts. A transcriptional state is reflected
in a unique expression signature s(), a vector that describes the expression levels
of the subnetwork genes, associated with the particular transcriptional state. Ex-
pression of some genes is regulated at precise levels, whereas other genes fluctuate
more freely. Given the state, expression of the subnetwork genes is modeled as a
noisy observation of the transcriptional state. With a Gaussian noise model with
covariance X" the observation is described by x(™) ~ N(s(™) %("). A given sub-
network can have R("™ latent transcriptional states indexed by 7. In practice, the
states, including their number R(™ are unknown, and they have to be estimated
from the data. In a specific measurement condition, the subnetwork n can be in
any one of the latent physiological states indexed by r. Associations between the
observations and the underlying transcriptional states are unknown and they are
treated as latent variables. Gene expression in subnetwork n is then modeled with
a Gaussian mixture model:

R
x™ Y " w(Mp(x™)6,), (5.1)
r=1

where each component distribution p is assumed to be Gaussian with parameters
0, = {s&n), 2&")}. In practice, we assume a diagonal covariance matrix 27(0”)7 leav-
ing the dependencies between the genes unmodeled within each transcriptional
state. Use of diagonal covariances is justified by considerable gains in computa-
tional efficiency when the detection of distinct responses is of primary interest. It
is possible, however, that such simplified model will fail to detect certain subnet-
works where the transcriptional levels of the genes have strong linear dependencies
within the individual transcriptional states; signaling cascades could be expected
to manifest such activation patterns, for instance. More detailed models of tran-
scriptional activity could help to distinguish the individual states in particular
when the transcriptional states are partially overlapping, but with increased com-
putational cost. A particular transcriptional response is then characterized with
the triple {s&n), b8 w,(«n)} This defines the shape, fluctuations and frequency of
the associated transcriptional state of subnetwork n. A posterior probability of
each latent state can be calculated for each measurement sample from the Bayes’
rule (Equation 3.3). The posterior probabilities can be interpreted as soft compo-
nent memberships for the samples. A hard, deterministic assignment is obtained
by selecting for each sample the component with the highest posterior probability.

The remaining task is to identify the subnetworks having such distinct tran-
scriptional states. Detection of the distinct states is now used as a search criterion
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for the subnetworks. In order to achieve fast computation, an agglomerative proce-
dure is used where interacting genes are gradually merged into larger subnetworks.
Initially, each gene is assigned in its own singleton subnetwork. Agglomeration
proceeds by at each step merging the two neighboring subnetworks where joint
modeling of the genes leads to the highest improvement in the objective function
value. Joint modeling of dependent genes reveals coordinated responses and im-
proves the likelihood of the data in comparison with independent models, giving
the first criterion for merging the subnetworks. However, increasing subnetwork
size tends to increase model complexity and the possibility of overfitting, since the
number of samples remains constant while the dimensionality (subnetwork size)
increases. To compensate for this effect, the Bayesian information criterion (see
Gelman et al., 2003) is used to penalize increasing model complexity and to de-
termine optimal subnetwork size. The final cost function for a subnetwork G is
C(G) = —2L+qlog(N), where L is the (marginal) log-likelihood of the data, given
the mixture model in Equation 5.1, ¢ is the number of parameters and N denotes
sample size. The algorithm then compares independent and joint models for each
subnetwork pair that has a direct link in the network, and merges at each step the
subnetwork pair G;,G; that minimizes the cost

AC = —-2(L;; — (Li+ Lj)) + (¢i; — (gi + q5))log(N). (5.2)
The iteration continues until no improvement is obtained by merging the sub-
networks. The combination of modeling techniques yields a scalable algorithm for
genome- and organism-wide investigations: First, the analysis focuses on those
parts of the data that are supported by known interactions, which increases mod-
eling power and considerably limits the search space. Second, the agglomerative
scheme finds a fast approximative solution where at each step the subnetwork pair
that leads to the highest improvement in cost function is merged. Third, an ef-
ficient variational approximation is used to learn the mixture models (Kurihara
et al., 2007b). Note that the algorithm does not necessarily identify a globally
optimal solution. However, detection of physiologically coherent and reproducible
responses is often sufficient for practical applications.

Global view on network activation patterns

The NetResponse algorithm introduced in Publication 3 was applied to investigate
transcriptional activation patterns of a pathway interaction network of 1800 genes
based on the KEGG database of metabolic pathways (Kanehisa et al., 2008) pro-
vided by the SPIA package (Tarca et al., 2009) across 353 gene expression samples
from 65 tissues. The two algorithms proposed in Publication 3, MATISSE+ and
NetResponse were shown to outperform an unsupervised biclustering approach in
terms of reproducibility of the finding. The introduced NetReponse algorithm,
where the detection of transcriptional response patterns is used as a search crite-
rion for subnetwork identification, was the best-performing method. The algorithm
identified 106 subnetworks with 3-20 genes, with distinct transcriptional responses
across the conditions. One of the subnetworks is illustrated in Figure 5.1; the
other findings are provided in the supplementary material of Publication 3. The
detected transcriptional responses were physiologically coherent, suggesting a po-
tential functional role. The reproducibility of the responses was confirmed in an
independent validation data set, where 80% of the predicted responses were de-
tected (p < 0.05). The findings highlight context-specific regulation of the genes.
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Some responses are shared by many conditions, while others are more specific
to particular contexts such as the immune system, muscles, or the brain; related
physiological conditions often exhibit similar network activation patterns. Tissue
relatedness can be measured in terms of shared transcriptional responses of the
subnetworks, giving an alternative formulation of the tissue connectome map sug-
gested by Greco et al. (2008) in order to highlight functional connectivity between
tissues based on the number of shared differentially expressed genes. In Publica-
tion 3, shared network responses are used instead of shared gene count. The use
of co-regulated gene groups is expected to be more robust to noise than the use of
individual genes. The analysis provides a global view on network activation across
the normal human body, and can be used to formulate novel hypotheses of gene
function in previously unexplored contexts.

5.3 Conclusion

Gene function and interactions are often subject to condition-specific regulation
(Liang et al., 2006; Rachlin et al., 2006), but these have been typically studied
only in particular experimental conditions. Organism-wide analysis can poten-
tially reveal new functional connections and help to formulate novel hypotheses of
gene function in previously unexplored contexts, and to detect highly specialized
functions that are specific to few conditions. Changes in cell-biological condi-
tions induce changes in the expression levels of co-regulated genes, in order to
produce specific physiological responses, typically affecting only a small part of
the network. Since individual processes and their transcriptional responses are in
general unknown (Lee et al., 2008; Montaner et al., 2009), data-driven detection of
condition-specific responses can provide an efficient proxy for identifying distinct
transcriptional states of the network, with potentially distinct functional roles.

Publication 3 provides efficient model-based tools for global, organism-wide dis-
covery and characterization of context-specific transcriptional activity in genome-
scale interaction networks, independently of predefined classifications for genes
and conditions. The network is used to bring in prior information of gene func-
tion, which would be missing in unsupervised models, and allows data-driven de-
tection of coordinately regulated gene sets and their context-specific responses.
The algorithm is readily applicable in any organism where gene expression and
pairwise interaction data, including pathways, protein interactions and regulatory
networks, are available. It has therefore a considerably larger scope than previous
network-based models for global transcriptome analysis, which rely on organism-
specific annotations, but lack implementations for most organisms (Reiss et al.,
2006; Tanay et al., 2004).

While biomedical implications of the findings require further investigation, the
results highlight shared and reproducible responses between physiological condi-
tions, and provide a global view of transcriptional activation patterns across the
normal human body. Other potential applications for the method include large-
scale screening of drug responses and disease subtype discovery. Implementation
of the algorithm is freely available through BioConductor.!

Thttp://bioconductor.org/packages/devel /bioc/html/netresponse.html
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Chapter 6

Human transcriptome and
other layers of genomic
information

The way to deal with the problem of big data is to beat it senseless with
other big data.

J. Quackenbush (2006)

This chapter presents the third main contribution of the thesis, computational
strategies to integrate measurements of human transcriptome to other layers of
genomic information. Genomic, transcriptomic, proteomic, epigenomic and other
sources of measurement data characterize different aspects of genome organiza-
tion (Hawkins et al., 2010; Montaner and Dopazo, 2010; Sara et al., 2010); any
single source provides only a limited view to the cellular system. Understanding
functional organization of the genome and ultimately the cell function requires
integration of data from the various levels of genome organization and model-
ing of their dynamical interplay. Such an holistic approach, which is also called
systems biology, is a key to understanding living organisms, which are “rich in
emergent properties because forever new groups of properties emerge at every
level of integration” (Mayr, 2004). Combining evidence across multiple sources
can help to discover functional mechanisms and interactions, which are not seen
in the individual data sets, and to increase statistical power in noisy and incom-
plete high-throughput experiments (Huttenhower and Hofmann, 2010; Reed et al.,
2006).

Integration of heterogeneous genomic data comes with a variety of technical
and methodological challenges (Hwang et al., 2005; Troyanskaya, 2005), and the
particular modeling approaches vary according to the analysis task and particular
properties of the investigated measurement sources. Integrative studies have been
limited by poor availability of co-occurring genomic observations, but suitable
data sets are now becoming increasingly available in both in-house and public
biomedical data repositories (The Cancer Genome Atlas Research Network, 2008).
New observations highlight the need for novel, integrative approaches in functional
genomics (Coe et al., 2008). Recent studies have proposed for instance methods to
integrate epigenetic modifications (Sadikovic et al., 2008), micro-RNA (Qin, 2008),
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transcription factor binding (Savage et al., 2010), as well as protein expression
(Johnson et al., 2008). Given the complex stochastic nature of biological systems,
computational efficiency, robustness against uncertainty and interpretability of the
results are key issues. Prior information of biological systems is often incomplete,
and subject to high levels of uncontrolled variation and complex interdependencies
between different parts of the cellular system (Troyanskaya, 2005). These issues
emphasize the need for principled approaches requiring minimal prior knowledge
about the data, as well as minimal model fitting procedures. Section 6.1 gives an
overview of the standard models for high-throughput data integration methods,
which have close connections to the modeling approaches developed in this work.

6.1 Standard approaches for genomic data inte-
gration

The integrative approaches can be roughly classified in three categories: meth-
ods that (i) combine statistical evidence across related studies in order to obtain
more accurate inferences of target variables, (ii) utilize side information in order
to guide the analysis of a single, primary data source, and (iii) detect and char-
acterize dependencies between the measurement sources in order to discover new
functional connections between the different layers of genomic information. The
contributions in Chapters 4 and 5 are associated with the first two categories; the
contributions presented in this chapter, the regularized dependency detection fra-
mework of Publication 4, and associative clustering of Publications 5 and 6, belong
to the third category.

6.1.1 Combining statistical evidence

The first general category of methods for genomic data integration consists of ap-
proaches where evidence across similar studies is combined to increase statistical
power, for instance by comparing and integrating data from independent microar-
ray experiments targeted at studying the same disease. In Publications 2 and 3,
joint analysis of a large number of commensurable microarray experiments, where
the observed data is directly comparable between the arrays, helps to increase
statistical power and to reveal weak, shared signals in the data that can not be
detected in more restricted experimental setups and smaller datasets.

However, the related observations are often not directly comparable, and fur-
ther methodological tools are needed for integration. Meta-analysis provides tools
for such analysis (Ramasamy et al., 2008). Meta-analysis forms part of the microar-
ray analysis procedure introduced in Publication 1, where methods to integrate
related microarray measurements across different array platforms are developed.
Meta-analysis emphasizes shared effects between the studies over statistical sig-
nificance in individual experiments. In its standard form, meta-analysis assumes
that each individual study measures the same target variable with varying lev-
els of noise. The analysis starts from identifying a measure of effect size based
on differences, means, or other summary statistics of the observations such as
the Hedges’ g, used in Publication 1. Weighted averaging of the effect sizes pro-
vides the final, combined result. Weighting accounts for differences in reliability
of the individual studies, for instance by emphasizing studies with large sample
size, or low measurement variance. Averaging is expected to yield more accurate
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estimates of the target variable than individual studies. This can be particularly
useful when several studies with small sample sizes are available for instance from
different laboratories, which is a common setting in microarray analysis context,
where the data sets produced by individual laboratories are routinely deposited
to shared community databases. Ultimately, the quality of meta-analysis results
rests on the quality of the individual studies. Modeling choices, such as the choice
of the effect size measure and included studies will affect the analysis outcome.

Kernel methods (see e.g. Schélkopf and Smola, 2002) provide another widely
used approach for integrating statistical evidence across multiple, potentially het-
erogeneous measurement sources. Kernel methods operate on similarity matrices,
and provide a natural framework for combining statistical evidence to detect sim-
ilarity and patterns that are supported by multiple observations. The modeling
framework also allows for efficient modeling of nonlinear feature spaces.

Multi-task learning refers to a class of approaches where multiple, related mod-
eling tasks are solved simultaneously by combining statistical power across the
related tasks. A typical task is to improve the accuracy of individual classifiers by
taking advantage of the potential dependencies between them (see e.g. Caruana,
1997).

6.1.2 Role of side information

The second category of approaches for genomic data integration consists of meth-
ods that are asymmetric by nature; integration is used to support the analysis
of one, primary data source. Side information can be used, for instance, to limit
the search space and to focus the analysis to avoid overfitting, speed up compu-
tation, as well as to obtain potentially more sensitive and accurate findings (see
e.g. Eisenstein, 2006). One strategy is to impose hard constraints on the model, or
model family, based on side information to target specific research questions. In
gene expression context, functional classifications or known interactions between
the genes can be used to constrain the analysis (Goeman and Buhlmann, 2007;
Ulitsky and Shamir, 2009). In factor analysis and mixed effect models, clinical an-
notations of the samples help to focus the modeling on particular conditions (see
e.g. Carvalho et al., 2008). Hard constraints rely heavily on the accuracy of side
information. Soft, or probabilistic approaches can take the uncertainty in side in-
formation into account, but they are computationally more demanding. Examples
of such methods in the context of transcriptome analysis include for instance the
supervised biclustering models, such as cMonkey and modified SAMBA, as well
as other methods that guide the analysis with additional information of genes and
regulatory mechanisms, such as transcription factor binding (Reiss et al., 2006;
Savage et al., 2010; Tanay et al., 2004). Publication 3 uses gene interaction net-
work as a hard constraint for modeling transcriptional co-regulation of the genes,
but the condition-specific responses of the detected gene groups are identified in
an unsupervised manner.

A complementary approach for utilizing side information of the experiments
is provided by multi-way learning. A classical example is the analysis of variance
(ANOVA), where a single data set is modeled by decomposing it into a set of basic,
underlying effects, which characterize the data optimally. The effects are associ-
ated with multiple, potentially overlapping attributes of the measurement samples,
such as disease state, gender and age, which are known prior to the analysis. Tak-
ing such prior knowledge of systematic variation between the samples into account
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helps to increase modeling power and can reveal the attribute-specific effects. An
interesting subtask is to model the interactions between the attributes, so-called
interaction effects. These are manifested only with particular combinations of
attributes, and indicate dependency between the attributes. For instance, simul-
taneous cigarette smoking and asbestos exposure will considerably increase the
risk of lung cancer, compared to any of the two risk factors alone (see e.g. Nymark
et al., 2007). Factor analysis is a closely related approach where the attributes,
also called factors, are not given but instead estimated from the data. Mixed
effect models combine the supervised and unsupervised approaches by incorporat-
ing both fized and random effects in the model, corresponding to the known and
latent attributes, respectively (see e.g. Carvalho et al., 2008). The standard factor-
ization approaches for individual data sets are related to the dependency-seeking
approaches in Publications 4-6, where co-occurring data sources are decomposed
in an unsupervised manner into components that are maximally informative of the
components in the other data set.

6.1.3 Modeling of mutual dependency

Symmetric models for dependency detection form the third main category of meth-
ods for genomic data integration, as well as the main topic of this chapter. De-
pendency modeling is used to distinguish the shared signal from dataset-specific
variation. The shared effects are informative of the commonalities and interactions
between the observations, and are often the main focus of interest in integrative
analysis. This motivates the development of methods that can allocate computa-
tional resources efficiently to modeling of the shared features and interactions.

Multi-view learning is a general category of approaches for symmetric depen-
dency modeling tasks. In multi-view learning, multiple measurement sources are
available, and each source is considered as a different view on the same objects. The
task is to enhance modeling performance by combining the complementary views.
A classical example of such a model is canonical correlation analysis (Hotelling,
1936). Related approaches that have recently been applied in functional genomics
include for instance probabilistic variants of meta-analysis (Choi et al., 2007; Con-
lon et al., 2007), generalized singular value decomposition (see e.g. Alter et al.,
2003; Berger et al., 2006) and simultaneous non-negative matrix factorization
(Badea, 2008).

The dependency modeling approaches in this thesis make an explicit distinc-
tion between statistical representation of data and the modeling task. Let us
denote the representations of two co-occurring multivariate observations, x and y,
with fz(x) and fy(y), respectively. The selected representations depend on the
application task. The representation can be for instance used to perform feature
selection as in canonical correlation analysis (CCA) Hotelling (1936), capture non-
linear features in the data as in kernelized versions of CCA (see e.g. Yamanishi
et al., 2003), or partition the data as in information bottleneck (Friedman et al.,
2001) and associative clustering (Publications 5-6). Statistical independence of the
representations implies that their joint probability density can be decomposed as
p(f2(x), fy(¥)) = p(f2(x))p(fy(y)). Deviations from this assumption indicate sta-
tistical dependency. The representations can have a flexible parametric form which
can be optimized by the dependency modeling algorithms to identify dependency
structure in the data.

Recent examples of such dependency-maximizing methods include probabilistic
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canonical correlation analysis (Bach and Jordan, 2005), which has close theoretical
connection to the regularized models introduced in Publication 4, and the asso-
ciative clustering principle introduced in Publications 5-6. Canonical correlations
and contingency table analysis form the methodological background for the con-
tributions in Publications 4-6. In the remainder of this section these two standard
approaches for dependency detection are considered more closely.

Classical and probabilistic canonical correlation analysis

Canonical correlation analysis (CCA) is a classical method for detecting linear
dependencies between two multivariate random variables (Hotelling, 1936). While
ordinary correlation characterizes the association strength between two vectors
with paired scalar observations, CCA assumes paired vectorial values, and gener-
alizes correlation to multidimensional sources by searching for maximally correlat-
ing low-dimensional representation of the two sources, defined by linear projections
Xvgz, Yv,. Multiple projection components can be obtained iteratively, by finding
the most correlating projection first, and then consecutively the next ones after
removing the dependencies explained by the previous CCA components; the lower-
dimensional representations are defined by projections to linear hyperplanes. The
model can be formulated as a generalized eigenvalue problem that has an analytical
solution with two useful properties: the result is invariant to linear transforma-
tions of the data, and the solution for any fixed number of components maximizes
mutual information between the projections for Gaussian data (Kullback, 1959;
Bach and Jordan, 2002). Extensions of the classical CCA include generalizations
to multiple data sources (Kettenring, 1971; Bach and Jordan, 2002), regularized
solutions with non-negative and sparse projections (Sigg et al., 2007; Archambeau
and Bach, 2008; Witten et al., 2009), and non-linear extensions, for instance with
kernel methods (Bach and Jordan, 2002; Yamanishi et al., 2003). Direct opti-
mization of correlations in the classical CCA provides an efficient way to detect
dependencies between data sources, but it lacks an explicit model to deal with the
uncertainty in the data and model parameters.

Recently, the classical CCA was shown to correspond to the ML solution of a
particular generative model where the two data sets are assumed to stem from a
shared Gaussian latent variable z and normally distributed data-set-specific noise
(Bach and Jordan, 2005). Using linear assumptions, the model is formally defined
as

{ x ~W,z+e, 6.1)

y ~Wyz+eg,.

The manifestation of the shared signal in each data set can be different. This is pa-
rameterized by W, and W,. Assuming a standard Gaussian model for the shared
latent variable, z ~ N(0,I) and data set-specific effects where €, ~ AN(0,¥,)
(and respectively for y), the correlation-maximizing projections of the traditional
CCA introduced in Section 6.1 can be retrieved from the ML solution of the model
(Archambeau et al., 2006; Bach and Jordan, 2005). The model decomposes the
observed co-occurring data sets into shared and data set-specific components based
on explicit modeling assumptions (Figure 6.1). The dataset-specific effects can also
be described in terms of latent variables as €, = B,z, and €, = B,z,, allowing
the construction of more detailed models for the dataset-specific effects (Klami and
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Kaski, 2008). The shared signal z is treated as a latent variable and marginalized
out in the model, providing the marginal likelihood for the observations:

p(X, YW, ) = /p(X,Y|Z,W7\IJ)p(Z)dZ, (6.2)

where ¥ denotes the block-diagonal matrix of ¥,, ¥,, and W = [W,; W,]. The
probabilistic formulation of CCA has opened up a way to new probabilistic ex-
tensions that can treat the modeling assumptions and uncertainties in the data in
a more explicit and robust manner (Archambeau et al., 2006; Klami and Kaski,
2008; Klami et al., 2010).

The general formulation provides a flexible modeling framework, where differ-
ent modeling assumptions can be used to adapt the models in different applications.
The connection to classical CCA assumes full covariances for the dataset-specific
effects. Simpler models for the dataset-specific effects will not distinguish between
the shared and marginal effects as effectively, but they have fewer model param-
eters that can potentially reduce overlearning and speed up computation. It is
also possible to tune the dimensionality of the shared latent signal. Learning of
lower-dimensional models can be faster and potentially less prone to overfitting.
Interpretation of simpler models is also more straightforward in many applications.
The probabilistic formulation allows rigorous treatment of uncertainties in the data
and model parameters also with small sample sizes that are common in biomedical
studies, and allows the incorporation of prior information through Bayesian priors,
as in the regularized dependency detection framework introduced in Publication 4.

® ©

Figure 6.1: A graphical representation of the generative shared latent variable model in Equa-
tion (6.1). The latent source z is shared by observations x and y. The other effects that are
specific to each observation are characterized by z; and z,, respectively. Gray shading indicates
observed variables.

Contingency table analysis

Contingency table analysis is a classical approach used to study associations be-
tween co-occurring categorical observations. The co-occurrences are represented
by cross-tabulating them on a contingency table, the rows and columns of which
correspond to the first and second set of features, respectively. Various tests are
available for measuring dependency between the rows and columns of the table
Yates (1934); Agresti (1992), including the classical Fisher test (Fisher, 1934), a
standard tool for measuring statistical enrichment of functional categories in gene
cluster analysis (Hosack et al., 2003). While the classical contingency table anal-
ysis is used to measure dependency between co-occurring variables, more recent
approaches use contingency tables to derive objective functions for dependency ex-
ploration tasks. The associative clustering principle introduced in Publications 5-6
is an example of such approach.
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Other approaches that use contingency table dependencies as objective func-
tions include the information bottleneck (IB) principle (Tishby et al., 1999) and
discriminative clustering (DC) (Sinkkonen et al., 2002; Kaski et al., 2005). These
are asymmetric, dependency-seeking approaches that can be used to discover clus-
ter structure in a primary data such that it is maximally informative of another,
discrete auxiliary variable. The dependency is represented on a contingency ta-
ble, and maximization of contingency table dependencies provides the objective
function for clustering. While the standard IB operates on discrete data, DC is
used to discover cluster structure in continuous-valued data. The two approaches
also employ different objective functions. In classical IB, a discrete variable X is
clustered in such a way that the cluster assignments become maximally informa-
tive of another discrete variable ). The complexity of the cluster assignments is
controlled by minimizing the mutual information between the cluster indices and
the original variables. The task is to find a partitioning X that minimizes the
cost L(p(X|X)) = I(X;X) — I(X;Y), where 3 controls clustering resolution. In
DC, mutual information is replaced by a Bayes factor between the two hypothe-
ses of dependent and independent margins. The Bayes factor is asymptotically
consistent with mutual information, but provides an unbiased estimate for limited
sample size (see e.g. Sinkkonen et al., 2005). The standard information bottleneck
and discriminative clustering are asymmetric methods that treat one of the data
sources as the primary target of analysis.

In contrast, the dependency maximization approaches considered in this thesis,
the associative clustering (AC) and regularized versions of canonical correlation
analysis are symmetric and they operate exclusively on continuous-valued data.
CCA is not based on contingency table analysis, but it has close connections to
the Gaussian IB (Chechik et al., 2005) that seeks maximal dependency between
two sets of normally distributed variables. The Gaussian IB retrieves the same
subspace as CCA for one of the data sets. However, in contrast to the symmetric
CCA model, Gaussian IB is a directed method that finds dependency-maximizing
projections for only one of the two data sets. The second dependency detection
approach considered in this thesis, the associative clustering, is particularly related
to the symmetric IB that finds two sets of clusters, one for each variable, which
are optimally compressed presentations of the original data, and at the same time
maximally informative of each other (Friedman et al., 2001). While the objective
function in IB is derived from mutual information, AC uses the Bayes factor as an
objective function in a similar manner as it is used in the asymmetric discriminative
clustering. Another key difference is that while the symmetric IB operates on
discrete data, AC employs contingency table analysis in order to discover cluster
structure in continuous-valued data spaces.

6.2 Regularized dependency detection

Standard unsupervised methods for dependency detection, such as the canonical
correlation analysis or the symmetric information bottleneck, seek maximal depen-
dency between two data sets with minimal assumptions about the dependencies.
The unconstrained models involve high degrees of freedom when applied to high-
dimensional genomic observations. Such flexibility can easily lead to overfitting,
which is even worse for more flexible nonparametric or nonlinear, kernel-based de-
pendency discovery methods. Several ways to regularize the solution have been
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suggested to overcome associated problems, for instance by imposing sparsity con-
straints on the solution space (Bie and Moor, 2003; Vinod, 1976).

In many applications prior information of the dependencies is available, or
particular types of dependency are relevant for the analysis task. Such prior infor-
mation can be used to reduce the degrees of freedom in the model, and to regularize
dependency detection. In the cancer gene discovery application of Publication 4,
DNA mutations are systematically correlated with transcriptional activity of the
genes within the affected region, and identification of such regions is a biomedi-
cally relevant research task. Prior knowledge of chromosomal distances between
the observations can improve the detection of the relevant spatial dependencies.
However, principled approaches to incorporate such prior information in depen-
dency modeling have been missing. Publication 4 introduces regularized models for
dependency detection based on classical canonical correlation analysis (Hotelling,
1936) and its probabilistic formulation (Bach and Jordan, 2005). The models are
extended by incorporating appropriate prior terms, which are then used to reduce
the degrees of freedom based on prior biological knowledge.

Correlation-based variant

In order to introduce the regularized dependency detection framework of Publica-
tion 4, let us start by considering regularization of the classical correlation-based
CCA. This searches for arbitrary linear projection vectors v, v, that maximize
the correlation between the projections of the data sets X, Y. Multiple projection
components can be obtained iteratively, by finding the most correlating projec-
tion first, and then consecutively the next ones after removing the dependencies
explained by the previous CCA components. The procedure will identify maxi-
mally dependent linear subspaces of the investigated data sets. To regularize the
solution, Publication 4 couples the projections through a transformation matrix
T in such a way that v, = Tv,. With a completely unconstrained T the model
reduces to the classical unconstrained CCA; suitable constraints on can be used
to regularize dependency detection.

To enforce regularization one could for instance prefer solutions for T that are
close to a given transformation matrix, T ~ M, or impose more general constraints
on the structure of the transformation matrix that would prefer particular rota-
tional or other linear relationships. Suitable constraints depend on the particular
applications; the solutions can be made to prefer particular types of dependency
in a soft manner by appropriate penalty terms. In Publication 4 the completely
unconstrained CCA model has been compared with a fully regularized model with
T = T; this encodes the biological assumption that probes with small chromosomal
distances tend to capture more similar signal between gene expression and copy
number measurements than probes with a larger chromosomal distance; the pro-
jection vectors characterize this relationship, and are therefore expected to have
similar form, v, ~ v,. Utilization of other, more general constraints in related
data integration tasks provides a promising topic for future studies.

The correlation-based treatment provides an intuitive and easily implementable
formulation for regularized dependency detection. However, it lacks an explicit
model for the shared and data-specific effects, and it is likely that some of the
dataset-specific effects are captured by the correlation-maximizing projections.
This is suboptimal for characterizing the shared effects, and motivates the proba-
bilistic treatment.
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Probabilistic dependency detection with similarity constraints

The probabilistic approach for regularized dependency detection in Publication 4
is based on an explicit model of the data-generating process formulated in Equa-
tion (6.1). In this model, the transformation matrices W, W, specify how the
shared latent variable Z is manifested in each data set X, Y, respectively. In
the standard model, the relationship between the transformation matrices is not
constrained, and the algorithm searches for arbitrary linear transformations that
maximize the likelihood of the observations in Equation (6.2). The probabilistic
formulation opens up possibilities to guide dependency search through Bayesian
priors.

In Publication 4, the standard probabilistic CCA model is extended by incorpo-
rating additional prior terms that regularize the relationship by reparameterizing
the transformation matrices as W, = TW;, and setting a prior on T. The treat-
ment is analogous to the correlation-based variant, but now the transformation
matrices operate on the latent components, rather than the observations. This
allows to distinguish the shared and dataset-specific effects more explicitly in the
model. The task is then to learn the optimal parameter matrix W = [W; W, ],
given the constraint W, = TW_. The Bayes’ rule gives the model likelihood

PX,Y, W, ¥) ~ p(X, YW, ¥)p(W, ¥). (6.3)

The likelihood term p(X, Y|W, ®) can be calculated based on the model in Equa-
tion (6.1). This defines the objective function for standard probabilistic CCA,
which implicitly assumes a flat prior p(W, ®¥) ~ 1 for the model parameters. The
formulation in Equation (6.3) makes the choice of the prior explicit, allowing modi-
fications on the prior term. To obtain a tractable prior, let us assume that the prior
factorizes as p(W, ¥) = p(W)p(®). The first term can be further decomposed as
p(W) ~ p(W,)p(T), assuming independent priors for W, and T. A convenient
and tractable prior for T is provided by the matrix normal distribution:!

p(T) = N (TIM, U, V). (6.4)

For computational simplicity, let us assume independent rows and columns with
U =V = o7I. The mean matrix M can be used to emphasize certain types of
dependency between W, and W,,. Assuming uninformative, flat priors p(W,) ~ 1
and p(¥) ~ 1, as in the standard probabilistic CCA model, and denoting ¥ =
WWT7 + W, the negative log-likelihood of the model is

T M}

—logp(X, Y, W, ®) ~ log|Z| + TrE"'% + | (6.5)

20%
This is the objective function to minimize. Note that this has the same form as the
objective function of the standard probabilistic CCA, except the additional penalty
T—

2

2
term %”F arising from the prior p(T). This yields the cost function employed

in Publica{ion 4. In our cancer gene discovery application the choice M = I is used
to encode the biological prior constrain T & I, which states that the observations
with a small chromosomal distance should on average show similar responses in
the integrated data sets, i.e., W, ~ W,. The regularization strength can be tuned

"N (T|M, U, V) ~ exp (7%T’F{U71(T —M)V~HT — M)T}) where M is the mean matrix,
and U and V denote row and column covariances, respectively.
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with 02. A fully regularized model is obtained with 02 — 0. When 0% — oo, W,
and W, become independent a priori, yielding the ordinary probabilistic CCA.
The o2 can be used to regularize the solution between these two extremes. Note
that it is possible to incorporate also other types of prior information concerning
the dependencies into the model through p(T).

The model parameters W, ¥ are estimated with the EM algorithm. The
regularized version is not analytically tractable with respect to W in the general
case, but can be optimized with standard gradient-based optimization techniques.
Special cases of the model have analytical solutions, which can speed up the model
fitting procedure. In particular, the fully regularized and unconstrained models,
obtained with 0% = 0 and 02 = oo respectively, have closed-form solutions for
W. Note that the current formulation assumes that the regularization parameters
M, 02 are defined prior to the analysis. Alternatively, these parameters could be
optimized based on external criteria, such as cancer gene detection performance
in our application, or learned from the data in a fully Bayesian treatment these
parameters would be treated as latent variables. Incorporation of additional prior
information of the data set-specific effects through priors on W, and ¥ provides
promising lines for further work.

6.2.1 Cancer gene discovery with dependency detection

The regularized models provide a principled framework for studying associations
between transcriptional activity and other regulatory layers of the genome. In
Publication 4, the models are used to investigate cancer mechanisms. DNA copy
number changes are a key mechanism for cancer, and integration of copy number
information with mRNA expression measurements can reveal functional effects of
the mutations. While causation may be difficult to grasp, study of the dependen-
cies can help to identify functionally active mutations, and to provide candidate
biomarkers with potential diagnostic, prognostic and clinical impact in cancer
studies.

The modeling task in the cancer gene discovery application of Publication 4 is
to identify chromosomal regions that show exceptionally high levels of dependency
between gene copy number and transcriptional levels. The model is used to detect
dependency within local chromosomal regions that are then compared in order
to identify the exceptional regions. The dependency is quantified within a given
region by comparing the strength of shared and data set-specific signal. High
scores indicate regions where the shared signal is particularly high relative to the
data-set-specific effects. A sliding-window approach is used to screen the genome
for dependencies. The regions are defined by the d closest probes around each
gene. Then the dimensionality of the models stays constant, which allows direct
comparison of the dependency measures between the regions without additional
adjustment terms that would be otherwise needed to compensate for differences
in model complexity.

Prior information of the dependencies is used to regularize cancer gene detec-
tion. Chromosomal gains and losses are likely to be positively correlated with the
expression levels of the affected genes within the same chromosomal region or its
close proximity; copy number gain is likely to increase the expression of the asso-
ciated genes whereas deletion will block gene expression. The prior information
is encoded in the model by setting M = I in the prior term p(T). This accounts
for the expected positive correlations between gene expression and copy number
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within the investigated chromosomal region. Regularization based on such prior
information is shown to improve cancer gene detection performance in Publica-
tion 4, where the regularized variants outperformed the unconstrained models.

A genome-wide screen of 51 gastric cancer patients (Myllykangas et al., 2008)
reveals clear associations between DNA copy number changes and transcriptional
activity. The Figure 6.2 illustrates dependency detection on chromosome arm
17q, where the regularized model reveals high dependency between the two data
sources in a known cancer-associated region. The regularized and unconstrained
models were compared in terms of receiver-operator characteristics calculated by
comparing the ordered gene list from the dependency screen to an expert-curated
list of known genes associated with gastric cancer (Myllykangas et al., 2008). A
large proportion of the most significant findings in the whole-genome analysis were
known cancer genes; the remaining findings with no known associations to gastric
cancer are promising candidates for further study.

Biomedical interpretation of the model parameters is also straightforward. A
ML estimate of the latent variable values Z characterizes the strength of the shared
signal between DNA mutations and transcriptional activity for each patient. This
allows robust identification of small, potentially unknown patient subgroups with
shared amplification effects. These would remain potentially undetected when
comparing patient groups defined based on existing clinical annotations. The pa-
rameters in W can downweigh signal from poorly performing probes in each data
set, or probes that measure genes whose transcriptional levels are not functionally
affected by the copy number change. This provides tools to distinguish between
so-called driver mutations having functional effects from less active passenger mu-
tations, which is an important task in cancer studies. On the other hand, the
model can combine statistical power across the adjacent measurement probes, and
it captures the strongest shared signal in the two sets of observations. This is
useful since gene expression and copy number data are typically characterized by
high levels of biological and measurement variation and small sample size.

Related approaches

Integration of chromosomal aberrations and transcriptional activity is an actively
studied data integration task in functional genomics. The first studies with stan-
dard statistical tests were carried out by Hyman et al. (2002) and Phillips et al.
(2001) when simultaneous genome-wide observations of the two data sources had
become available. The modeling approaches utilized in this context can be roughly
classified in regression-based, correlation-based and latent variable approaches.
The regression-based models (Adler et al., 2006; Bicciato et al., 2009; van Wierin-
gen and van de Wiel, 2009) characterize alterations in gene expression levels based
on copy number observations with multivariate regression or closely related mod-
els. The correlation-based approaches (Gonzdlez et al., 2009; Schéfer et al., 2009;
Soneson et al., 2010) provide symmetric models for dependency detection, based
on correlation and related statistical models. Many of these methods also reg-
ularize the solutions, typically based on sparsity constraints and non-negativity
of the projections (Lé Cao et al., 2009; Waaijenborg et al., 2008; Witten et al.,
2009; Parkhomenko et al., 2009). The correlation-based approach in Publication 4
introduces a complementary approach for regularization that constrains the re-
lationship between subspaces where the correlations are estimated. The latent
variable models by Berger et al. (2006); Shen et al. (2009); Vaske et al. (2010),
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Figure 6.2: Gene expression, copy number signal, and the dependency score along the chromo-
some arm 17q obtained with the regularized latent variable framework in Equation 6.5. Known
cancer-associated genes from an expert-curated list are marked with black dots.

and Publication 4 are based on explicit modeling assumptions concerning the data-
generating processes. The iCluster algorithm (Shen et al., 2009) is closely related
to the latent variable model considered in Publication 4. While our model detects
continuous dependencies, iCluster uses a discrete latent variable to partition the
samples into distinct subgroups. The iCluster model is regularized by sparsity
constraints on W, while we tune the relationship between W, and W,. More-
over, the model in Publication 4 utilizes full covariance matrices to model for the
dataset-specific effects, whereas iCluster uses diagonal covariances. The more de-
tailed model for dataset-specific effects in our model should help to distinguish
the shared signal more accurately. Other latent variable approaches include the
iterative method based on generalized singular-value decomposition (Berger et al.,
2006), and the probabilistic factor graph model PARADIGM (Vaske et al., 2010),
which additionally utilizes pathway topology information in the modeling.

Experimental comparison between the related integrative approaches can be
problematic since they target related, but different research questions where the
biological ground truth is often unknown. For instance, some methods utilize pa-
tient class information in order to detect class-specific alterations (Schéfer et al.,
2009), other methods perform de novo class discovery (Shen et al., 2009), provide
tools for gene prioritization (Salari et al., 2010), or guide the analysis with ad-
ditional functional information of the genes (Vaske et al., 2010). The algorithms
introduced in Publication 4 are particularly useful for gene prioritization and class
discovery purposes, where the target is to identify the most promising cancer gene
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candidates for further validation, or to detect potentially novel cancer subtypes.
However, while an increasing number of methods are released as conveniently ac-
cessible algorithmic tools (Salari et al., 2010; Shen et al., 2009; Schéfer et al.,
2009; Witten et al., 2009), implementations of most models are not available for
comparison purposes. Open source implementations of the dependency detection
algorithms developed in this thesis have been released to enhance transparency
and reproducibility of the computational experiments and to encourage further
use of these models (Huovilainen and Lahti, 2010).

6.3 Associative clustering

Functions of human genes are often studied indirectly, by studying model organ-
isms such as the mouse (Davis, 2004; Joyce and Palsson, 2006). Orthologs are
genes in different species that originate from a single gene in the last common
ancestor of these species. Such genes have often retained identical biological roles
in the present-day organisms, and are likely to share the function (Fitch, 1970).
Mutations in the genomic DNA sequence are a key mechanism in evolution. Con-
sequently, DNA sequence similarity can provide hypotheses of gene function in
poorly annotated species. An exceptional level of conservation may highlight crit-
ical physiological similarities between species, whereas divergence can indicate sig-
nificant evolutionary changes (Jordan et al., 2005). Investigating evolutionary con-
servation and divergence will potentially lead to a deeper understanding of what
makes each species unique. Evolutionary changes primarily target the structure
and sequence of genomic DNA. However, not all changes will lead to phenotypic
differences. On the other hand, sequence similarity is not a guarantee of func-
tional similarity because small changes in DNA can potentially have remarkable
functional implications.

Therefore, in addition to investigating structural conservation of the genes at
the sequence level, another level of investigation is needed to study functional con-
servation of the genes and their regulation, which is reflected at the transcriptome
(Jiménez et al., 2002; Jordan et al., 2005). Transcriptional regulation of the genes
is a key regulatory mechanism that can have remarkable phenotypic consequences
in highly modular cell-biological systems (Hartwell et al., 1999) even when the
original function of the regulated genes would remain intact.

Systematic comparison of transcriptional activity between different species
would provide a straightforward strategy for investigating conservation of gene
regulation (Bergmann et al., 2004; Enard et al., 2002; Zhou and Gibson, 2004).
However, direct comparison of individual genes between species may not be op-
timal for discovering subtle and complex dependency structures. The associative
clustering principle (AC), introduced in Publications 5-6, provides a framework
for detecting groups of orthologous genes with exceptional levels of conservation
and divergence in transcriptional activity between two species. While standard
dependency detection methods for continuous data, such as the generalized sin-
gular value decomposition (see e.g. Alter et al., 2003) or canonical correlation
analysis (Hotelling, 1936) detect global linear dependencies between observations,
AC searches for dependent, local groupings to reveal gene groups with exceptional
levels of conservation and divergence in transcriptional activity. The model is free
of particular distributional assumptions about the data, which helps to allocate
modeling resources to detecting dependent subgroups when variation within each
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Figure 6.3: Principle of associative clustering (AC). AC performs simultaneous clustering of two
data sets, consisting of paired observations, and seeks to maximize the dependency between the
two sets of clusters. The clusters are defined by cluster centroids in each data space. The cluster-
ing results are represented on a contingency table, where clusters of the two data sets correspond
with the rows and columns of the contingency table, respectively. These are called the mar-
gin clusters of the contingency table. The table cells are called cross clusters and they contain
orthologous genes from the two data sets. The cluster centroids are optimized to produce a con-
tingency table with maximal dependency between the margin cluster counts. Cross clusters that
show significant deviation from the null hypothesis of independent margins indicate dependency.
In order to enhance the reliability of the results, the clustering is repeated with slightly differing
bootstrap samples. Then reliable co-occurrences are identified from a co-occurrence tree with a
specified threshold. Frequently co-occurring orthologues are selected for further analyzes.

group is less relevant for the analysis. The remainder of this section provides
an overview of the associative clustering principle and its application to studying
evolutionary divergence between species.

The associative clustering principle

The principle of associative clustering (AC) is illustrated in Figure 6.3. AC per-
forms simultaneous clustering of two data sets to reveal maximally dependent
cluster structure between two sets of observations. The clusters are defined in
each data space by Voronoi parameterization, where the clusters are defined by
cluster centroids to produce connected, internally homogeneous clusters. Let us
denote the two sets of clusters by {Vi(m)}i, {Vj(y)}j. A given data point x is then
assigned to the cluster corresponding to the nearest centroid m; in the feature
space, with respect to a given distance measure? d. This divides the space into
non-overlapping Voronoi regions. The regions define a clustering for all points of

2x ¢ Vi(x) if d(x,m;) < d(x, my) for all k.
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the data space. The association between the clusters of the two data sets can be
represented on a contingency table, where the rows and columns correspond to
clusters in the first and second data set, respectively. The clusters in each data set
are called margin clusters. Each pair of co-occurring observations (x;,y;) maps to
one margin cluster in each data set, and each contingency table cell corresponds
to a pair of margin clusters. These are called cross clusters.

AC searches for a maximally dependent cluster structure by optimizing the
Voronoi centroids in the two data spaces in such a way that the dependency be-
tween the contingency table margins is maximized. Let us denote the number
of samples in cross cluster i,j by n;;. The corresponding margin cluster counts
are n;. = Zj ng; and n.; = ZZ ni;. The observed sample frequencies over the
contingency table margins and cross-clusters are assumed to follow multinomial
distribution with latent parameters 6;,0; and 0;;, respectively. Assuming the
model M; of independent margin clusters, the expected sample frequency in each
cross cluster is given by the outer product of margin cluster frequencies. The model
M, of dependent margin clusters deviates from this assumption. The Bayes factor
(BF) is used to compare the two hypotheses of dependent and independent mar-
gins. This is a rigorously justified approach for model comparison, which indicates
whether the observations provide superior evidence for either model. Evidence is
calculated over all potential values of the model parameters, marginalized over the
latent frequencies. In a standard setting, the Bayes factor would be used to com-
pare evidence between the dependent and independent margin cluster models for
a given clustering solution. AC uses the Bayes factor in a non-standard manner;
as an objective function to maximize by optimizing the cluster centroids in each
data space; the centroids define the margin clusters and consequently the margin
cluster dependencies.

The centroids are optimized with a conjugate-gradient algorithm after smooth-
ing the cluster borders with continuous parameterization. The hyperparameters
n@ n@ and n® arise from Dirichlet priors of the two multinomial models M7,
Mp of independent and dependent margins, respectively. Setting the hyperpa-
rameters to unity yields the classical hypergeometric measure of contingency table
dependency (Fisher, 1934; Yates, 1934). With large sample size, the logarithmic
Bayes factor approaches mutual information (Sinkkonen et al., 2005). The Bayes
factor is a desirable choice especially with a limited sample size since a marginaliza-
tion over the latent variables makes it robust against uncertainty in the parameter
values, and because finite contingency table counts would give a biased estimate
of mutual information. The number of clusters in each data space is specified in
advance, typically based on the desired level of resolution. Nonparametric exten-
sions, where the number of margin clusters would be inferred automatically from
the data form one potential topic for further studies; a closely related approach
was recently proposed in Rogers et al. (2010).

Publication 6 introduces an additional, bootstrap-based procedure to assess
the reliability of the findings (Figure 6.3). The analysis is repeated with similar,
but not identical training data sets obtained by sampling the original data with
replacement. The most frequently detected dependencies are then investigated
more closely. The analysis will emphasize findings that are not sensitive to small
variations in the observed data.
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Comparison methods

Associative clustering was compared with two alternative methods: standard K-
means on each of the two data sets, and a combination of K-means and informa-
tion bottleneck (K-IB). K-means (see e.g. Bishop, 2006) is a classical clustering
algorithm that provides homogeneous, connected clusters based on Voronoi pa-
rameterization. Homogeneity is desirable for interpretation, since the data points
within a given cluster can then be conveniently summarized by the cluster cen-
troid. On the other hand, K-means considers each data set independently, which
is suboptimal for the dependency modeling task. The two sets of clusters obtained
by K-means, one for each data space, can then be presented on a contingency
table as in associative clustering. The second comparison method is K-IB intro-
duced in Publication 5. K-IB uses K-means to partition the two co-occurring,
continuous-valued data sets into discrete atomic regions where each data point is
assigned in its own singleton cluster. This gives two sets of atomic clusters that
are mapped on a large contingency table, filled with frequencies of co-occurring
data pairs (xx,yx). The table is then compressed to the desired size by aggre-
gating the margin clusters with the symmetric IB algorithm in order to maximize
the dependency between the contingency table margins (Friedman et al., 2001).
Aggregating the atomic clusters provides a flexible clustering approach, but the
resulting clusters are not necessarily homogeneous and they are therefore difficult
to interpret.

AC compared favorably to the other methods. While AC outperformed the
standard K-means in dependency modeling, the cluster homogeneity was not sig-
nificantly reduced in AC. The cross clusters from K-IB (Sinkkonen et al., 2003)
were more dependent than in AC. On the other hand, AC produced more easily in-
terpretable localized clusters, as measured by the sum of intra-cluster variances in
Publication 6. Homogeneity makes it possible to summarize clusters conveniently,
for instance by using the mean expression profiles of the cluster samples, as in
Figure 6.4B. While K-means searches for maximally homogeneous clusters and K-
IB searches for maximally dependent clusters, AC finds a successful compromise
between the goals of dependency and homogeneity.

6.3.1 Exploratory analysis of transcriptional divergence be-
tween species

Associative clustering is used in Publications 5 and 6 to investigate conservation
and divergence of transcriptional activity of 2818 orthologous human-mouse gene
pairs across an organism-wide collection of transcriptional profiling data covering
46 and 45 tissue types in human and mouse, respectively (Su et al., 2002). AC takes
as input two gene expression matrices with orthologous genes, one for each species,
and returns a dependency-maximizing clustering for the orthologous gene pairs.
Interpretation of the results focuses on unexpectedly large or small cross clusters
revealed by the contingency table analysis of associative clustering. Compared to
plain correlation-based comparisons between the gene expression profiles, AC can
reveal additional cluster structure, where genes with similar expression profiles
are clustered together, and associations between the two species are investigated
at the level of such detected gene groups. The dependency between each pair of
margin clusters can be characterized by comparing the respective margin cluster
centroids that provide a compact summary of the samples within each cluster.
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Figure 6.4: A The contingency table of associative clustering highlights orthologous gene groups
in human (rows) and mouse (columns) with exceptional levels of conservation (yellow) or diver-
gence (blue) in transcriptional activity between the two species. B Average expression profiles
of a highly conserved group of testis-specific genes across 21 tissues in man and mouse. ©IEEE.
Reprinted with permission from Publication 6.

Biological interpretation of the findings, based on enrichment of Gene Ontology
(GO) categories (Ashburner et al., 2000), revealed genes with strongly conserved
and potentially diverged transcriptional activity. The most highly enriched cat-
egories were associated with ribosomal functions, the high conservation of which
has also been suggested in earlier studies (Jiménez et al., 2002); ribosomal genes
often require coordinated effort of a large group of genes, and they function in cell
maintenance tasks that are critical for species survival. An exceptional level of
conservation was also observed in a group of testis-specific genes, yielding novel
functional hypotheses for certain poorly annotated genes within the same cross-
cluster (Figure 6.4). Transcriptional divergence, on the other hand, was detected
for instance in genes related to embryonic development.

While general-purpose dependency exploration tools may not be optimal for
studying the specific issue of transcriptional conservation, such tools can reveal de-
pendency with minimal prior knowledge about the data. This is useful in functional
genomics experiments where little prior knowledge is available. In Publications 5
and 6, associative clustering has been additionally applied in investigating depen-
dencies between transcriptional activity and transcription factor binding, another
key regulatory mechanism of the genes.

6.4 Conclusion

The models introduced in Publications 4-6 provide general exploratory tools for
the discovery and analysis of statistical dependencies between co-occurring data
sources and tools to guide modeling through Bayesian priors. In particular, the
models consider linear dependencies (Publication 4) and cluster-based dependency
structures (Publications 5-6) between the data sources. The models are readily
applicable to data integration tasks in functional genomics. In particular, the mod-
els have been applied to investigate dependencies between chromosomal mutations
and transcriptional activity in cancer, and evolutionary divergence of transcript-

67



CHAPTER 6. HUMAN TRANSCRIPTOME AND OTHER LAYERS OF GENOMIC
INFORMATION

ional activity between human and mouse. Biomedical studies provide a number
of other potential applications for such general-purpose methods. An increasing
number of co-occurring observations across the various regulatory layers of the
genome are available concerning epigenetic mechanisms, micro-RNAs; polymor-
phisms and other genomic features (The Cancer Genome Atlas Research Network,
2008). Simultaneous observations provide a valuable resource for investigating the
functional properties that emerge from the interactions between the different lay-
ers of genomic information. An open source implementation in BioConductor®
provides accessible computational tools for related data integration tasks, helping
to guarantee the utility of the developed models for the computational biology
community.

Shttp://www.bioconductor.org/packages/release/bioc/html/pint.html
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Chapter 7

Summary and conclusions

Mathematics is biology’s next microscope, only better; biology is math-
ematics’ next physics, only better.

J.E. Cohen (2004)

Following the initial sequencing of the human genome (International human
genome sequencing consortium, 2001; Venter et al., 2001), the understanding of
structural and functional organization of genetic information has extended rapidly
with the accumulation of research data. This has opened up new challenges and
opportunities for making fundamental discoveries about living organisms and cre-
ating a holistic picture about genome organization. The increasing need to or-
ganize the large volumes of genomic data with minimal human intervention has
made computation an increasingly central element in modern scientific inquiry. It
is a paradox of our time that the historical scale of data in public and proprietary
repositories is only revealing how incomplete our knowledge of the enormous com-
plexity of living systems is. The particular challenges in data-intensive genomics
are associated with the complex and poorly characterized nature of living systems,
as well as with limited availability of observations. It is possible to solve some of
these challenges by combining statistical power across multiple experiments, and
utilizing the wealth of background information in public repositories. Exploratory
data analysis can help to provide research hypotheses and material for more de-
tailed investigations based on large-scale genomic observations when little prior
knowledge is available concerning the underlying phenomena; models that are ro-
bust to uncertainty and able to automatically adapt to the data, can facilitate
the discovery of novel biological hypotheses. Statistical learning and probabilistic
models provide a natural theoretical framework for such analysis.

In this thesis, general-purpose exploratory data analysis methods have been
developed for organism-wide analysis of the human transcriptome, a central func-
tional layer of the genome. Integrating evidence across multiple sources of genomic
information can help to reveal mechanisms that could not be investigated based on
smaller and more targeted experiments; this is a central aspect in all contributions.
In particular, methods have been developed (i) in order to improve measurement
accuracy of high-throughput observations, (ii) in order to model transcriptional
activation patterns and tissue relatedness in genome-wide interaction networks at
an organism-wide scale, and (iii) in order to integrate measurements of the human
transcriptome with other layers of genomic information. These results contribute
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to some of the 'grand challenges’ in the genomic era by developing strategies to
understand cell-biological systems, genetic contributions to human health and evo-
lutionary variation (Collins et al., 2003). The computational experiments in this
thesis have been carried out based on publicly available, anonymized data sets that
follow commonly accepted ethical standards in biomedical research. Open access
implementations of the key algorithms have been provided to guarantee wide ac-
cess to these tools and to spark new research beyond the original applications
presented in this thesis.

Methodological extensions and application of the developed algorithms to new
data integration tasks in functional genomics and in other fields provide a promis-
ing line for future studies. The methods developed in this thesis are readily ap-
plicable in genome-wide screening studies in cancer and potentially other diseases.
Increasing amounts of co-occurring data concerning various aspects of the genome
have become available, including gene- and micro-RNA expression, structural vari-
ation in the DNA, epigenetic modifications and gene regulatory networks. It is ex-
pected that with small modifications the introduced methodology can be applied
to study further associations between these and other layers of genome organiza-
tion, as well as their contributions to human health. The fundamental research
challenges in contemporary genome biology provide a wide array of applications
for statistical learning and exploratory analysis, and a rich source of ideas for
methodological research.
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ABSTRACT

There is an urgent need for bioinformatic methods
that allow integrative analysis of multiple microarray
data sets. While previous studies have mainly concen-
trated on reproducibility of gene expression levels
within or between different platforms, we propose a
novel meta-analytic method that takes into account
the vast amount of available probe-level information
to combine the expression changes across different
studies. We first show that the comparability of
relative expression changes and the consistency of
differentially expressed genes between different
Affymetrix array generations can be considerably
improved by determining the expression changes
at the probe-level and by considering the latest
information on probe-level sequence matching
instead of the probe annotations provided by the
manufacturer. With the improved probe-level expres-
sion change estimates, data from different genera-
tions of Affymetrix arrays can be combined more
effectively. This will allow for the full exploitation
of existing results when designing and analyzing
new experiments.

INTRODUCTION

The enormous popularity of gene expression profiling with
microarrays in recent years has resulted in a rapid accumula-
tion of data in many laboratories and public databases. As
microarray experiments are expensive and often involve bio-
logical samples that are difficult to obtain, sample sizes in
typical microarray studies are relatively small, leading to
several false-positive and false-negative findings. Therefore,
methods that can effectively extract information from previous

studies are of practical interest for minimizing the number
of additional experiments needed without compromising the
reliability of the results. However, combining data across stud-
ies performed at different times and perhaps in different
laboratories is a challenging task where both biological and
technical sources of variability must be considered carefully.
A major problem in integrative analysis is that gene expres-
sion data generated with different microarray platforms are not
directly comparable, and even within the same technique dif-
ferent protocols for sample preparation, array hybridization
and data analysis can result in severe variations among data
sets. Accordingly, the early cross-platform comparisons often
showed poor correlation between their intensity measurements
(1,2). More recent studies have showed that implementation of
standardized protocols for all steps of the microarray study can
markedly increase reproducibility between platforms and even
across laboratories (3,4). However, some of the variation can
be beyond the capacity of standard normalization techniques
if the remaining discrepancies between data sets originate
from measuring different splice variants of the same gene (5).
As the compositions of microarrays are regularly updated to
incorporate new genes with improved target sequences, it is
difficult to combine data even from different generations of
the same microarray platform. In particular, Affymetrix high-
density oligonucleotide arrays utilize multiple (typically 8—16)
25mer probes, the so-called probe set, to measure the expres-
sion level of a transcript target. Although the use of several
probes for each target leads to more robust estimates of tran-
script activity, it is clear that probe qualities may significantly
affect the results of a study. It has been noticed that a con-
siderable number of probes on various high-density oligonu-
cleotide arrays do not uniquely match their intended targets
(6-9). By matching the probe sequences to the most up-to-date
genomic sequence data, it is possible to assess the quality of
the probes. Redefinition of probe sets according to the latest
probe sequence information can increase their accuracy and
cross-platform consistency with other array types (6,8,9).
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Previous works on different generations of Affymetrix
arrays have concentrated mainly on the reproducibility of
their expression results. In a comparison of two Affymetrix
arrays, HuGeneFL and HG-U95A, Nimgaonkar er al. (10)
concluded that the reproducibility is high only when the
corresponding probe sets share many exact probes. Hwang
et al. (7) advanced the comparison analysis by selecting
subsets of probes with overlapping sequence segments and
recalculating expression values using the selected probes
only. While such probe filtering could significantly improve
the reproducibility between Affymetrix HG-U95Av2 and
HG-U133A arrays, some useful information from the non-
overlapping probes measuring identical targets may be lost.
In fact, from the investigator’s point of view, the enhanced
comparability is of practical importance only when the probes
match identical targets.

In the present work, we continue the integrative analysis
across generations of Affymetrix arrays by considering explic-
itly the actual targets of probe sequences rather than their
similarities. As most current arrays with an enhanced probe
design protocol contain high quality probes that do not share
sequence similarity with the older probes, we do not filter
probes based on overlap but utilize all available probe-level
information across generations. We carry out a thorough
examination of two in-house data sets, containing expression
data from human HG-U133A and HG-U133Plus2.0 arrays and
murine MG-U74Av2 and mouse MOE430 2.0 arrays. Addi-
tionally, we consider two publicly available data sets, contain-
ing expression data from human HG-U95Av2 and HG-U133A
arrays. Each data set contains technical replicates hybridized
to two array types, allowing us to isolate the array-effects from
the underlying biological variation. Since the technical repli-
cates are assumed to produce the same results on both arrays,
the comparability of the arrays can be directly evaluated. We
also investigate several different probe set pairing approaches
in the comparison studies.

Toward combining results from multiple studies, we pro-
pose a novel meta-analytic framework, based on the selected
probe set pairing method and our probe-level estimate of
expression changes (referred to as PECA). The performance
of this procedure is demonstrated on a public data set, which
also contains several biological samples hybridized to both
HG-U95Av2 and HG-UI133A arrays. The meta-analysis
method is evaluated in terms of its stability when the sample
size is reduced. As agreement between the pure expres-
sion measurements do not consider the platform-specific

Table 1. Hybridization scheme

PAGE 2 oF 10

probe-effects, which arise from inherent differences in the
hybridization efficiency of different probes, we also use
relative expression changes when evaluating the methods.
Besides removing the probe-effects, expression changes are
often more meaningful for the investigator, as the main interest
in most studies is in identifying a set of candidate genes that
are differentially expressed between groups of samples instead
of their plain expression levels.

MATERIALS AND METHODS
Human embryonic stem cell data (hESC)

Two human embryonic stem cell (hESC) lines, HS306 and
HS293, from Karolinska University Hospital (Huddinge,
Sweden) were derived and cultured in serum replacement
medium on human foreskin fibroblast feeder cells as described
previously (11). The total RNA was isolated from 5 to 10 hESC
colonies using the RNAeasy mini kit (Qiagen, Valencia, CA).
The sample preparation was performed according to the
Affymetrix two-cycle GeneChip® Eukaryotic small sample
target labeling assay version II (Affymetrix, Santa Clara, CA).
The samples were hybridized to human HG-U133A and
HG-U133Plus2.0 arrays (Table 1).

Mouse Chlamydia pneumonia infection data (mCPI)

Female inbred Balb/c mice obtained from Harlan Netherlands
(Horst, The Netherlands) were infected with Chlamydia
pneumoniae as described previously (12). The axillary
lymph nodes from 12 control mice and the mediastinal
lymph nodes from 12 infected and 12 re-infected mice were
pooled. The total RNA from CD4+ cells were isolated using
the Trizol method (Invitrogen Co., Carlsbad, CA) and further
purified with RNAeasy mini kit. The sample preparation was
performed according to the Affymetrix two-cycle GeneChip®
Eukaryotic small sample target labeling assay version I
The samples were hybridized to murine MG-U74Av2 and
mouse MOE430 2.0 arrays (Table 1).

Human acute lymphoblastic leukemia data (ALL)

The public data sets from the microarray studies of Yeoh et al.
(13) and Ross et al. (14) contained expression data from
ALL patients with different leukemia subtypes. A total of
360 patient samples were hybridized to HG-U95Av2
arrays and 132 of the same samples were also hybridized to

Data set Condition Samples HG-U133Plus2.0 HG-UI33A HG-U95Av2 MOE430 2.0 MG-U74Av2
hESC HS293 2 1 1 — — —

hESC HS306 2 1 1 — — —

mCPI Control 1 — — — 1 2

mCPI Infected 1 — — — 1 1

mCPI Re-infected 1 — — 1 2

ALL T-ALL 14 — 1 1 — —

ALL E2A-PBX1 18 — 1 1 — —

M Dermatomyositis 5 — 1 1 — —

M Other myopathy 9 — 1 1 — —

The third column indicates the number of samples in each condition. The rest of the columns are the number of hybridizations per sample in each sample set on

different array types.
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HG-UI133A arrays. We selected for our analyses 32 samples
that were hybridized to both array types and represented two
genetically distinct leukemia subtypes: 14 T-ALL samples and
18 E2A-PBX1 samples (Table 1). To obtain equal sample sizes
in both groups, we randomly excluded 4 E2A-PBX1 samples
from the analysis.

Human inflammatory myopathies data (IM)

The publicly available data set from the study of Hwang et al.
(7) contained muscle tissue samples from 14 patients with
inflammatory myopathies. The patients were divided into
two groups: five patients had dermatomyositis and nine
patients had other inflammatory myopathies. Each sample
was hybridized to HG-U95Av2 and HG-U133A arrays. To
make the present results directly comparable with the results
obtained by Hwang et al. we included all the samples into
our study.

Probe sequence data

Probe sequences and their ‘bestmatch’ tables were down-
loaded from the Affymetrix web pages (www.affymetrix.
com). Other array-wise information on probes and probe
sets, including GenelD annotations, were provided with
annotation data packages of the Bioconductor project (15).
Genomic mRNA sequences for alignments were downloaded
from Entrez nucleotide (16) for human (March 3, 2005) and
mouse (April 29, 2005), excluding EST, STS, GSS, ‘working
draft’ and ‘patents’ sequences, and sequences with a ‘XM_’
tag, as in (7). The Entrez mRNA sequences were assigned to
GenelD identifiers by using the gene2accession conversion file
obtained from NCBI (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA)
for human (March 23, 2005) and mouse (April 28, 2005). This
resulted in a total of 209 650 and 183461 mRNA sequences
for human and mouse, respectively. The probes in the AFFX-
control sets were omitted from the analysis.

Probe verification

To guarantee the quality and comparability of the 25mer
probes, we verified them using the Entrez mRNA sequence
database (16). Perfect matches of the probes to mRNA
sequences were searched with BLAT v. 26 (17). A given probe
often matches several mRNA targets. In such cases, it is com-
mon that the mRNA sequences are merely separate sequence
submissions of the same gene. To distinguish between probes
with unique and multiple gene targets, we assigned the Entrez
mRNA sequences to GenelD identifiers (18).

The probes were classified according to their manufacturer
annotations and our Entrez verifications. Verified probes
are detected to match Entrez mRNA sequences with a unique
GenelD. Probes with no matching GenelD targets are
mistargeted, and those assigned to several GenelDs are
non-specific. A probe is conflicting if its verified target is
different from the one in the array-wise annotations. A verified
probe set is a subset of the corresponding original probe set,
obtained by masking the mistargeted, non-specific and con-
flicting probes from the original set. An alternative probe set
is a collection of probes on a given array that are verified to
uniquely measure a given GenelD. An alternative probe set
contains verified probes only, but these may include probes
from various original probe sets.

Nucleic Acids Research, 2005, Vol. 33, No. 22 el93

Probe set pairing

A common approach to compare different generations of
Affymetrix arrays is to use the so-called ‘bestmatch’
tables provided by the array manufacturer. The best match
pairs are based on the similarity between the target sequences
of the probe sets. Since the HG-U133Plus2.0 array contains all
the probe sets from the HG-U133A and HG-U133B arrays,
plus 9921 additional probe sets, the HG-U133A and HG-
U133Plus2.0 arrays can be compared by selecting the same
probe sets from the two arrays. We consider these pairs as best
match pairs as well, although this is a much stricter pairing
criterion than the one usually characterizing the best match
pairs.

An alternative approach for probe set pairing is to use
GenelD identifiers. Original and verified probe sets on both
arrays can be assigned to GenelDs by using the array-wise
annotations. As these are not available for alternative
probe sets, we used the verified GenelDs from our Entrez
studies. We only considered those GenelDs for which corre-
sponding probes existed on original, verified and alternative
probe sets.

Probe-level expression change averaging (PECA)

We based the selection of genes differentially expressed
between two particular groups of samples on probe-level
microarray data instead of probe set-level summary intensities
obtained with, for instance, robust multi-array average (RMA)
(19) or Affymetrix microarray suite (MAS) (www.affymetrix.
com). More specifically, we first calculated the selected test
statistic separately for each probe in the data and then averaged
over the probes within each probe set. In the calculations, we
used perfect match (PM) intensities, which were quantile-
normalized (20) and log-transformed before the analysis.
We refer to this procedure as PECA.

We considered two types of PECA-measures within a
microarray study: the signal log-ratio and the Hedges’ g,
which is a commonly used effect size estimate in meta-
analysis (21). Let the normalized logarithmic PM intensities
of the probe j in the probe set i under the two conditions within
a study be x;; = (X1, - - -, Xjjn) @and y;; = (Vjj1, - - - » Yijn,) Where
the total number of samples within the study is n = n; + n,.
The signal log-ratio is then defined as d;; = x;;—y;;, and the
Hedges’ g as g; = a(X;—y;)/sj, where X; and y; are
the means of the two groups, s; is the pooled standard
deviation, and a = 1-3/(4n — 9) is a correction term that
makes the Hedges’ g-estimate unbiased. After calculating
the probe-level estimates, the probe set-level estimates were
formed by averaging over the probes within each probe set.
In the present study, the probe sets were defined using the
various probe verification criteria and the PECA-estimates
were calculated separately within each study on each array
generation.

Meta-analysis of effect sizes

Suppose that m studies produce effect size estimates e,
and measures of variability s%, k = 1,...,m. Assume that
all studies estimate the same parameter [ and any differences
between the estimates are due to sampling error €, ~ N(0, 7).
Then the meta-analysis estimate for [ is the weighted average

0T0Z ‘€T 1snbBny uo ABojouyda] Jo Ausianiun puis|dH e Bio'sjeulnolpioyxoteuy/:dny wouy papeojumoq



el93 Nucleic Acids Research, 2005, Vol. 33, No. 22

over the effect size estimates

where the weight wy is defined as wy = s;2. The variance of
[l is s = 1/ wy, and hence the hypothesis Ho:l = 0 can be
considered by using the test statistic Z = [i/s;, which is dis-
tributed as N(0,1) under the null hypothesis Hy,. For a detailed
description of this technique, see (21). Such meta-analytic
method was applied in the present study to combine the
expression changes across the array types.

TESTING PROCEDURE

We first evaluated the effect of the different probe set pairing
and probe verification criteria on the reproducibility of
RMA- and MAS-normalized signal intensities between
each array pair on which the same sample was hybridized
(between-study comparison). We then investigated the com-
parability of relative expression changes and the agreement of
differentially expressed genes between these array pairs using
the GenelD matched alternative probe sets (between-study
comparison). At this stage, the expression changes were cal-
culated within each array generation (within-study analysis)
using the PECA-procedure (probe-level estimation) and the
summary intensities from RMA and MAS 5.0 (probe set-level
estimation). Finally, we used the meta-analysis approach
to combine the expression changes from the different array
generations (between-study analysis). The meta-analysis was
carried out using PECA-estimated Hedges’ g-values (probe-
level between-study analysis) as well as Hedges’ g-values cal-
culated from the RMA-derived intensities (probe set-level
between-study analysis).

Reproducibility of signal intensities

To assess the level of reproducibility of signal intensities
between technical replicates across array generations, we
calculated the Pearson correlation coefficient between each
array pair from the same sample. The intensity values were
obtained with RMA and MAS 5.0. We compared the inten-
sities between the best match pairs of original probe sets and
verified probe sets as well as GenelD pairs with three different
collections of probes: (i) original Affymetrix probe sets,
(i) verified probe sets and (iii) alternative probe sets. If
multiple probe sets corresponded to the same GenelD, their
values were averaged (22). On each array, the variability in the
intensity values among the probe sets corresponding to the
same GenelD was investigated for the 10 GenelDs with the
largest number of probe sets.

Comparability of relative expression changes

The comparability of relative expression changes between
alternative probe sets on two array generations was investi-
gated by considering signal log-ratios and Hedges’g-values
between two particular groups of samples in the hESC,
mCPI, ALL and IM data. In addition, we randomly generated
100 subsamples of sizes 2-5 from the ALL data set to study
more carefully the performance of the Hedges’g with
small sample sizes. In each array comparison, two replicate
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estimates corresponding to the same samples on the different
arrays were obtained. We used the Pearson correlation
coefficient between these estimates as a measure of com-
parability between the arrays. The expression changes were
calculated using the PECA-approach and the RMA- and
MAS-normalized intensities.

Agreement of differentially expressed genes

The agreement of the most differentially expressed genes
between the array generations was investigated by ranking
the genes according to signal log-ratios and Hedges’
g-estimates and calculating the proportion of common
genes among the top N genes in both array types. If two
array generations are comparable, the corresponding lists
of differentially expressed genes should contain many over-
lapping genes (3). Again, we used PECA-estimates and
the corresponding estimates obtained using the RMA- and
MAS-intensity values in the context of alternative probe sets.

Performance of the meta-analysis

The meta-analysis of PECA-based Hedges’ g-values was com-
pared with the meta-analysis calculated from the RMA-based
summary intensities (23). We also compared the performance
of both meta-analyses with the corresponding analyses on
the individual data sets. The performance of the methods
was evaluated by considering the stability of their results
when the number of biological samples was reduced (24).
We randomly generated 100 subsamples of sizes 2-5 from
the ALL data set and applied each method to them. The results
of each subset were then compared with the results obtained
from the whole data set by determining the proportion of
common genes among the top 100 genes.

RESULTS

While most of the probes on the arrays studied could be con-
firmed to uniquely match a GenelD, a considerable number
of probes were rejected since they were either mistargeted,
non-specific or conflicting (Table 2). The number of mistar-
geted probes was especially high on the HG-U133Plus2.0 and
MOE430 2.0 arrays, whereas non-specific and conflicting
probes were less common. The high number of mistargeted
probes on the two arrays is mainly due to the large number of
EST-targeted probe sets on these arrays. Our probe verification
did not check probes for matches against EST sequences
that often lack GenelD assignment but have been used for

Table 2. Probe verification summary

Array type Probes  Verified Mistargeted Non-specific Conflicting
(%) (%) (%) (%)
HG-U133Plus2.0 604258 58.2 40.2 1.6 2.6
HG-U133A 247965 82.5 14.4 3.0 3.1
HG-U95Av2 199084 82.6 14.4 3.0 2.8
MOEA430 2.0 496468 68.2 30.8 1.1 4.9
MG-U74Av2 197993 73.1 242 2.7 1.3

Probes matched to mRNAs with a unique GenelD in Entrez database are
considered verified. Mistargeted probes could not be assigned to a GenelD,
whereas non-specific probes have several GenelD targets. If the verified target
of a probe is different from the annotations provided by the Bioconductor array
packages, the probe is considered conflicting.
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Table 3. Numbers of probe sets included into the comparisons

Nucleic Acids Research, 2005, Vol. 33, No. 22 el93

Data set Array comparison Best match pairs GenelD pairs Multiple original sets (%) Multiple verified sets (%)
hESC HG-U133A vs. HG-U133Plus2.0 — 12661 36.7 322
mCPI MG-U74Av2 vs. MOE430 2.0 8595 7735 264 14.9
ALL, IM HG-U95Av2 vs. HG-U133A 8429 8240 25.2 18.9

The best match pairs provided by Affymetrix are based on the similarity of the target sequences of the probe sets. The GenelD pairs were obtained by assigning the
probe sets to GenelD identifiers. Only GenelDs for which probes existed on original, verified and alternative probe sets were considered. If multiple probe sets
corresponded to the same GenelD, their values were averaged. The last two columns show the proportion of GenelDs with multiple probe sets when GenelD pairs of

original and verified probe sets were formed.
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Figure 1. The RMA intensity correlations between technical replicates on
two array generations. The Pearson correlation was calculated between each
array pair from the same sample. The gray lines show which correlations were
obtained from the same array pair with the different probe matching criteria. In
the hESC array comparison, the best match probe sets contained exactly the
same probes on both array generations, which resulted in very high correlations.
The advantages of probe verification and alternative mappings were largest
when arrays with different probe collections were compared, as in the mCPI,
ALL and IM array comparisons.

the design of several probe sets on these arrays. By simply
ignoring the mistargeted and non-specific probes, we were still
left with a large number of good-quality probes with a unique
GenelD assignment. The typical sizes of the alternative probe
sets were approximately the size of the original Affymetrix
probe set or its multiplier (see Supplementary Figure 1).
The proportion of alternative sets with <5 probes was rela-
tively small, varying between 0.4% (MOE430 2.0) and 2.1%
(MG-U74Av2). The numbers of probe sets included into
each comparison are listed in Table 3, along with the propor-
tions of GenelDs with multiple original Affymetrix probe sets.

Effect of probe matching methods on
the array reproducibility

Figure 1 illustrates for each array comparison the RMA-based
intensity correlations between the pairs of arrays to which
the same sample was hybridized. Similar results were
obtained with MAS intensities (data not shown). In each
array comparison, GenelD pairs of the manufacturer-defined

original probe sets performed worst. Probe verification of
these sets improved the correlations. Moreover, it was
observed that probe verification improved the consistency
of the measurements within an array (see Supplementary
Figure 2). In the mCPI array comparison, the alternative
probe sets produced higher correlations than the verified
probe sets, whereas in the ALL, IM and hESC array compar-
isons the verified sets and the alternative sets performed
equally well. In the ALL comparison, also the best match
pairs performed similarly, whereas in the mCPI, IM and
hESC comparisons, the best match pairs could still improve
the correlations. As expected, the improvement was largest in
the hESC data, where the best match pairs contained only
probes that were the same on both arrays. Interestingly, the
verification of the original Affymetrix probe sets used in the
best match pairs did not considerably affect the reproducibility
of the signal intensities in any of the array comparisons.

Effect of probe-level effect size estimates
on the array comparability

The correlations of signal log-ratios and Hedges’ g-estimates
between each replicate study with different array types are
shown in Figure 2. In all comparisons, the PECA-estimates
showed consistently the best comparability between the array
types. The estimates calculated using MAS summary intensi-
ties performed generally poorest. With signal log-ratios, the
RMA-based estimates usually reduced only slightly the com-
parability as compared with the PECA-estimates (Figure 2A).
With Hedges’ g-values, however, the benefit from using PECA
was considerably higher, especially with small sample sizes
(Figure 2B and C). In the hESC data, the correlation increased
from below 0.1 with RMA to ~0.7 with PECA (Figure 2B).
Similar results were obtained with the ALL data when only
two samples from both patient groups were included into the
analysis (Figure 2C). As the number of samples increased,
the differences between the methods became smaller.

Effect of probe-level effect size estimates
on the array agreement

Figure 3 shows the agreement of the most differentially
expressed genes between the array types when two groups
of samples in the ALL, IM and hESC data were compared.
The best agreement was consistently achieved with the
PECA-estimates, whereas with MAS-based estimates the
correspondence of the top genes between the arrays was poor-
est. Especially in the hESC array comparison, the superiority
of the PECA-method was drastic as compared to the probe
set-level methods. For example, with signal log-ratios, the
percentage of common genes among top 30 genes was ~25%
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Figure 2. Observed correlations between the expression changes across different arrays as assessed with (A) signal log-ratios and (B and C) Hedges’ g-estimates.
In the ALL array comparison between HG-U95Av2 and HG-U133A arrays, expression changes between two distinct leukemia subtypes (14 samples per group)
were calculated. In addition to the whole ALL data set, Hedges’ g-estimates were calculated for 100 randomly sampled subsets of sizes 2—5 (ALL2—-ALLS5). Graph C
shows the average correlations calculated over these subsets along with their standard deviations. In the IM array comparison between HG-U95Av2 and HG-U133A
arrays, expression changes were calculated between patients with dermatomyositis (five samples) and patients with other inflammatory myopathies (nine samples).
In the hESC array comparison between HG-U133A and HG-U133Plus2.0 arrays, expression changes between two hESC cell lines (two samples per group)
were estimated. In the mCPI array comparison between MG-U74Av2 and MOE430 2.0 arrays, signal log-ratio between an infected and a control sample (mCPI1),
between a re-infected and a control sample (mCPI2), and between an infected and a re-infected sample (mCPI3) were calculated. In each two-group comparison, the
PECA-estimates of expression changes were compared with the corresponding expression change estimates obtained with RMA- and MAS-based intensity values,

which are widely used in microarray data analysis.

with MAS, 60% with RMA and 70% with PECA (Figure 3C).
With Hedges’g-estimates, there were no common genes
among the top 30 genes with either MAS or RMA, whereas
the PECA-estimates resulted in ~50% overlap of the genes
(Figure 3F). Within the array generations, the proportion of
common genes among the top 100 genes between RMA and
PECA was typically ~80%, while it was 50% or less between
MAS and PECA and between MAS and RMA.

Effect of sample sizes on the meta-analysis performance

Figure 4 illustrates the consistency of the 100 most differen-
tially expressed genes identified using 2—5 biological samples
from the ALL data as compared with the genes identified from
the whole ALL data. As expected, the agreement among the
top genes increased when the number of samples increased.
The overall agreement of the results obtained with RMA-
intensity values was again substantially lower than the agree-
ment of the PECA-based results. The meta-analysis based on
the PECA-estimated Hedges’ g-values was most stable. With
two samples, there were on average over 55% of common
genes when the PECA-based meta-analysis was applied but
only 35% with the RMA-based meta-analysis. When an indi-
vidual data set of size 2 was considered, the stability of both
approaches was reduced as compared with the meta-analysis.
In particular, with the RMA-based analysis, the agreement
decreased from 35% with the meta-analysis to ~15% with
an individual data set. However, even the meta-analysis
could not raise the stability of the RMA-based estimates to
the same level as the PECA-estimates. To obtain an agreement
of over 50% of genes, the RMA-based meta-analysis typically
required four samples, whereas only two samples were needed
with the PECA-estimates, even when an individual data set
was analyzed.

DISCUSSION

We have introduced a meta-analytic approach, which consid-
ers the latest probe-level information when combining the
results of multiple Affymetrix microarray studies. We first
showed that alternative probe sets provide a good option as
compared with the manufacturer-defined probe sets when
arrays with different probe collections are compared. Using
these alternative sets, we then demonstrated that the compa-
rability of expression changes across different array genera-
tions can be considerably improved with PECA-estimation
as compared with the estimation based on RMA- or MAS-
based summary intensities, especially when the sample sizes
are small. The key finding was that by using the PECA-
estimates one can more effectively combine the results of
individual Affymetrix studies in the context of meta-
analysis. In particular, we showed that the consistency of
the differentially expressed genes can be improved by inte-
grating PECA-based expression changes across studies. Taken
together, these results suggest that available Affymetrix
microarray studies of the particular condition can be
effectively exploited when analyzing new experiments.
Conventionally, the probe-level expression data are sum-
marized into simple numerical estimates of probe set-level
gene expression. A major drawback of this approach is that
a substantial amount of probe-level information is discarded.
This issue has only lately become a focus of interest. It has
been shown that by using probe-level expression data when
identifying differentially expressed genes the quality of the
resulting gene lists can be improved: Lemon et al. (25) and
Master et al. (26) based their methods on probe-level r-tests;
Barrera et al. (27) applied two-way ANOVA methods to
probe-level data; and Chen et al. (28) measured probe-level
differences in percentiles of ranks. The MAS software also
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Figure 3. Agreement of differentially expressed genes between technical replicates. The proportion of overlapping genes in the two top N lists is plotted as a function
of the list size. The genes were ranked with signal log-ratios in (A) ALL data (14 samples per group), (B) IM data (5 and 9 samples in the groups) and (C) hESC data
(2 samples per group), and with Hedges’g-estimates in (D) ALL data, (E) IM data and (F) hESC data. The observed peaks at the beginning of the curves arise

from a single shared top one gene in the two lists.

uses probe-level information in determining differential
expression but the algorithm is restricted to comparisons
between two arrays only. Our proposed PECA-method can
be considered as a generalization of the MAS algorithm
and the approaches of (25,26). The method can be used with
any number of arrays, and in addition to f-statistic, it can

improve other measures as well, especially when there are
only few samples in the data (see Figure 2). Moreover, the
computational burden of PECA is approximately the same
as that of RMA- or MAS-normalizations.

We have also carried out an additional study in the
Affymetrix spike-in data, where we showed that the
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Figure 4. Agreement of differentially expressed genes using Hedges’g in the
ALL data as the number of samples was varied. The performance was measured
by calculating the proportion of common genes among the top 100 genes
obtained with the whole data and with randomly selected smaller subsets of
sizes 2-5. The results are presented as median percentage over 100 subsets
(points) along with the interquartile ranges (error bars). RMA-based (dotted
lines) and PECA-based (solid lines) estimation was used with the individual
HG-U95AvV2 (green) and HG-U133A (black) data sets and with the meta-
analysis approaches (red). The RMA-based meta-analysis (RMA combined)
represents the meta-analytic approach that has previously been proposed for
microarray data (23).

PECA-estimated signal log-ratios and Hedges’ g-values out-
performed the corresponding values calculated from the
RMA-normalized intensity values, especially when the sample
size was small (see Supplementary Figure 3). In the context of
microarray analysis, a common approach to overcome the
problem of small sample sizes is to use a modified version
of the ordinary t-statistic (29). Therefore, we evaluated its
performance as well. In general, the PECA-estimated Hedges’
g performed at least as well as the RMA-based modified
t-statistic. In particular, with sample sizes 2 and 3, it yielded
clearly better AUC-values and the PECA-estimated modified
t-statistic could not improve its performance further. Although
in this study we concentrated on the simple two-group com-
parisons only, it is possible to generalize the PECA-type
analysis to situations, where there are more than two groups
to be compared.

In a previous study, Hwang et al. (7) suggested that probe
filtering could markedly improve the reproducibility of the
top ranked genes as assessed with the two-sample r-test
with unequal variances. After filtering the probe sets according
to sequence similarity, they identified 30-40% common genes
among the top 20 genes and ~25% common genes among the
top 100 genes in the IM data. In our analysis with the PECA-
estimated Hedges’ g, the percentage of commonly identified
genes was 40-60% among the top 20 genes and ~45% among
the top 100 genes in the same data (see Figure 3E). In general,
the percentage of common genes with PECA-estimates was
over 40% even when there were only two samples in both
groups. With the largest ALL data set, the percentage of
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common genes increased to 60—80%. These enhanced results
clearly demonstrate the importance of the probe-level
information in increasing the comparability between array
generations. Similar approach could also be used to improve
the agreement across different platforms (30).

Similar to (7), we aligned the probes to mRNA sequences
with BLAT, which uses heuristics to speed up the search.
To evaluate the accuracy of the BLAT search, we aligned
the probes of the HG-U133A array also with the Bioconductor
matchprobes package, which is based on exact string matching
methods. The results obtained with BLAT and matchprobes
were virtually the same (BLAT missed 52 of the 241898
unique probes). The most essential difference between the
two methods was in computation time. With an ordinary desk-
top PC, it took several days to align the HG-U133A probes
against human mRNA sequences in Entrez using matchprobes,
whereas BLAT made it in hours.

According to our results, the benefits gained from probe
verification and alternative mappings are largest when arrays
with different probe collections are compared, as in the mCPI,
ALL and IM array comparisons (see Figure 1). Although the
best match pairs of the original and verified probe sets
performed similarly, they rely extensively on manufacturer
annotations, including potentially erroneous probes. The
alternative probe sets, on the contrary, are expected to refine
as the public transcript databases grow in size and improve
in accuracy. In the hESC array comparison, correlations
between alternative probe sets were somewhat lower than
correlations between best match probe sets. This was due to
the fact that the original probe sets contained exactly the same
probe sequences on both arrays, whereas the alternative probe
sets on the HG-U133Plus2.0 array contained also probes that
were not included in the HG-U133A array. Also in this case,
however, the biological relevance of the alternative probe sets
may be higher, since the original probe sets with identical
probes would correlate highly even if they were erroneous
in biological sense.

Meta-analysis has traditionally been used in medical and
social sciences to combine results of different studies (21).
Only recently, meta-analysis has also been applied to micro-
array experiments. Rhodes et al. (31) computed gene-specific
P-values separately for each study and combined them using
the Fisher statistic. Choi et al. (23) and Stevens and Doerge
(32), on the other hand, combined the actual expression data
by employing fixed effects and random effects models. In
general, a random effects model is more reasonable than a
fixed effects model because microarray studies are typically
heterogeneous due to, for example, biological variation
and differences between experimental methods. However,
with only two studies to be combined, which is a typical
case with microarrays, we based our integration method on
a fixed effects model (33). An analogous approach can be used
in the context of a random effects model when there are more
studies to be combined.

We showed that the meta-analysis based on the PECA-
estimated Hedges’ g-values was more stable than the Choi
et al. (23) meta-analysis based on the RMA-estimated sum-
mary intensities (see Figure 4). The stability of the methods
was evaluated in terms of overlapping top genes obtained
when using the whole ALL data set or random subsamples
from it. It was assumed that the whole data set provides a
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plausible approximation for the true ranking of the genes (24).
The spike-in results supported this assumption (see Supple-
mentary Figure 3). Because the reference ranking in the ALL
data set was constructed from the same set as the subsamples,
the overlap of the top genes might be overestimated with large
subsample sizes. As we were interested in the performance of
the methods with the smallest sample sizes 2-5, however, such
procedure gives valuable information on the stability of the
methods. While in this study it was beneficial to have the same
samples hybridized to both arrays, the real benefits of the
proposed meta-analytic procedure come from combining
studies with diverse biological samples.

Previous meta-analysis studies on microarray data have not
paid much attention to the quality of the effect size estimates
(23,32). With small sample sizes, especially the Hedges’
g-estimates are prone to unpredictable changes, since gene-
specific variability can easily be underestimated resulting
in large statistics’ values due to chance alone. As only few
replications are performed in most microarray experiments, it
is critical to improve the effect size estimation with small
sample sizes. The general idea of improving the reliability
of the microarray results by pooling together results from
existing studies is feasible only if the data are properly pre-
processed. As probe verification is increasingly used in pre-
processing of microarray data or for confirming the final
results of a microarray study, it is natural to combine it
with other probe-level analysis methods. We demonstrated
that summarizing the expression changes over the verified
probes only consistently helps in integrating data across stud-
ies made with different Affymetrix generations in the same
laboratory. The biological findings from the hESC and mCPI
data sets are published elsewhere [(34), (Kyldniemi, M.,
Haveri, A., Vuola, J., Puelakkainen, M. and Lahesman, R.,
unpublished data)].

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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Probabilistic Analysis of Probe Reliability
in Differential Gene Expression Studies
with Short Oligonucleotide Arrays

Leo Lahti, Laura L. Elo, Tero Aittokallio, and Samuel Kaski

Abstract—Probe defects are a major source of noise in gene expression studies. While existing approaches detect noisy probes
based on external information such as genomic alignments, we introduce and validate a targeted probabilistic method for analyzing
probe reliability directly from expression data and independently of the noise source. This provides insights into the various sources of

probe-level noise and gives tools to guide probe design.

Index Terms—Applications, biology and genetics, parameter learning, probabilistic algorithms.

1 INTRODUCTION

ENE expression profiling is widely used to explore gene

function in various biological conditions, and vast
collections of microarray data are available in public
repositories. These large-scale data sets contain valuable
information of both biological and technical aspects of gene
expression studies [1], [2], [3], [4]. However, gene expres-
sion data are notoriously noisy. A better understanding of
the technical aspects of the measurement process could
ultimately lead to enhanced measurement techniques and
improved analytical procedures, providing more accurate
biological results in future studies.

Short oligonucleotide arrays of Affymetrix [5] are one of
the most widely used gene expression profiling platforms.
These arrays utilize multiple (typically 10-20) 25-mer
probes, the so-called probe set, to measure the expression
level of each transcript target. The probes within an
individual probe set are designed to target the same gene,
and ideally they should detect the same gene expression
signal. Use of several probes for each target leads to more
robust estimates of transcript activity, but the reliability of
individual probes is known to vary and may significantly
affect the results of a microarray study [6]. For example, it
has been noticed that a considerable number of probes on
short oligonucleotide arrays do not uniquely match their
intended targets [7], [8], [9]. Single-nucleotide polymorph-
isms, alternative splicing, and nonspecific hybridization
add biological variation in the data [10], [11]. Other factors
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in the measurement process that cause probe-specific effects
include RNA extraction and amplification, binding affi-
nities, and experiment-specific variation [12], [13].

Many preprocessing algorithms utilize probe-specific
parameters to obtain probeset-level summaries of gene
expression. These include MBEI/dChip [14], RMA [15],
gcRMA [16], FARMS [17], gMOS [18], and BGX [19].
Despite the importance of probe-specific effects in gene
expression analysis and probe design [6], [20], the various
sources of probe-level noise are still poorly understood.
Only a few studies have systematically analyzed the factors
affecting probe reliability. The existing approaches typi-
cally rely on external information such as genomic
sequence data [8], [9], [11] or physical models [21], [22],
[23], and cannot reveal probes that are less reliable due to
so far unknown reasons.

We introduce and validate a targeted computational
tool for probe reliability analysis. In contrast to previous
probe quality studies, the proposed model is independent
of external information or physical models. This can
advance the understanding of the various factors that
affect probe reliability. Our approach is closely related to
preprocessing methods that utilize probe-specific para-
meters to obtain probeset-level summaries of gene expres-
sion. A key difference in our work is that we assign an
explicit probabilistic measure of reliability to each probe
and demonstrate how this information can be used to
assess probe performance. Explicit estimates and analysis
of probe-specific noise have been missing in preprocessing
studies. The method is applied to gene expression data
sets from two human genome arrays, HG-U95A /Av2 and
HG-U133A, and the results are validated by comparisons
to known probe-level error sources: errors in probe-
genome alignment, interrogation position of a probe on
the target sequence, GC-content, and the presence of SNPs
in the target sequences of the probes. Implementation of
the method is available in R/BioConductor' at http://
bioconductor.org/packages/release/bioc/html/RPA.html.

1. http:/ /www.r-project.org/.
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2 MODELING OF PROBE RELIABILITY

The reliability of a probe is ultimately determined by its
ability to measure the expression level of the target
transcript. As the true expression level is unknown in most
practical situations, the collection of probes measuring the
same transcript can provide the ground truth for assessing
probe performance (See Supplementary Figure 1, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2009.38.). Our
model captures the most coherent signal of the probe set,
and the reliability of individual probes is estimated with
respect to this signal across a large number of arrays. We
provide an explicit probabilistic model for probe-level
observations, and derive the posterior distribution for the
model parameters describing probe reliability and differ-
ential gene expression. While probe-level preprocessing
algorithms aim at summarizing probe-level measurements
[14], [15], [17], [18], [19], we have specifically targeted a
more detailed analysis of probe reliability. This avoids
certain problems encountered in the preprocessing context
as discussed in the next section.

2.1 Model Assumptions

Our approach is based on a Gaussian model for probe
effects. This is a reasonable starting point for modeling
heterogeneous and partially unknown sources of probe-
level noise. The feasibility of related models has already
been demonstrated in the preprocessing context [15], [17].
In a nutshell, we assume normally distributed probe effects,
and identify probe reliability with its variance over a large
number of arrays. In contrast to many probe-level pre-
processing methods, where the mean is the important
quantity, we use probe-level observations of differential
expression. Then the mean cancels out, and the model can
focus on estimating the variances (see Section 3 for details).

Variance reflects the noise level of the probe and is the
main focus in our analysis. This is different from probe-
level preprocessing methods that focus on estimating probe
affinities, corresponding to the mean parameter of the
Gaussian noise model. For example, the probe-specific
parameters in MBEI [14] and RMA [15] preprocessing
models describe probe affinities. These are constant shifting
factors and as such not informative of probe reliability.
Moreover, unidentifiability of probe affinities is a known
problem in preprocessing studies [15], [24]. The recently
suggested FARMS preprocessing algorithm [17] has a more
complex model for probe effects than RMA and contains
implicitly a similar probe-specific variance parameter as our
model. However, FARMS does not provide explicit esti-
mates of the probe-related parameters and is, therefore, not
applicable to probe reliability analysis.

We avoid the modeling of unidentifiable probe affinities
by using probe-level observations of differential gene
expression. Probe effects are captured in a single probe-
specific variance parameter in the resulting model. The
number of probe-related parameters in the model is halved,
and faster and more robust inferences concerning the
parameters of interest can be obtained. Use of a single
parameter for probe effects also leads to more straightfor-
ward interpretations of probe reliability. Cancelation of the
probe affinity parameters in our analysis can partly explain
the previous observations that calculating differential
expression at probe-level improves the analysis of differ-
ential gene expression [25], [26]. However, these methods

JANUARY/FEBRUARY 2011

TABLE 1

Gene Expression Data Sets in This Study
Name Platform Arrays  Author
ALL-95Av2 HG-U95Av2 37 Yeoh et al. (2002)
GEA-95A HG-U95A 85 Su et al. (2002)
SPIKE-95Av2  HG-U95Av2 59 Affymetrix
ALL-133A HG-U133A 37 Ross et al. (2003)
GEA-133A HG-U133A 158 Su et al. (2004)
SPIKE-133A HG-U133A 42 Affymetrix

differ from our approach in that they are nonprobabilistic
preprocessing methods that do not aim at quantifying the
uncertainty in the probes.

2.2 Comparison to Known Error Sources

The model is applied to six publicly available gene
expression data sets, including four large-scale studies on
human samples [27], [28], [29], [30], referred to as ALL and
GEA data sets, and two spike-in data sets from Affymetrix
(www.affymetrix.com), referred to as SPIKE data sets
(Table 1). The data sets have been measured using two
popular human genome arrays, HG-U95A/Av2 and HG-
U133A. To validate our model and to analyze probe
reliability on these arrays, we test the overrepresentation
of the following probe-level error sources among the least
reliable probes predicted by our model.

2.2.1 Probe-Genome Alignments

Ideally, each probe has a unique sequence match to its
target gene. In practice, a number of probes do not uniquely
match their intended mRNA target. Filtering of probes with
erroneous genome alignments has previously been shown
to improve the accuracy and comparability of microarray
results [8], [9], [11], [26], [31]. A good model for estimating
probe reliability should detect such erroneous probes.

2.2.2 Interrogation Position on the Target Sequence
RNA degradation, typically starting from the 5" end of the
transcript, has been reported to affect the results in
microarray studies [32], [33]. Hence, the binding location
of the probe on the target sequence, i.e., its interrogation
position, is likely to affect probe reliability.

2.2.3 GC-Content

Various hybridization effects that are based on the nucleo-
tide content of the probes have been reported [21], [22], [23],
[34]. For example, the G/C nucleotides have a higher
binding affinity since G-C pairs form three hydrogen bonds
whereas the A-T pairs form two. Therefore, the GC-content
of a probe is expected to affect its reliability.

2.2.4 SNP Associations

Probes that target sequences with common single-nucleo-
tide polymorphims (SNPs) can produce misleading
results in microarray studies [10], [35], [36]. Each probe
can measure accurately at most one of the polymorphic
target sequences and, therefore, gene expression differ-
ences between two individuals can be observed in some
probes due to sequence polymorphism rather than real
expression changes. This would add noise to microarray
data. It is expected that SNPs located in the central region
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of the target sequence will have a greater influence on
probe reliability than other SNPs due to a larger impact
on probe affinity [21], [37].

2.3 Connection to Preprocessing

The reliability of a probe is ultimately measured by its ability
to capture the real underlying gene expression signal. This is
unknown in most practical situations, however, and needs to
be estimated from the probe-level observations. Probe
reliability estimates are sensible only if the true signal is
estimated accurately in our model. To guarantee this, the
performance of the proposed model in estimating relative
gene expression changes was compared to four alternative
approaches: MAS5.0 (www.affymetrix.com) and RMA [15]
are among the most widely applied methods for assessing
probe set-level signals (which are then used to calculate the
expression changes); FARMS [17] represents the previously
introduced probe-level models; and PECA [38] shares the
idea of directly utilizing probe-level expression changes.
Note that the other methods do not provide explicit
estimates of probe reliability, while our method provides
only estimates of relative gene expression changes. A general
difference between preprocessing algorithms and our
method is that preprocessing methods have been designed
to summarize probe-level information, whereas our model is
specifically targeted at estimating certain probe-specific
effects that are then used to analyze probe reliability.

3 METHODS

3.1 Probabilistic Model

In the following, we describe a probabilistic model for
probe reliability and differential gene expression. In the
calculations, we use the logarithmized perfect match (PM)
intensities of the Affymetrix arrays, and investigate each
probe set separately. Affymetrix arrays also contain so-
called mismatch (MM) probes that have an altered
nucleotide in the middle (13th) position of the probe.
These were originally designed to measure cross-hybridi-
zation from unrelated sequences. Some widely used
preprocessing algorithms, such as RMA, ignore the MM
probes due to the lack of efficient models for utilizing this
information [15].

3.1.1 Conditional Likelihood for the Observations
Let us consider a probe set targeted at measuring the
expression level of target transcript g. We model probe-level
observations as a sum of the true expression signal that is
common for all probes, and probe-specific Gaussian noise.
A probe-level observation for probe j on array i can then be
written as s;; = g; + i+ Eije The mean parameter Hj
describes the systematic probe affinity effect, and the
stochastic noise component is distributed as ¢;; ~ N(0, Tf)
The variance parameters {73} are of interest in probe
reliability analysis. To focus on these parameters we take
advantage of the fact that the unidentifiable probe affinity
parameters {u;} cancel out when the signal log-ratio
between a randomly selected “control” array and the
remaining arrays is computed for each probe. The differ-
ential expression signal between arrays ¢ = {1,...,7T} and
the control array c¢ for probe j is then my; = s — s.; = g; —
ge + €15 — €¢j = dy + €4 — €. Using vector notation, the dif-
ferential gene expression profile of probe j across the arrays

{t}isnow m; = d + ¢, where the two noise terms have been
combined into a single variable ;. Note that the control-
related noise ¢, is constant across the comparisons whereas
the second noise component ¢;; depends on the array ¢.

To identify the probe-specific variance parameter, shared
by the two noise components in €; for each probe j, we
consider the control-related noise ¢.; a hidden variable in
our model. This can be marginalized out by assuming that
the probe-level observations m; of the true underlying
signal d are independent given the model parameters. Let
us also denote the collection of probe-level signals of a probe
set by m = {m;}. The likelihood for the observations is then

P(m\d,frZ) = H/ N(mtj|dt - 56]-,T]2.)N(5€]-|0, T‘?)df:‘g]‘
i

 X(my —di)* ~ -]’

T+1
2
27'].

~ H (271’7'?) _%exp
(1)

3.1.2 Posterior Distribution of the Model Parameters
The posterior density for the model parameters is computed
from the conditional likelihood of the data (2) and the prior
according to Bayes rule:

P(d, 7|m) ~ P(ml|d, 7*)P(d, 7*). 2)

We use a noninformative prior for d, and conjugate
priors for the variance parameters in 7> (inverse Gamma
distribution, see [39]). Using a standard assumption that d
and 72 are independent with P(d|7?) ~ 1, the prior takes the
form P(d, 7?) ~ Hj invgam(fr?;aj,ﬂj), where a; and 3; are
the parameters of the inverse Gamma distribution. These
parameters are probe-specific and allow incorporation of
prior information about probe reliability into the analysis.

The final model for probe intensities is hence described by
two sets of parameters; the vector of underlying differential
gene expression signals d =[d;...dr|, and the probe-
specific variance parameters 72 = [7}...77]. High variance
% would indicate that the probe-level observation m,; is
s{rongly deviated from the estimated true signal d. The
Bayesian formulation quantifies the uncertainty in the model
parameters and allows incorporation of prior information
about probe reliability into the analysis. We refer to this
procedure as Robust Probabilistic Averaging (RPA).

T

3.1.3 Implementation

In this paper, we use the posterior mode as a point estimate
for the model parameters. This is searched for by iteratively
optimizing d and 72 in (3). The model is initialized to give
equal prior weight for each probe by setting 7'? =1 for each
probe j. A mode for d, given 72, is searched for by a
standard quasi-Newton optimization method [40]. The
variance parameters 75 follow an inverse Gamma distribu-
tion with parameters &; = a; + 1 and

o s (Sylmy — dy))?
Bi=0+3 (Zw ~d) T+1>

given d. The mode is then given by T}%mw = 6;/(&; +1). We
use noninformative priors with a; = 3; = 107°.
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3.2 Data

Only the common probe sets of the HG-U95A and HG-
U95Av2 platforms were used, referred to as HG-U95A/
Av2. Probe intensities were quantile-normalized, and the
AFFX control sets excluded before the analysis.

3.2.1 Leukemia Data (ALL)

The public ALL data sets from the microarray studies of
Ross et al. [27] and Yeoh et al. [30] contain expression data
from patients with various leukemia subtypes. A total of
360 patient samples have been hybridized to HG-U95Av2
arrays and 132 of the same samples are additionally
hybridized to HG-U133A arrays. For our analyses, we
selected 37 samples that were hybridized to both array
types and represent homogeneous patient groups with five
distinct leukemia subtypes and control patients (Table 1).
We refer to these two data sets as ALL-95Av2 and ALL-
133A, respectively.

3.2.2 Gene Expression Atlas (GEA)

The gene expression atlases of Su et al. [28], [29] cover a
diverse set of biological conditions measured on the human
array platforms HG-U95A and HG-U133A (Table 1). We
refer to these two data sets as GEA-95A and GEA-133A,
respectively. Some samples in the HG-U95A data were
ignored because no biological replicates were available.

3.2.3 Affymetrix Spike-In Data (SPIKE)

The Affymetrix HG-U95Av2 and HG-U133A spike-in data
sets were downloaded from the Affymetrix web pages
(www.affymetrix.com). We refer to these data sets as
SPIKE-95Av2 (59 hybridizations) and SPIKE-133A (42 hy-
bridizations). A total of 14 and 42 genes have been spiked-in
at known concentrations on the HG-U95Av2 and HG-
U133A arrays, respectively, and arrayed in a Latin Square
format. Recently, it has been demonstrated that 22 addi-
tional probe sets in the SPIKE-133A data set should also be
considered as spiked [41]. Accordingly, we utilized
the extended set of 64 spiked probe sets when evaluating
the performance of the different analysis approaches in the
SPIKE-133A data.

3.2.4 Probe Sequence Data

Probe sequences and their bestmatch tables were down-
loaded from the Affymetrix web pages (www.affymetrix.
com). Other array-wise information on probes and probe
sets, including probe locations on the array, were acquired
from the annotation data packages of the Bioconductor
project [42]. Human genomic mRNA sequences were down-
loaded from Entrez Nucleotide [43] on 16 August 2006,
excluding EST, STS, GSS, working draft and patents
sequences, and sequences with a “XM_*" tag, as in [8], [26].

3.2.5 Probe-Genome Alignment

To identify probes having errors in the genomic alignment,
all probes on the HG-U95A and HG-U133A arrays were
aligned to the nucleotide sequences from Entrez Nucleotide,
and assigned GenelDs according to their matched sequence.
Perfect matches of the probes to mRNA sequences were
sought with BLAT v. 26 [44], following the same procedure
as in [8], [26], but using updated genomic sequence data. The
Entrez mRNA sequences were assigned to GenelD identi-
fiers by using the “gene2accession” conversion file obtained
from NCBI ftp server (ftp://ftp.ncbinlm.nih.gov/gene/
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DATA, 10 August 2006). The percentage of probes with no
GenelD match was 9.4 percent and 10.1 percent for the HG-
U95A and HG-U133A arrays, respectively. Multiple GenelD
matches were detected for 4.6 percent (HG-U95A) and
4.8 percent (HG-U133A) of the probes.

3.2.6 Single-Nucleotide Polymorphisms

Information about the probe-SNP associations was pro-
vided by the CustomCDF BioConductor package [10] that
contains SNP mapping for the probes based on data from
the dbSNP database [43]. The mappings have been used to
investigate SNP effects in microarray data in recent studies
[36], [45]. To focus on common SNPs, we considered only
SNPs with a minimum population frequency of 5 percent.

4 RESULTS

The RPA algorithm was applied on gene expression data sets
from two commonly used microarray platforms to validate
the model and to assess the differences between known
probe-level noise sources. First, we compared probe relia-
bility estimates to known probe-level error sources. Second,
preprocessing comparisons were used to test the preproces-
sing performance of RPA and, importantly, to guarantee the
validity of the probe reliability measures that depend on
accurate estimation of the differential gene expression signal.

4.1 Comparison to Known Error Sources

4.1.1 Probe-Genome Alignment

Mistargeted probes that did not uniquely match the GeneID
target of the probe set were significantly enriched (p < 0.05;
hypergeometric test) among the least reliable 1 percent of
the probes detected by our model (Fig. 1; Table S1, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TCBB.
2009.38.). The mistargeted probes were 1.1-1.7 times more
common in the HG-U95A / Av2 data sets than expected, and
2.2-3.1 times more common in HG-U133A. The enrichment
of mistargeted probes was the highest for the probes that
were consistently unreliable in the independent GEA and
ALL data sets. On the HG-U133A array, mistargeted probes
could explain 20.4 percent of the least reliable probes while
the expected proportion was 6.7 percent. Consistently
unreliable probes were detected by using the average rank
of the probes obtained in the two experiments. Detection of
probes having errors in their genomic alignment was
expected because such probes do not necessarily have any
correlation with the probe set-level signal. This supports the
validity of our model.

4.1.2 Interrogation Position

The interrogation position of a probe on the target
sequence was significantly associated with probe reliability
(p < 0.05; x2-test). Probes closest to either end of the target
sequence were enriched among the least reliable probes;
the observed counts deviated 73-138 percent from the
expectation, depending on the interrogation position
(Fig. 2a; Table S1, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCBB.2009. 38.). Enrichment of 5-binding
probes was expected due to RNA degradation starting
from this end of the transcript. Enrichment of 3" probes is
supported by previous findings of Dai et al., who noticed
that 3’-focused probe sets have often increased noise levels
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Fig. 1. Genomic alignment and probe reliability. Mistargeted probes that
do not uniquely match the GenelD target of the probe set were enriched
among the least reliable probes (p < 0.05; hypergeometric test). Black
bars show the expected proportion of mistargeted probes, i.e., their
proportion on the whole array. Gray bars show the proportion of
mistargeted probes among the least reliable 1 percent of the probes
detected by our model (dark: ALL; light: GEA; white: combined results).

[10]. Probes closer to the 3’ end detect, on average, a
higher absolute signal. A higher signal is often associated
with higher noise in microarray studies [46], which could
explain our observation. Alternative transcription may also
cause differences between 3’ probes and the other probes
[47], [48].

4.1.3 GC-Content and Probe Reliability

C-rich probe sequences were enriched among the least
reliable probes of our model in all data sets except ALL-
95Av2 and GEA-95A (Fig. 2b; Table S1, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2009.38.). The
observed counts for the different GC contents deviated
39-132 percent from the expectation in the investigated

m ALL -
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O GEA+ALL n

Proportion (%)
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!
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data sets (p < 0.05; x>-test). To guarantee the assumptions
of the y>-test, probes with most extreme G/C or A/T
contents were combined in the test. One explanation for
our observation is that high-affinity probes may have
higher likelihood of cross-hybridization to nonspecific
targets [21]. This would add noise to the probe-level
signal.

4.1.4 Single-Nucleotide Polymorphisms

Probes whose target sequences have common SNPs were
enriched among the least reliable probes on the HG-U133A
platform and in the combined results from HG-U95A/Av2
platform (See Supplementary Figure 3; Table S1, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2009.38.). In
these data sets, the SNP-associated probes were 1.7-1.9 times
more common among the least reliable probes than
expected (p < 0.05; hypergeometric test). It is interesting
to notice that the association between probe reliability and
SNPs is observed only when information from the ALL-
95Av2 and GEA-95A is combined; a similar observation
was made with the GC-rich probes. A likely explanation is
that the systematic effects from the SNP-associated, or GC-
rich probes are more effectively observed when the data
sets are combined and the data set specific noise cancels
out. In general, the SNP-associated probes were less reliable
than the other probes in all investigated data sets (p < 0.05;
Wilcoxon test). As expected, probes having a single SNP in
the central 13bp region of the 25-mer probe were less
reliable than probes with a single SNP in either end of the
target sequence on HG-U133A (p < 0.05; Wilcoxon test) but,
interestingly, not on the HG-U95A/Av2 platform.

4.1.5 Relative Contribution of the Known Error Sources
Probes that are associated with the investigated noise sources
had 7-39 percent increase in average variance, detected by
RPA, in the studied data sets except ALL95-Av2 (Fig. 3).
Mistargeted probes had the highest variances on HG-U133A,
whereas probes with the most 5'/3" interrogation positions

expected
ALL M
GEA

GEA+ALL

15

Proportion (%)

QT ELET.

10 11 12 13 14 15 16 17
GC content (nucleotides)

(b)

Fig. 2. Probe reliability versus interrogation position and GC-content on the HG-U133A platform. (a) Probes that bind to either the 5’ or the 3’ end of
the target transcript were enriched among the least reliable (1 percent) probes (p < 0.05; x>-test). Probe index indicates the relative interrogation
position of the probe on the target sequence, starting from the 5’ end of the transcript. The gray bars show the proportion for each interrogation
position among the least reliable probes in the inspected data sets (dark: ALL; light: GEA; white: combined results). The expectation is illustrated by
the dashed line. There are 11 probes per probe set on the HG-U133A arrays. (b) GC-rich probes were enriched among the least reliable (1 percent)
probes (p < 0.001; x>-test). The GC-content of a probe is indicated by the number of G/C nucleotides on the 25-mer probes. Gray bars show the
proportion of each GC-content among the least reliable probes (dark: ALL; light: GEA; white: combined results). Consistently less reliable probes
(GEA+ALL) had the highest deviation from the expectation (black bars). To guarantee the assumptions of the x?-test, we combined probes with
most extreme G/C or A/T contents for testing. Results for the HG-U95A/Av2 data sets are shown in Supplementary Fig. 2.
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Fig. 3. Increase in the average variance of the probes associated with
the investigated noise sources: mistargeted probes having errors in the
genomic alignment, most 5'/3’ probes of each probe set, GC-rich, and
SNP-associated probes. The variances were estimated by RPA and
describe the noise level of the probes. The results are shown for the
individual ALL and GEA data sets, and for their combined results on both
platforms (133A and 95A/Av2).

had the highest variances on HG-U95A/Av2. High GC-
content led to a more moderate increase in probe-specific
variance than the other investigated sources. However, GC-
rich probes are more common (28-33 percent of the probes)
than mistargeted probes (6-8 percent), probes with common
SNPs (3-3.4 percent), or probes in the most 5'/3’ positions of
the target sequence (10-18 percent) and have, therefore, a
remarkable contribution to the overall probe-level noise.
Interestingly, many (35-60 percent) of the least reliable
probes detected by RPA were not associated with the
investigated sources, including many probes that have
systematically low reliability in independent data sets.

4.2 General Observations of Probe Reliability
Examples of the least reliable probes in the GEA-95A data
set are shown in Supplementary Figure 4, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2009.38. Com-
parison of the results from independent ALL and GEA
data sets revealed many probes with consistently poor
reliability, although the comparability of the results was
affected by data set-specific effects: Spearman correlations
of the probe-specific variances {73} between the ALL and
GEA data sets were 0.28 (HG-U95A/Av2) and 0.52 (HG-
U133A). Surprisingly, the least reliable probes in the ALL
data sets showed almost identical expression profiles (See
Supplementary Figure 5, which can be found on the
Computer Society Digital Library at http://doi.ieeecompu-
tersociety.org/10.1109/TCBB.2009.38), although they are
located in independent probe sets and expected to capture
uncorrelated signals. The noise probably originates in the
biological samples that have been hybridized on both array
types in the ALL-95Av2 and ALL-133A data sets. The
specific source of this contamination remains unclear.

4.3 Preprocessing Comparisons

The validity of probe reliability estimates depends on
accurate estimation of the probe set-level signal. We
compared RPA to other preprocessing methods to test its
preprocessing performance and to guarantee the validity of
probe reliability estimates.
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4.3.1 Spike-In Data

In spike-in data sets, the true expression changes are known
and, hence, the different preprocessing approaches can be
compared in terms of their receiver operating characteristics
(ROC). RPA and PECA were more successful in detecting the
spiked genes than MAS5.0 or RMA (Fig. 4). FARMS was
found to outperform the other methods when a large number
of genes are inspected. The good performance of FARMS in
the spike-in data may, however, be favoured by the
particular design of the spike-in experiments, in which the
expression changes always occur in the same genes. This was
supported by the observation that, unlike the other methods,
FARMS produced nearly perfect ROC-curves even when
replicated samples were compared with each other, although
in these comparisons no changes should be detected and the
gene rankings should be random (See Supplementary
Figure 6, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2009.38.).

4.3.2 Technical Replicates

We also assessed the performance of the different prepro-
cessing methods in real research settings using the ALL and
GEA data sets. Since in these data sets the true expression
changes were not known, the performance of the different
methods was evaluated in terms of their consistency across
replicated measurements for both genes and biological
samples. Following the approach of Reverter et al. [49], we
first measured the consistency of the expression changes
within each data set (See Supplementary Figure 7, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2009.38.). Spe-
cifically, for each GenelD represented by at least two probe
sets on an array, the average Pearson correlation of the
expression profiles between all the matching probe sets was
calculated. Based on our probe-genome alignments, there
were 1,470 and 3,774 such GenelDs on the HG-U95A /HG-
U95Av2 and HG-U133A arrays, respectively. In each data
set, RPA produced the highest correlations (p < 0.05; paired
Wilcoxon test), and PECA and RMA also clearly out-
performed not only MAS5.0 but, notably, also FARMS.

To further investigate the performance of the methods, we
evaluated the consistency of the expression changes across
the two separate data sets, ALL-95Av2 and ALL-U133A, in
which the same biological samples have been hybridized
(Fig. 5). The consistency was measured by the Pearson
correlation between the pairs of arrays, to which the same
sample was hybridized. This indicates the performance of
the methods, as the technical replicates are assumed to
produce effectively the same results on both array versions.
The so-called “bestmatch” tables, provided by the array
manufacturer (www.affymetrix.com), were utilized to com-
bine the data across the arrays. The results from this analysis
supported the earlier findings. In particular, RPA and PECA
outperformed the other approaches; RMA performed better
than MAS5.0 and FARMS; and MAS5.0 showed the poorest
performance (p < 0.05; paired Wilcoxon test). Interestingly,
the simple PECA yielded better consistency between the data
sets than RPA (p < 0.05). While the main focus of this paper
is in probe reliability analysis, the preprocessing compar-
isons confirmed that RPA compares favourably with the
other methods in estimating differential gene expression.
This guarantees the validity of probe reliability estimates in
our model.
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Fig. 4. Preprocessing performance for spike-in data. ROC curves for the various methods that were used to estimate the signal log-ratio: RPA,
PECA, RMA, FARMS, and MAS for the two spike-in data sets ((a) Affymetrix HG-U95Av2 and (b) HG-U133A). For each curve, the results from the
investigated spike-in samples within the data sets were pooled. The axes have been truncated to focus on the most relevant area. When comparing
the curves, the one closest to the upper left corner shows the best performance.

5 DISCUSSION

Previous probe-level models have focused on preprocessing
of gene expression data, whereas we have specifically
targeted a more detailed analysis of probe reliability.
Enrichment of known probe-level error sources among the
less reliable observed probes validates our model; many of
the findings were explained by errors in genomic align-
ment, probe interrogation position, GC-content, or common
SNPs. However, any single source of error seems to explain
only a fraction of the probes that have consistently poor
reliability in independent data sets. Therefore, methods that
remove probe-level noise based on external information
such as genomic alignments are likely to ignore a large
number of the least reliable probes. For example, a probe set
designed to measure a certain transcript may additionally
detect unknown alternatively spliced transcripts which may
have different expression patterns [12], or cross-hybridize
with mRNAs having closely similar (>18/25 bp) but not
perfectly matching sequences [11]. Various laboratory- and
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Fig. 5. Reproducibility of signal estimates in real data sets between the
technical replicates, i.e., the best match probe sets between the HG-
U95Av2 and HG-U133A platforms. The consistency was measured by
the Pearson correlation between the pairs of arrays, to which the same
sample was hybridized.

experiment-specific effects are also known to add experi-
mental noise in microarray studies [12], [13]. The proposed
model can detect poorly performing probes that are
susceptible to noise from such sources.

A Gaussian model for probe effects is a reasonable starting
point for modeling heterogeneous and partially unknown
sources of probe-level noise. The feasibility of similar models
has already been demonstrated in the preprocessing context.
For example, the RMA preprocessing algorithm [15] has a
Gaussian model for probe effects with probe-specific mean
(affinity) parameters and a shared variance parameter for the
probes. We avoid the estimation of probe affinities and
instead focus on estimating probe-specific variances. The
recently suggested FARMS preprocessing algorithm [17] is
closely related to our approach but has a more complex
model for probe effects. The model can be written as
sij = zi\j + p; + €. Here, z; captures the underlying gene
expression, and the model has three parameters {\;, ;, €7}
for each of the 10-20 probes in a probe set. In contrast, our
model has a single variance parameter for each probe. The
use of a more complex model in FARMS is justified as it aims
at summarizing the absolute values of logarithmized PM
intensities. This is a hard task since large systematic
differences are known to exist between probes [14], [46].
We have shown that by computing differential gene
expression at probe-level avoids the need to estimate
unidentifiable probe affinity parameters. Use of a single
parameter for probe effects leads to more straightforward
interpretations about probe reliability and makes the model
potentially less prone to overfitting. This is supported by the
observation that RPA and PECA compared favourably with
other preprocessing methods in the analysis of differential
gene expression. The distinguishing feature of the two
methods is that they compute differential gene expression
at the probe-level. However, only the probabilistic RPA
estimates probe reliability.

While for most probe sets, different preprocessing
methods give largely consistent results, their differences
can be especially large for probe sets containing several
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inconsistent probe-level signals. The main contribution of the
current study is to introduce and apply a probabilistic model
with explicit modeling assumptions to analyze probe relia-
bility on short oligonucleotide arrays. At the same time, the
model provides a principled framework for incorporating
prior information of the probes in differential gene expres-
sion analysis. This is a potential topic for future studies.

6 CONCLUSION

We have introduced a probabilistic framework for analyz-
ing the reliability of individual probes directly from gene
expression data, and validated the model using gene
expression data sets from two popular human genome
arrays. A major advantage of the proposed approach is its
capability to detect unreliable probes independently of
physical models or external, constantly updated informa-
tion such as genomic sequence data. Probe reliability
information can be useful in many applications, including
evaluation of the end results of gene expression analysis,
and recognition of potentially unknown probe-level error
sources. It can be used to quantify the uncertainty in the
measurements and in designing the probes, and is also
utilized by our model to provide robust estimates of
differential gene expression. A better understanding of the
various probe-level error sources could advance probe
design and contribute to reducing probe-related noise in the
future generations of gene expression arrays.
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ABSTRACT

Motivation: Cell-biological processes are regulated through a
complex network of interactions between genes and their products.
The processes, their activating conditions and the associated tran-
scriptional responses are often unknown. Organism-wide modeling
of network activation can reveal unique and shared mechanisms
between tissues, and potentially as yet unknown processes. The
same method can also be applied to cell-biological conditions in
one or more tissues.

Results: We introduce a novel approach for organism-wide
discovery and analysis of transcriptional responses in interaction
networks. The method searches for local, connected regions in
a network that exhibit coordinated transcriptional response in a
subset of tissues. Known interactions between genes are used to
limit the search space and to guide the analysis. Validation on a
human pathway network reveals physiologically coherent responses,
functional relatedness between tissues and coordinated, context-
specific regulation of the genes.
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1 INTRODUCTION

Coordinated activation and inactivation of genes through molecular
interactions determines cell function. Changes in cell-biological
conditions induce changes in the expression levels of co-regulated
genes in order to produce specific physiological responses.
A huge body of information concerning cell-biological processes
is available in public repositories, including gene ontologies
(Ashburner et al., 2000), pathway models (Schaefer, 2006),
regulatory information (Loots and Ovcharenko, 2007) and protein
interactions (Kerrien et al., 2007). Less is known about the contexts
in which these processes are activated (Rachlin er al., 2006),
and how individual processes are reflected in gene expression
(Montaner et al., 2009). Although gene expression measurements
provide only an indirect view to physiological processes, their wide

*To whom correspondence should be addressed.

availability provides a unique resource for investigating gene co-
regulation on a genome- and organism-wide scale. This allows the
detection of transcriptional responses that are shared by multiple
tissues, suggesting shared physiological mechanism with potential
biomedical implications, as demonstrated by the Connectivity map
(Lamb et al., 2006) where a number of chemical perturbations on a
cancer cell line were used to reveal shared transcriptional responses
between conditions to enhance screening of therapeutic targets. In
this work, we study transcriptional responses of different tissues but
the same methods can be directly used for modeling sets of cellular
conditions within a single or multiple tissues as well.

Transcriptional responses have been modeled using so-called
gene expression signatures (Hu et al., 2006). A signature describes
a co-expression state of the genes, associated with particular
physiological states. Well-characterized signatures have proven to be
accurate biomarkers in clinical trials, and hence reliable indicators
of cell’s physiological state. Disease-associated signatures are often
coherent across tissues (Dudley et al., 2009) or platforms (Hu
et al.,2006). Commercial signatures are available for routine clinical
practice (Nuyten and van de Vijver, 2008), and other applications
have been suggested recently (Dudley ez al., 2009). The established
signatures are typically designed to provide optimal classification
performance between two particular conditions. The problem with
the classification-based signatures is that their associations to
the underlying physiological processes are not well understood
(Lucas et al., 2009). Our goal is to enhance the understanding by
deriving transcriptional signatures that are explicitly connected to
well-characterized processes through the network.

We introduce and validate a novel approach for organism-
wide discovery and analysis of transcriptional response patterns in
interaction networks. Our algorithm has been designed to detect and
model local regions in a network, each of which exhibits coordinated
transcriptional response in a subset of measurements. In this study,
the method is applied to investigate transcriptional responses of the
network across a versatile collection of tissues across normal human
body. The algorithm is independent of predefined classifications for
genes or tissues. Organism-wide analysis can reveal unique and
shared mechanisms between disparate tissues (Lage et al., 2008),
and potentially as yet unknown processes (Nacu et al., 2007). The
proposed NetResponse algorithm provides an efficient model-based
tool for simultaneous feature selection and class discovery that
utilizes known interactions between genes to guide the analysis.
Related approaches include cMonkey (Reiss et al., 2006) and a
modified version of SAMBA biclustering (Tanay et al., 2004).
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Fig. 1. Organism-wide analysis of transcriptional responses in a human pathway interaction network reveals physiologically coherent activation patterns and
tissue-specific regulation. One of the subnetworks and its tissue-specific responses, as detected by the NetResponse algorithm is shown. The expression of
each gene is visualized with respect to its mean level of expression across all samples.

However, these are application-oriented tools that rely on additional,
organism-specific information, and their implementation is currently
not available for most organisms, including human. We provide
a general-purpose algorithm whose applicability is not limited to
particular organisms.

NetResponse makes it possible to perform data-driven identi-
fication of functionally coherent network components and their
tissue-specific responses. This is useful since the commonly used
alternatives, predefined gene sets or pathways, are collections
of intertwined processes rather than coherent functional entities
(Nacu et al,, 2007). This has complicated their use in gene
expression analysis, and methods have consequently been suggested
to identify the ‘key condition-responsive genes’ of predefined gene
sets (Lee et al., 2008), or to decompose predefined pathways
into smaller functional modules represented by gene expression
signatures (Chang et al., 2009). Our network-based search procedure
detects the coordinately regulated gene sets in a data-driven
manner. Gene expression provides functional information of the
network that is missing in purely graph-oriented approaches for
studying cell-biological networks (Aittokallio and Schwikowski,
2006). The network brings in prior information of gene function
and connects the responses more closely to known processes than
purely gene expression-based methods such as biclustering (Madeira
and Oliveira, 2004), subspace clustering or other feature selection
approaches (Law et al., 2004; Roth and Lange, 2004). A key
difference to previous network-based clustering methods, including
MATISSE (Ulitsky and Shamir, 2007) and related approaches
(Hanisch et al., 2002; Shiga et al., 2007) is that they assume a single
correlated response between all genes in a module. NetResponse
additionally models tissue-specific responses of the network. This
allows a more expressive definition of a functional module, or a
signature.

‘We validate the algorithm by modeling transcriptional responses
in a human pathway interaction network across an organism-wide
collection of tissues in normal human body. The results highlight
functional relatedness between tissues, providing a global view on
cell-biological network activation patterns.

2 METHODS
2.1 The NetResponse algorithm

We introduce a new approach for global detection and characteriza-
tion of transcriptional responses in genome-scale interaction networks.
NetResponse searches for local, connected subnetworks where joint
modeling of gene expression reveals coordinated transcriptional response
in particular tissues (Fig. 1). More generally, it is a new algorithm for
simultaneous feature selection (for genes) and class discovery (for tissues)
that utilizes known interactions between genes to limit the search space and
to guide the analysis.

2.1.1 Gene expression signatures Subnetworks are the functional units of
the interaction network in our model; transcriptional responses are described
in terms of subnetwork activation. Given a physiological state, the underlying
assumption is that gene expression in subnetwork n is regulated at particular
levels to ensure proper functioning of the relevant processes. This can involve
simultaneous activation and repression of the genes: sufficient amounts of
mRNA for key proteins has to be available while interfering genes may need
to be silenced. This regulation is reflected in a unique expression signature
s, a vector describing the associated expression levels of the subnetwork
genes. The level of regulation varies from gene to gene; expression of some
genes is regulated at precise levels whereas other genes fluctuate more freely.
Given the physiological state, we assume that the distribution of observed
gene expression is Gaussian, x™ ~N(s(”), E(”))

2.1.2 Modeling tissue-specific transcriptional responses Each subnet-
work is potentially associated with alternative transcriptional states, activated
in different tissues and corresponding to unique combinations of processes.
Since individual processes and their transcriptional responses are in general
unknown (Lee et al., 2008), detection of tissue-specific responses provides
an efficient proxy for identifying functionally distinct states of the network.
Our task is to detect and characterize these signatures. We assume that in
a specific observation, the subnetwork n can be in any one of R™ latent
physiological states indexed by r. Each state is associated with a unique
expression signature s(,") over the subnetwork genes. Associations between
the observations and the underlying physiological states are unknown, and
treated as latent variables. This leads to a mixture model for gene expression
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Fig. 2. The agglomerative subnetwork detection procedure. Initially, each
gene is assigned in its own singleton subnetwork. Agglomeration proceeds
by at each step merging the two neighboring subnetworks that benefit most
from joint modeling of their transcriptional responses. This continues until
no improvement is obtained by merging the subnetworks.

in the subnetwork n:
R
x(n) ~ wa.")p(x(") ‘s(rn)’ 2(;1))Y o)
1

where each component distribution p is assumed to be Gaussian. In practice,
we assume a diagonal covariance matrix E(,")A

A particular transcriptional response is characterized by the triple
{s(,"). Zf-" ),w(,")]. This defines the shape, fluctuations and frequency of the
associated gene expression signature in subnetwork n. The feasibility of the
Gaussian modeling assumption is supported by the previous observations
of Kong et al. (2006), where predefined gene sets were used to investigate
differences in gene expression between two predefined sample groups. In
our model, the subnetworks, transcriptional responses and the activating
tissues are learned from data. In one-channel data such as Affymetrix arrays
used in this study, the centroids s(,”) describe absolute expression signals
of the preprocessed array data. Relative differences can be investigated by
comparing the detected responses. The model is applicable also on two-
channel expression data when a common reference sample is used for
all arrays since the relative differences are not altered by the choice of
comparison baseline when the same baseline is used for all samples.

Now the model has been specified assuming the subnetworks are given.
In practice, they are learned from the data. In order to do this, we
make two assumptions. First, we rely on the prior information in the
global interaction network, and assume that co-regulated gene groups
are connected components in this network. Second, we assume that the
subnetworks are independent. This allows a well-defined algorithm, and
the subnetworks are then interpretable as independent components of
transcriptional regulation. In practice the algorithm, described below, is
an agglomerative approximation for searching for locally independent
subnetworks.

2.2 Implementation
Efficient implementation is crucial for scalability. For fast computation,
we use an agglomerative procedure where interacting genes are gradually
merged into larger subnetworks (Fig. 2). Joint modeling of dependent genes
reveals coordinated responses and improves the likelihood of the data when
compared with independent models, giving the first criterion for merging the
subnetworks. However, increasing subnetwork size tends to increase model
complexity and the possibility of overfitting since the number of samples
remains constant while the dimensionality (subnetwork size) increases. To
compensate for this effect, we use a Bayesian information criterion (Gelman
et al., 2003) to penalize increasing model complexity and to determine
optimal subnetwork size.

The cost function for a subnetwork G is C(G)=—2L+qlog(N), where
L is the (marginal) log-likelihood of the data, given the mixture model in
Equation (1), ¢ is the number of parameters, and N denotes sample size.
NetResponse searches for a joint model for the network genes that maximizes
the likelihood of observed gene expression, but avoids increasing model
complexity through penalizing an increasing number of model parameters.

An optimal model is searched for by at each step merging the subnetwork
pair that produces the maximal gain in the cost function. More formally, the
algorithm merges at each step the subnetwork pair G;, G; that minimizes the
cost AC=—2(L;;—(Li+Lj))+(qi;—(qi+g)log(N). The agglomerative
scheme is as follows:

Initialize: learn univariate Gaussian mixture for the expression values of
each gene, and bivariate joint models for all potential gene pairs with a direct
link. Assign each gene into its own singleton subnetwork.

Merge: merge the neighboring subnetworks G;, G; that have a direct link
in the network and minimize the difference C. Compute new joint models
between the newly merged subnetwork and its neighbors.

Terminate: continue merging until no improvement is obtained by merging
the subnetworks (AC > 0).

The number R of distinct transcriptional responses of the subnetwork is
unknown, and is estimated with an infinite mixture model. Learning several
multivariate Gaussian mixtures between the neighboring subnetworks at
each step is a computationally demanding task, in particular when the
number of mixture components is unknown. The Gaussian mixtures,
including the number of mixture components, are learned with an efficient
variational Dirichlet process implementation (Kurihara et al., 2007). The
likelihood L in the model is approximated by the lower bound of the
variational approximation. The Gaussian mixture detects a particular type of
dependency between the genes. In contrast to MATISSE (Ulitsky and Shamir,
2007) and other studies that use correlation or other methods to measure
global co-variation, the mixture model detects coordinated responses that
can be activated only in a few tissues. Tissue-specific joint regulation
indicates functional dependency between the genes but it may have a minor
contribution to the overall correlation between gene expression profiles. In
principle, we could also model the dependencies in gene fluctuations within
each individual response with covariances of the Gaussian components.
However, this would heavily increase model complexity, and therefore
we leave dependencies in gene-specific fluctuations within each response
unmodeled, and focus on modeling differences between the responses.
NetResponse provides a full generative model for gene expression, where
each subnetwork is described with an independent joint mixture model.
The maximum subnetwork size is limited to 20 genes to avoid numerical
instabilities in computation. The infinite Gaussian mixture can automatically
adapt model complexity to the sample size. We model subnetworks of
1-20 genes across 353 samples; similar dimensionality per sample size has
previously been used with variational mixture models (Honkela et al., 2008).

2.3 Data

2.3.1 Pathway interaction network We investigate the pathway inter-
action network based on the KEGG database of metabolic pathways
(Kanehisa er al., 2008) provided by the signaling pathway impact
analysis (SPIA) package (Tarca et al., 2009) of BioConductor
(www.bioconductor.org). This implements the pathway impact analysis
method originally proposed in Draghici et al. (2007), which is currently the
only pathway analysis tool that considers pathway topology. SPIA provides
the data in a readily suitable form for our analysis. Other pathway datasets,
commonly provided in the BioPAX format, are not readily available in a
suitable pairwise interaction form. Directionality and types of the interactions
were not considered. Genes with no expression measurements were removed
from the analysis. We investigate the largest connected component of the
network with 1800 unique genes, identified by Entrez GenelDs.

2.3.2 Gene expression data We analyzed a collection of normal human
tissue samples from 10 post-mortem donors (Roth et al., 2006), containing
gene expression measurements from 65 normal tissues. To ensure sample
quality, RNA degradation was minimized in the original study by flash
freezing all samples within 8.5h post-mortem. Only the samples passing
Affymetrix quality measures were included. Each tissue has 3-9 biological
replicates measured on the Affymetrix HG-U133plus2.0 platform. The
reproducibility of our findings is investigated in an independent human
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gene expression atlas (Su ef al., 2004), measured on the Affymetrix HG-
U133A platform, where two biological replicates are available for each
measured tissue. In the comparisons, we use the 25 tissues available in
both datasets (adrenal gland cortex, amygdala, bone marrow, cerebellum,
dorsal root ganglia, hypothalamus, liver, lung, lymph nodes, occipital lobe,
ovary, parietal lobe, pituitary gland, prostate gland, salivary gland, skeletal
muscle, spinal cord, subthalamic nucleus, temporal lobe, testes, thalamus,
thyroid gland, tonsil, trachea and trigeminal ganglia). Both datasets were
preprocessed with RMA (Irizarry et al., 2003). Certain genes have multiple
probesets, and a standard approach to summarize information across multiple
probesets is to use alternative probeset definitions based on probe-genome
remapping (Dai et al., 2005). This would provide a single expression measure
for each gene. However, since the HG-U133A array represents a subset
of probesets on the HG-U133Plus2.0 array, the redefined probesets are not
technically identical between the compared datasets. To minimize technical
bias in the comparisons, we use probesets that are available on both platforms.
Therefore, we rely on manufacturer annotations of the probesets and use
an alternative approach (used e.g. by Nymark et al., 2007), where one
of the available probesets is selected at random to represent each unique
gene. Random selection is used to avoid selection bias. When available, the
‘XXXXXX_at’ probesets were used because they are more specific by design
than the other probe set types (www.affymetrix.com).

2.4 Validation

The NetResponse algorithm is validated with an application on the pathway
interaction network of 1800 genes (Tarca et al., 2009) across 353 gene
expression samples from 65 tissues in normal human body (Roth er al.,
2006). NetResponse is compared with alternative approaches in terms of
physiological coherence and reproducibility of the findings.

2.4.1 Comparison methods NetResponse is designed for organism-wide
modeling of transcriptional responses in genome-scale interaction networks.
Simultaneous detection of the subnetworks and their tissue-specific responses
is a key feature of the model. A straightforward alternative would be
a two-step approach where the subnetworks and their tissue-specific
responses are detected in separate steps, although this can be suboptimal
for detecting tissue-specific responses. Various methods are available for
detecting subnetworks based on network and gene expression data (Hanisch
et al., 2002; Shiga et al, 2007) in the two-step approach. We use
MATISSE, a state-of-the-art algorithm described in Ulitsky and Shamir
(2007). MATISSE finds connected subgraphs in the network such that
each subgraph consists of highly correlated genes. The output is a list
of genes for each detected subnetwork. Since MATISSE only clusters the
genes, we model transcriptional responses of the detected subnetworks in a
separate step by using a similar mixture model to the NetResponse algorithm.
This combination is also new, and called MATISSE+ in this article. The
second comparison method is the SAMBA biclustering algorithm (Tanay
et al., 2002). The output is a list of associated genes and tissues for each
identified bicluster. SAMBA detects gene sets with tissue-specific responses,
but, unlike NetResponse and MATISSE+, the algorithm does not utilize
the network. Influence of the prior network is additionally investigated by
randomly shuffling the gene expression vectors, while keeping the network
and the within-gene associations intact. Comparisons between the original
and shuffled data help to assess relative influence of the prior network on the
results. Comparisons to randomly shuffled genes in SAMBA are not included
since SAMBA does utilize network information.

2.4.2  Reproducibility in validation data  Reproducibility of the findings is
investigated in an independent validation dataset in terms of significance and
correlation (for details, see Section 2.3). Each comparison method implies a
grouping for the tissues in each subnetwork, corresponding to the detected
responses. It is expected that physiologically relevant differences between
the groups are reproducible in other datasets. We tested this by estimating
differential expression between the corresponding tissues in the validation

data for each pairwise comparison of the predicted groups using a standard
test for gene set analysis (GlobalTest; Goeman et al., 2004). To ensure
that the responses are also qualitatively similar in the validation data, we
measured Pearson’s correlation between the detected responses and those
observed in the corresponding tissues in validation data. The responses
were characterized by the centroids provided by the model in NetResponse
and MATISSE+. For SAMBA, we used the mean expression level of each
gene within each group of tissues since SAMBA groups the tissues but
does not characterize the responses. In validation data, the mean expression
level of each gene is used to characterize the response within each group
of tissues. Probesets were available for 75% of the genes in the detected
subnetworks in the validation data; transcriptional responses with less than
three probesets in the validation data were not considered. Validation data
contained corresponding samples for >79%) of the predicted responses in
NetResponse, MATISSE+ and SAMBA (Supplementary Table 1).

3 RESULTS

The validation results reported below demonstrate that the
NetResponse algorithm is readily applicable for modeling tran-
scriptional responses in interaction networks on an organism-wide
scale. While biomedical implications of the findings require further
investigation, NetResponse detects a number of physiologically
coherent and reproducible transcriptional responses in the network,
and highlights functional relatedness between tissues. It also
outperformed the comparison methods in terms of reproducibility
of the findings.

3.1 Application to human pathway network

In total, NetResponse identified 106 subnetworks with 3—20 genes
(Supplementary Material). For each subnetwork, typically (median)
three distinct transcriptional responses were detected across the
65 tissues (Supplementary Fig. 1). One of the subnetworks with
four distinct responses is illustrated in Figure 1. Each response
is associated with a subset of tissues. Statistically significant
differences between the corresponding tissues were observed also
in the independent validation data (P <0.01; GlobalTest). Three
of the four responses were also qualitatively similar (correlation
> 0.8; Supplementary Fig. 2). The first response is associated with
immune system-related tissues such as spleen and tonsil. Responses
2-3 are associated with neuronal tissues such as subthalamic
or nodose nucleus, or with central nervous system, for example
accumbens and cerebellum. The fourth group manifests a ‘baseline’
signature that fluctuates around the mean expression level of the
genes. Testis and pituitary gland are examples of tissues in this
group. While most tissues are strongly associated with a particular
response, samples from amygdala, bone marrow, cerebral cortex,
heart atrium and temporal lobe manifested multiple responses. While
alternative responses reveal tissue-specific regulation, detection of
physiologically coherent and reproducible responses may indicate
shared mechanisms between tissues. Although the responses may
reflect previously unknown processes, it is likely that some of
them reflect the activation patterns of known pathways. Overlapping
pathways can provide a starting point for interpretation. The
subnetwork in Figure 1 overlaps with various known pathways, most
remarkably with the MAPK pathway with 10 genes (detailed gene—
pathway associations are provided in the Supplementary Material;
see Subnetwork 12). MAPK is a general signal transduction system
that participates in a complex, cross-regulated signaling network
that is sensitive to cellular stimuli (Wilkinson and Millar, 2000).
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Fig. 3. Associations between 65 tissues (rows) and the detected transcript-
ional responses of the pathway interaction network of Figure 1. The shade
indicates the probability of a particular transcriptional response in each tissue
(black: P=0; white: P=1). Hierarchical clustering based on the signature
co-occurrence probabilities between each pair of tissues highlights their
relatedness.

Six subnetwork genes participate in the p53 pathway, which is a
known regulator of the MAPK signaling pathway. In addition, p53
is known to interact with a number of other pathways, both as
an upstream regulator and a downstream target (Wu, 2004). Both
MAPK and p53 are associated with processes including cell growth,
differentiation and apoptosis, and exhibit diverse cellular responses.
Tissue-specific regulation can potentially explain the detection of
alternative transcriptional states of the subnetwork.

The detected responses characterize absolute expression
signals in our preprocessed one-channel array data. Systematic
differences in the expression levels of the individual genes are
normalized out in the visualization by showing the relative
expression of each gene with respect to its mean expression level
across all samples. Note that the choice of a common baseline does
not affect the relative differences between the samples.

3.1.1 Tissue-selective network activation Associations between
the tissues and the detected transcriptional responses are shown in
Figure 3. Some responses are shared by many tissues, while others
are more specific to particular contexts such as immune system,
muscle or the brain. Related tissues often exhibit similar network
activation patterns, which is seen by grouping the tissues according
to co-occurrence probabilities of shared transcriptional response.

NetResponse

NetResponse (shuffled)
MATISSE+

MATISSE+ (shuffled)
SAMBA

o
©
"
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1

Fraction / Correlation
o
=
L

o
N
L
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Detected responses
(fraction of genes)

Reproducibility
(significance)

Reproducibility
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Fig. 4. Comparison between the alternative approaches. Detected responses:
fraction of genes participating in the detected transcriptional responses.
Reproducibility (significance): fraction of responses that are reproducible
in the validation data in terms of differential expression between the
associated tissues (P <0.05; GlobalTest). Reproducibility (correlation):
median correlation between the gene expression levels of the detected
responses and the corresponding tissues in the validation data.

This is known as tissue selectivity of gene expression (Liang et al.,
2006).

3.1.2  Probabilistic tissue connectome Tissue relatedness can be
measured in terms of shared transcriptional responses (Supplement-
ary Fig. 3). This is an alternative formulation of the fissue
connectome map suggested by Greco et al. (2008) to highlight
functional connectivity between tissues based on the number of
shared differentially expressed genes at different thresholds. We
use shared network responses instead of shared gene count. The
use of co-regulated gene groups is expected to be more robust to
noise than the use of individual genes. As the overall measure of
connectivity between tissues, we use the mean of signature co-
occurrence probabilities over the subnetworks, given the model in
Equation (1). The analysis reveals functional relatedness between
the tissues. In particular, two subcategories of the central nervous
system appear distinct from the other tissues. Closer investigation
of the observed responses would reveal how the tissues are related
at transcriptional level (Supplementary Material).

3.2 Comparison to alternative approaches

NetResponse was compared with the alternative approaches in
terms of physiological coherence and reproducibility of the findings
(Fig. 4; Supplementary Table 1). NetResponse detected the largest
amount of responses; 68% of the network genes were associated with
a response, compared with 45% in MATISSE+ and SAMBA. At the
same time, NetResponse outperformed the comparison methods in
terms of reproducibility of the findings.

3.2.1 Physiological coherence The association between the
responses and tissues was measured by normalized mutual
information (NMI; Bush ez al., 2008) between the sample-response
assignments and sample class labels within each subnetwork. The
NMI varies from 0 (no association) to 1 (deterministic association).
The transcriptional responses detected by NetResponse, MATISSE+
and SAMBA show statistically significant associations to particular
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tissues with a significantly higher average NMI (0.46-0.50)
than expected based on randomly labeled data (0.26-0.32;
P <10~%; Wilcoxon test; Supplementary Table 1). The highest
average NMI (0.50) was obtained by NetResponse but differences
between NetResponse, MATISSE+ and SAMBA are not significant.
NetResponse is significantly physiologically more coherent also
when compared with results obtained with shuffled gene expression
(NMI 0.22; P<10_12)‘ The observations confirm the potential
physiological relevance of the findings in NetResponse, MATISSE+
and SAMBA.

3.2.2  Reproducibility The majority of the detected responses
were reproducible both in terms of significance and correlation
(Supplementary Fig. 4) as described in Section 2.4. Of the predicted
differences between groups of tissues, 80% were significant in
validation data with P <0.05 (GlobalTest), compared with 72 and
63% in MATISSE+ and SAMBA, respectively, or 43% obtained for
randomly shuffled data with NetResponse (Fig. 4). The changes were
also qualitatively similar; in NetResponse the median correlation
between the detected responses and corresponding tissues in the
validation data is 0.76, which is significantly higher (P <0.01;
Wilcoxon test) than in the comparison methods (MATISSE+: 0.64;
SAMBA: 0.68), or in randomly shuffled NetResponse data (0.14).
NetResponse detected responses for a larger fraction of the genes
(68%) than the other methods. This seems an intrinsic property of
the algorithm since it detected responses for a similar fraction of
the genes also in the network with randomly shuffled genes (72%).
However, only the findings from the real data were reproducible.

4 DISCUSSION

Cell-biological networks may cover thousands of genes, but any
change in the physiological context typically affects only a small
part of the network. While gene function and interactions are often
subject to context-specific regulation (Liang er al., 2006), they
are typically studied only in particular experimental conditions.
Organism-wide analysis could reveal highly specialized functions
that are activated only in one or a few tissues. Detection of
shared responses between the tissues can reveal previously unknown
functional connections and help to formulate novel hypotheses of
gene function in previously unexplored contexts. We provide a
well-defined algorithm for such analysis.

The results support the validity of the model. NetResponse
detected the largest number of responses without compromising
physiological coherence or reproducibility of the findings compared
with the alternatives. The most highly reproducible results were
obtained by NetResponse. Further analysis is needed to establish
the physiological role of the findings.

NetResponse is readily applicable for modeling tissue-specific
responses in cell-biological networks, including pathways, protein
interactions and regulatory networks. The network connects the
responses to well-characterized processes, and provides readily
interpretable results that are less biased toward known biological
phenomena than methods based on predefined gene sets that
are routinely used in gene expression studies to bring in prior
information of gene function and to increase statistical power.
However, these are often collections of intertwined processes
rather than coherent functional entities. For example, pathways
from KEGG may contain hundreds of genes, while only a small

part of a pathway may be affected by changes in physiological
conditions (Nacu et al., 2007). This has complicated the use of
predefined gene sets in gene expression studies. Draghici et al.
(2007) demonstrated that taking into account aspects of pathway
topology, such as gene and interaction types can improve the
estimation of pathway activity. While their SPIA algorithm measures
the activity of known pathways between two predefined conditions,
our algorithm searches for potentially unknown functional modules,
and detects their association to multiple conditions, or tissues,
simultaneously. This is useful since biomedical pathways are
human-made descriptions of cellular processes, often consisting
of smaller, partially independent modules (Chang et al., 2009;
Hartwell et al,, 1999). Our data-driven search procedure can
rigorously identify functionally coherent network modules where
the interacting genes show coordinated responses. Joint modeling
increases statistical power that is useful since gene expression, and
many interaction data types such as protein—protein interactions,
have high noise levels. The probabilistic formulation accounts for
biological and measurement noise in a principled manner. Certain
types of interaction data such as transcription factor binding or
protein interactions are directly based on measurements. This can
potentially help to discover as yet unknown processes that are
not described in the pathway databases (Nacu et al., 2007). False
negative interactions form a limitation for the current model because
joint responses of co-regulated genes can be modeled only when they
form a connected subnetwork.

The need for principled methods for analyzing large-scale
collections of gene expression data is increasing with their
availability. Versatile gene expression atlases contain valuable
information about shared and unique mechanisms between disparate
tissues which is not available in smaller and more specific
experiments (Lage ef al., 2008; Scherf et al., 2000). For example,
Lamb ez al. (2006) demonstrated that large-scale screening of cell
lines under diverse conditions can enhance the finding of therapeutic
targets. Our model is directly applicable in similar exploratory
tasks, providing tools for organism-wide analysis of transcriptional
activity in normal human tissues (Roth et al., 2006; Su et al.,
2004), cancer and other diseases (Kilpinen et al., 2008; Lukk et al.,
2010) in a genome- and organism-wide scale. Similar collections
are available for several model organisms including mouse (Su
et al., 2004), yeast (Granovskaia et al., 2010) and plants (Schmid
et al., 2005). A key advantage of our approach compared with
methods that perform targeted comparisons between predefined
conditions (Ideker et al., 2002; Sanguinetti et al., 2008) is that it
allows systematic organism-wide investigation when the responses
and the associated tissues are unknown. The motivation is similar
to SAMBA and other biclustering approaches that detect groups
of genes that show coordinated response in a subset of tissues
(Madeira and Oliveira, 2004), but the network ties the findings more
tightly to cell-biological processes in our model. This can focus
the analysis and improve interpretability. Since the non-parametric
mixture model adjusts model complexity with sample size, our
algorithm is potentially applicable also in smaller and more targeted
datasets. For example, it could potentially advance disease subtype
discovery by revealing differential network activation in subsets of
patients.

Many large-scale collections are continuously updated with new
measurements. Our algorithm provides no integration technique
for new experiments yet; on-line extensions that could directly
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integrate data from new experiments provide an interesting topic for
further study. Another potential extension would be a fully Bayesian
treatment that would provide confidence intervals, removing the
need to assess significance of the results in a separate step. While
our model provides a model-based criterion for detecting the
responses without prior knowledge of the activating tissues, the
statistical significance of the findings has to be verified in further
experiments. The majority of the responses in our experiments could
be verified in an independent dataset. Other potential extensions
include adding more structure to address the directionality, relevance
and probabilities of the interactions. Not all cell-biological processes
have clear manifestations at transcriptome level. Hence, information
of transcript and interaction types, as in SPIA, could potentially help
to improve the sensitivity of our approach. We could also seek to
loosen the constraints imposed by the prior network. However, such
extensions would come with an increased computational cost. The
simple and efficient implementation is a key advantage.

NetResponse is closely related to subspace clustering methods
such as agglomerative independent variable component analysis
(AIVGA; Honkela et al., 2008). However, AIVGA and other
model-based feature selection techniques (Law ef al., 2004; Roth
and Lange, 2004) consider all potential connections between the
features, which leads to more limited scalability. Finding a global
optimum in our model would require exhaustive combinatorial
search over all potential subnetworks. Since the complexity depends
on the topology of the network, finding a general formulation for the
model complexity is problematic. The number of potential solutions
grows faster than exponentially with the number of features (genes)
and links between them, making exhaustive search in genome-scale
interaction networks infeasible. Approximative solutions are needed,
and are often sufficient in practice. A combination of techniques
is used to achieve an efficient algorithm compared with the model
complexity. First, we focus the analysis on those parts of the data that
are supported by known interactions. This increases modeling power
and considerably limits the search space. Second, the agglomerative
scheme finds an approximative solution where at each step the
subnetwork pair that leads to the highest improvement in cost
function is merged. This finds a solution relatively fast compared
with the complexity of the task. Note that the order in which
the subnetworks become merged may affect the solution. Finally,
the variational implementation considerably speeds up mixture
modeling (Kurihara et al., 2007). The running time of our application
was 248 min on a standard desktop computer (Intel 2.83GHz;
Supplementary Fig. 5).

Investigation of a human pathway interaction network revealed
tissue-specific regulation in the network, that is, groups of interacting
genes whose joint response differs between tissues. This highlights
the context-dependent nature of network activation, and emphasizes
an important shortcoming in the current gene set-based testing
methods (Nam and Kim, 2008): simply measuring gene set
‘activation’ is often not sufficient; it is also crucial to characterize
how the expression changes, and in which conditions. Organism-
wide modeling can provide quantitative information about these
connections.

5 CONCLUSIONS

We have introduced and validated a general-purpose algorithm
for global identification and characterization of transcriptional

responses in genome-scale interaction networks across a diverse
collection of tissues, applicable also to cell-biological conditions
within and between tissues. An organism-wide analysis of a human
pathway interaction network validated the model, and provided
a global view on cell-biological network activation. The results
revealed unique and shared mechanisms between tissues, and
potentially help to formulate novel hypotheses of gene function in
previously unexplored contexts.
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ABSTRACT The traditional statistical way of finding dependencies
between data sources is canonical correlation analysia, CC
which generalizes correlation to multidimensional sosrce
yretaining some of the nice interpretability of correlatimo
efficients. While the basic correlation coefficient assumes
paired scalar values, canonical correlations assumedaire
vectorial values. The vectors are projected to scalar cempo
nents before computing the correlations, using lineargaroj
tions that maximize the correlations. For multidimensiona
data there will be many correlation coefficients; the second
components are constrained to be uncorrelated with the first
%nd so on.

Unsupervised two-view learning, or detection of depen-
dencies between two paired data sets, is typically done b
some variant of canonical correlation analysis (CCA). CCA
searches for a linear projection for each view, such that the
correlations between the projections are maximized. The
solution is invariant to any linear transformation of eithe
or both of the views; for tasks with small sample size such
flexibility implies overfitting, which is even worse for more
flexible nonparametric or kernel-based dependency discov-
ery methods. We develop variants which reduce the degree!
of freedom by assuming constraints on similarity of the pro- . . .
jections in the two views. A particular example is provided ~ CCA is known to have two nice properties: the result
by a cancer gene discovery application where chromosomal$ invariant to linear transformations of the data spaced, a
distance affects the dependencies between gene copy nunibe solution for any fixed number of components maximizes
ber and activity levels. Similarity constraints are shown t Mutual information between linear projections for Gaussia
improve detection performance of known cancer genes. data. These insights can be interpreted as motivations for

generalizing using nonparametric methods [1, 2] and kernel
CCA[3,4].

The flexibility of CCA can cause overfitting problems
We develop methods for the task of detecting statistical de-that are_spgmﬂcal_ly harmf_ul W|th_small sample sizes _that
pendencies between multiple sources of co-occurring data.abour.1d n _blome_dlcal studies, for instance. Whe’.‘ the VIews

The sources are assumed to share relevant common inforgre_hlg_h-dlmensmna_l, the completely unconsrained finea
mation, and additionally contain independent but unknown projections involve high degrees of freedom; several ways
type of noise. The task is to discover the relevant informa- to regularize the CCA SOIL.Jt'On have been suggested to' over-
tion; both to detect and analyse or interpret it. come some of the associated problem_s 5 6, 7]. We _|ntr_0-
This is a particular type of a data fusion task, shared by duce a complementary approach that is based on bringing

o ; S . .7 in prior knowledge to constrain the model family.
multi-view learning. In multi-view learning each source is
interpreted as a different view to the same items, and the ~ Assuming the dimensions of the different views are not
task is to enhance classification performance by combin-completely unrelated butinstead are formed of relatedspair
ing the views. Our task can be interpreted as unsupervisedt makes sense to search for more constrained projections.
multi-view learning. In our application, the views are different measurements
made on the same locations of the genome, and the dimen-
The project was funded by Tekes MultiBio project. LL and Sk be  sjons correspond to these particular locations. Constrgin

long to the Adaptive Informatics Research Centre and Heldirstitute P . . s
for Information Technology HIIT. LL is funded by the Gradaabchool of the projections to be the same or at least similar in the dif

Computer Science and Engineering. SK is partially suppdsieEU FP7  ferent Vie‘_’VS will additionally e_nhance interpretabilitthe
NOE PASCAL2, ICT 216886. results, given that relationships between the same compo-

1. INTRODUCTION




nents in the two views are natural. The relationship between the projections can be para-
Correlation-based CCA has been shown to correspondmetrized with a transformation matriX such thatv, =

to the maximum likelihood solution of a simple generative T'v,. Maximization of the correlations between the projec-

model [4], where the two views are assumed to stem from tions leads to the following optimization problem:

a shared Gaussian latent variable and normally distributed

re
data-set-specific noise. This has opened up the road to prob- argmax = v En v , (1)
abilistic and Bayesian formulations [8, 9] which make it vT \/vTizzv\/(Tv)Tinyv

possible to deal rigorously with uncertainty in small sam- )
ple sizes and to include prior knowledge as Bayesian priors.Where the observed covariances of the two data sets are de-

We suggest also a probabilistic version for constrained noted by thek. Constraints orf” can Pe used to gw_de_ th?
dependency search that provides a robust alternative for di depend_ency search. We fef?r to this mod_el as Similarity-
rect maximization of correlations. While the probabilisti  constrained CCASmCCA). Suitable constraints depend on
version is slower to compute, it is the recommended choiceth® part_lcular applications; the SO_IUUF’”S can be madeetg pr
when prior information of the types of dependency is avail- fer partu_:ular types of dependencies in a soft manner with an
able, or sample size is small. approp_rlate penalt_y term dhi. . . L .

The methods will be applied in a very promising appli- While we con5|d.er only c_)ne-dlm(_en5|_onal pro_jectlons in
cation setup for knowledge discovery with dependency de_the case study, mgltldlmer‘]sm‘nal projection matrices km:_a
tection. The task is to find potential cancer genes by Study_p055|ble. The optimal projection vectors can be sought iter

ing the relationship between changes caused by cancer irfitively as in ordinary CCA. Direct optimization of the corre

gene expression and gene copy numbers, that is, amplificalat'ons provides a simple and computationally efficient way

tions or deletions caused by mutations in cancer samples.to detect dependencies between data sources but it lacks an

Copy number changes are a key mechanism for cancer, an@xplicit model to deal with the uncertainty in the data and
combination of copy number information with gene expres- model parameters.

sion measurements can reveal functional effects of the mu-

tations; gene expression data is informative of gene agtivi 2.2. Probabilistic approach

'_rhe rationale goes as follows: Mutations having no func- 5, explicit model-based approach for the dependency ex-
tional effect will not cause cancer, and cancer-relate®gen |, ration task is provided by the probabilistic modeling-fr
expression changes may be side effects. Gene expressiop,eyqrk. We derive a probabilistic approach which should

changes caused by mutations would be strong candidatege more robust to small sample sizes. The correlation-based

for cancer mechanisms, and they contribute to the depen-cca has a direct connection to the maximum likelihood
dencies between the two data sources. While causation Ca'?ML) solution of the generative model [4, 10]:

be difficult to grasp, study of the dependencies can provide

an efficient proxy for such effects. X ~ N(Wyz, Vs) @
Y ~ N(Wyz,T,),
2. CANONICAL CORRELATIONS WITH assuming normally distributed, and data-set-specific co-
SIMILARITY CONSTRAINTS variancesV,, ¥,,. The dependency between the data sets is
captured by the shared latent variableandiV,, W, char-
2.1. Correlation-based approach acterize the relationship between the data sets. The eovari

ancesV,, ¥, characterize data set-specific effects. Note
that while optimal projections in the correlation-based
CCA (Eg. 1) operate on the observed data, the parameters
of interest,IW,,, W,, in probabilistic CCA mediate transfor-
mations of the latent variable

The solutions of the probabilistic CCA can be constrai-
‘ned analogously to the correlation-based approachin Eq (1)
by extending the formulation to include appropriate prior
terms. The joint likelihood of the model is given by

Correlation-based CCA searches for a maximally correlated
linear projection of the original data sets with paired sam-
ples X andY. It maximizes the correlation between the
projectionscor(Xv,, Yv,), with respect to arbitrary pro-
jection vectors,, v,,. However, this flexibility easily leads
to overfitting as demonstrated by the case study in Section 3
In many applications prior information of the potential
relationships between the features of the investigatea dat
sets is available. Constraining the projections accotging
can potentially reduce overfitting and help to focus on spe- P(X,Y, W, ¥) 3)
cific types of dependencies between the two data sets. A ~P(X,Y Wy, Wy, U)P(W,|W,) P(W,)P(¥) (4)
particular example of such a model is provided by our can-
cer gene discovery application, where gene copy number :/P(X,Y|W1,Wy,\11,z) (5)
changes are systematically correlated with the gene expres
sion measurements from the same genes. P(Wy W) P(W,) P(V) P(z)dz. (6)



Here ¥ denotes the block-diagonal matrix &, and ¥,,. contribution to cancer development and progression. Chro-
While incorporation of prior information of the data set- mosomal gains and losses are likely to be positively corre-
specific effects through thB/,, and ¥ provides promising  lated with the expression levels of the affected genes; copy
lines for further work, we focus on the shared latent vari- number gain is likely to increase the expression of some of
ables as a probabilistic alternative to the correlatioseola  the associated genes whereas deletion will block gene ex-
SIimCCA. The relation between the transformation matri- pression. Identification of cancer-associated regionh wit
ces for the shared latent variable is encoded by the priorfunctional copy number changes has potential diagnostic,
term P(W,|W,) and can be parametrized with a transfor- prognostic and clinical impact for cancer studies.
mation matrix?" such thati?, = TW,. Assuming invert- Canonical correlations provide a principled framework
ible WIW,, we havel’ = W,(WIW,)"'WwZI. for detecting the shared variation in gene expression and
By setting a prior orl" it is possible to emphasize cer- copy number data. Systematic copy number changes in
tain types of dependencies. With unconstraifiethe so- a particular chromosomal region are captured by multiple
lution reduces to ordinary probabilistic CCA. In the other copy number probes, and this is also visible in the expres-
extremeT is an identity matrix;" = I, and the two shared sion levels of the genes within the affected region. The de-
components, derived from andy respectively, would be  pendent signals can be subtle, however, as gene expression
identical. The formulation would also allow tuning @f and copy number data are affected by high levels of unre-

between these two extremes. lated biological and measurement variation, and the sample
We consider the following simple prior faf: P(T) = sizes are typically small.
Ni(|| (T = 1) | |0,0%) = No(| W,(WIW,)~'WT) - Both correlation-based and probabilistic SimCCA com-

I||10,0%). This can be plugged intB(W, |W,) in Eq. (3). bine power over the adjacent genes by capturing the strong-
We have used Frobenius norm, aNd. refers to truncated est shared signal in gene expression and copy number obser-
normal distribution for positive input values. vations. They can also ignore unrelated signal from poorly

Thec? can tune the deviation @f from the identityma-  performing probes, or probes that measure genes that are
trix; a strict version of probabilistic SiImCCA (pSimCCA) not functionally affected by the copy number change. This
is obtained withe2 — 0, while 02 — oo yields ordi- provides tools to distinguish between so-called driver mu-
nary probabilistic CCA (pCCA). With uninformative pri- tations having functional effects from less active paseeng
ors P(W), P(¥) ~ 1 and normally distributed shared la- mutations, which is an important task in cancer studies. A
tent variablez ~ N(0, I), the model has the negative log- further advantage of the probabilistic formulation is ttiee
likelihood shared latent variable provides a robust measure of the

T amplification effects in each patient.
—logP(X,Y, W, ¥) ~ log|Z|+trE~ S+ 51—, (7)
0% 3.2. Implementation

HereX = WWT + ¥ contains the matrice®’,, W,, and SImCCA is used to study the association between gene ex-
data set specific covariancés,, ¥, We have added the pression and copy number in a gastric cancer data set with
prior for T', which tunes the relationship betwe#n, and 41 patients and 10 controls [11]. The gene expression and

W,. For other details, see [4, 5]. copy number data sets were matched for the analysis such
that the closest probe by genomic location in gene expres-

3. ANALYSIS OF FUNCTIONAL COPY NUMBER sion data was selected for each copy number probe, and
CHANGES IN GASTRIC CANCER pI’ObeS with no match between gene eXpreSSion and copy

number within 5000 bp interval were discarded. The pre-

A promising biomedical application highlights the potahti ~ Processed data has gene expression and copy number mea-
practical value of our approach. Constraints on the poten-surements from 5596 genes from 700 chromosomal re-

tial dependencies between gene expression and copy numdions (cytobands). To satisfy the normality assumptions of
ber are shown to improve the detection of known cancer Our model, the data wasg,-transformed and the mean of
genes. The advantages of constrained and probabilistic verthe signals for each probe was set to 0 before the analysis.
sions become particularly salient when the dimensionality ~ Ordinary and constrained versions of canonical corre-

increases and ordinary correlation-based CCA seriousdy-ov lation analysis, CCA/SImCCA, were applied to investigate
fits to the data. the dependencies between gene expression and copy num-

bers. The correlations were computed within a specific chro-

mosomal window around each gene. The observed correla-
tions provide a measure of dependency between gene copy
Copy number changes in chromosomal regions with tumor- number and expression data for each window, or chromoso-

suppressor or other cancer-associated genes have importamal region.

3.1. Background and motivation



Bpression: 17q catenated dataX,Y). We refer to this method as pSim-

PCA. The simplified model does not distinguish between
the shared and marginal effects as effectively as the full
probabilistic CCA but it has fewer model parameters. Low-

signal
Sl o s

D 0 S & i Y dimensional latent models are also faster to compute, and
Mb interpretation of the results is potentially more strafght
Amplifications: 17q Ward.
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Fig. 1. Gene expression, copy humber signal, and the de-
pendency score for a sliding window of 15 genes along
the chromosome arm 17q from the SImMCCA method of 050"
Eq. (1). Known gastric-cancer associated genes from an :
expert-curated list are marked with black dots.

0.55 -

045

Window size (genes)

With unconstrained”, the models defined by Eqgs. (1) Fig. 2. AUC comparison.
and (7) reduce to ordinary correlation-based and protsbili
tic CCA, respectively. We assume that the constraints for
T are provided prior to analysis, i.e. the prior parameter
or is fixed. Alternativelyor could be optimized based on

external criteria such as identification of the known cancer 101
genes in our application. Our empirical results show, how- 081
ever, that already a simple prior f@r without an explicit o
optimization procedure can improve the detection of known g 064
cancer genes. 2
We consider here the two extreme cases of the model &, |
where T is (i) completely unconstrained (ordinary CCA; é
or = o0), and (i) T = I (o = 0). Point estimates for 0.2
the model parameters were estimated with EM algorithm in
the probabilistic version. Strength of the shared signal ve 0.01
sus marginal effects is measured with(WW7T) /Tr(¥), 0.0 02 04 056 08 10
whereT'r denotes matrix trace. This yields a dependency False positive rate

score between copy number and expression data for the in-

vestigated chromosomal neighborghood around each geneFig. 3. ROC curve for the results from correlation-based

High scores highlight regions where the dependent signalSImCCA with a 15-gene sliding window.

between the two data sets is particularly high relative & th

data-set-specific variation. Results from the correlation-based SimCCA are illus-
In addition to the correlation-based and probabilistic Sim trated for chromosome arm 17q in Fig. 1, where SImCCA

CCA, we tested a simplified probabilistic version with one- highlights a known cancer-associated region. The Figure

dimensional shared componenand isotropic covariances shows the dependency score for the correlation-based Sim-

for the data-set-specific effects¥f = 02I; ¥, = (712/[). CCA with a sliding window of 15 genes genes along the

This is a special case of the full probabilistic model, and chromosome arm. The correlation-based and probabilistic

it reduces to principal component analysis (PCA) for con- approaches were compared in various window sizes (10,



15, 20, 25, and 35 genes). In each experiment, the gendhe current method is that it combines the signal across adja
list ordered by the dependency measure was compared t@ent genes within a particular chromosomal region already
an expert-curated list of 59 gastric-cancer associatedggen in the modeling step. Probabilistic SimCCA estimates the
in our investigated data set [11]. strongest shared signal between the data sets and ignores
The correlation-based and probabilistic models were conwsther variation using explicit modeling assumptions. Prob
pared with respect to their ability to detect the known can- abilistic versions also provide a measure of the amplifica-
cer genes, measured with the AUC value of the ROC curvetion effect for each patient which allows robust identifica-
for each method. Results are summarized in Fig. 2. Thetion of small patient groups with profound amplification ef-
best AUC value (0.79) was obtained with a chromosomal fects that would be missed in previous permutation-based
window of 15 genes for the correlation-based SImCCA that tests due to low event frequency.
directly maximizes the correlations assuming identical pr
jections (Eq. (1)). The corresponding ROC curve is shown
in Fig. 3 and presents the tradeoff between true and 'false’
positive findings along the ordered gene list. While a large
proportion of the most significant findings are in fact known
cancer genes, the remaining findings with no known associ- L . :
ations to gastric cancer are promising candidates for éurth that region, including=RBB2 and PPP1RIB, which show

studies; among the 100 genes with highest dependencies bec—“tmcal and tgologlcal re!evai?_ce. TiERBBZt genehgnhcc_)dest
tween gene expression and copy number in their chromoso2 transmembrane t}_/rosme inase receptor, which 1S a tar-
mal neighborghood, 30% of the corresponding regions hag¥et of Herceptin. This monoclonal antibody specifically in-

previously known association with gastric cancer, whike th activates the c_)verexpressE( BB2 protein and is used to
proportion in the whole data set is 5%. treat metastatic breast cancer patients. The expression of

The constrained dependency detection methods intro-PPP1RI1B has been shown to be associated with repression

duced in this paper outperformed the unconstrained mod-Of programm_ed cell death a_nd in_crease the survival of the
els in most cases. The improved detection performance ofcancer cells in upper gastrointestinal tract cancers [13].
the constrained models is likely explained by their ability
to reduce overfitting. Interestingly, the most constrained Another genomic region with correlated gene copy num-
probabilistic model, pSimPCA, outperforms the other ap- ber and expression changes is 10q26,BG&R2 was iden-
proaches in the highest-dimensional case. In contrast, theified as one of the putative target genes of that region. It
performance of correlation-based CCA decreases steadilywas recently shown that in a set of gastric cancer cell lines,
with increasing dimensionality (window size) as the num- FGFR2 amplification is driving the cell proliferation and
ber of samples (patients) remains fixed to 51. promoting cancer cell survival. Furthermore, inhibitioh o

In our particular application, gene expression and copy the FGFR2 protein by small molecules retained the growth
number are expected to have strong linear correlations inarresting and apoptotically active phenotype [14]. The de-
cancer-associated chromosomal regions. Correlatiogebas tected 122 region harbors thUC1 gene, whose expres-
approach is therefore directly suited for the cancer gere de sjon was shown to be associated with the intestinal subtype
tection task and it has also fewer parameters than the probaof gastric cancer [11]. The 20q is one of the most frequently
bilistic versions. However, the performance of correlatio amplified chromosomal regions in gastric cancer. However,
based SImCCA reduces with increasing dimensionality. A despite of high frequency of the amplifications the target
likely explanation is that the correlation-based versiadm genes in that area remain to be described. Our analysis pin-
els also some of the data set-specific effects, which is em-pointed the strongest correlating loci to 20g13.12 and sig-
phasized in higher-dimensions. The probabilistic formula nificantly narrow the list of putative target genes.
tions provide an alternative way to bring in prior knowledge
of the relationships in a principled framework. A potential
advantage of the probabilistic approaches is that they have ~ Some of the detected chromosomal regions did not have

an explicit model for distinguishing the shared signal from known association with gastric cancer; we are currently in-
data set-specific variation. vestigating these results more closely. The current applic

tion shows promising performance in detecting functional
copy number changes, but biomedical studies provide also
a number of other potential applications. For example, an
The results obtained using the SImCCA algorithm are in increasing number of paired data sets are available in the
general concordant with the output from signal-to-noige st future for studying the relationships between methylation
tistics and random permutation method that was applied pre-single-nucleotide polymorphisms, miRNAs, and other ge-
viously to analyze the same data [11, 12]. The advantage ofnomic features.

In concordance with the previous analyses, the chro-
mosomal area showing the most significant correlation be-
tween the gene copy number and expression was 17q12-g21
(Fig. 1). There are a number of potential target genes in

3.4. Biomedical interpretation of the findings



4. DISCUSSION [6] L. Sun, S. Ji, and J. Ye, “A least squares formulation
for canonical correlation analysis,” I€ML ' 08: Pro-

We have introduced methods that regularize CCA solutions ceedings of the 25th international conference on Ma-
by taking into account similarity constraints. The methods chinelearning, New York, NY, USA, 2008, pp. 1024—
assume that the dependencies between the different views 1031, ACM.
are visible in the same dimensions, that is, the projection
matrices are similar. We introduced the constraints to-stan [7] H.D. Vinod, “Canonical ridge and the econometrics of
dard CCA, resulting in a quick method that helps in solving joint production,” J. Econometrics, vol. 4, no. 2, pp.
the “smalln large p problem”, wheren is the number of 147-166, 1976.
samples ang their dimensionality.

If n is very small compared tp, even the constrained
CCA may not be sufficient, and we introduced a Bayesian
variant into which further prior knowledge can be easily in-
serted, and which is capable of rigorously handling uncer-
tainty in the data. While we only compare SimCCA and
CCA in the present work, the probabilistic formulation al-  [9] A, Klami and S. Kaski, “Local dependent compo-
lows smooth tradeoff between these two extremes, which is nents,” inProceedings of ICML 2007, the 24th In-
potentially useful in many applications. ternational Conference on Machine Learning, Zoubin

Importantly, the constrained approaches for dependency Ghahramani, Ed., pp. 425-432. Omnipress, 2007.
detection can be directly applied in practical tasks in kihow
edge discovery; good results were obtained in a promis-[10] C. Archambeau, N. Delannay, and M. Verleysen, “Ro-

[8] A. Klami and S. Kaski, “Generative models that
discover dependencies between data sets,”Ma
chinelearning for signal processing XVI, S. McLoone,

T. Adali, J. Larsen, M. Van Hulle, A. Rogers, and S.C.
Douglas, Eds., pp. 123-128. IEEE, 2006.

ing medical application on searching for potential cancer bust probabilistic projections,” iRProceedings of the
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ACM.
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Abstract. Clustering by maximizing the dependency between two paired,
continuous-valued multivariate data sets is studied. The new method, as-
sociative clustering (AC), maximizes a Bayes factor between two cluster-
ing models differing only in one respect: whether the clusterings of the
two data sets are dependent or independent. The model both extends
Information Bottleneck (IB)-type dependency modeling to continuous-
valued data and offers it a well-founded and asymptotically well-behaving
criterion for small data sets: With suitable prior assumptions the Bayes
factor becomes equivalent to the hypergeometric probability of a contin-
gency table, while for large data sets it becomes the standard mutual
information. An optimization algorithm is introduced, with empirical
comparisons to a combination of IB and K-means, and to plain K-means.
Two case studies cluster genes 1) to find dependencies between gene ex-
pression and transcription factor binding, and 2) to find dependencies
between expression in different organisms.

1 Introduction

Distributional clustering by the information bottleneck (IB) principle [21] groups
nominal values z of a random variable X by maximizing the dependency of the
groups with another, co-occurring discrete variable Y. Clustering documents x
by the occurrences of words y in them is an example. For continuous-valued
X, the analogue of IB is to partition the space of possible values & € R% by
discriminative clustering (DC); then the dependency of the partitions and y is
maximized [16].

Both DC and IB maximize dependency between representations of random
variables. Their dependency measures are asymptotically equivalent to mutual
information (MI)!; the empirical mutual information used by IB and some vari-
ants of DC is problematic for finite data sets, however. A likelihood interpretation
of empirical MI (see [16]) opens a way to probabilistic dependency measures that

! Yet another example of dependency maximization is canonical correlation analysis,
which uses a second-moment criterion equivalent to mutual information assuming
normally distributed data [11].



are asymptotically equivalent to MI but perform better for finite data sets [17].
The current likelihood formulation, however, breaks down when both margins
are clustered simultaneously.

In this paper we introduce a novel method, associative clustering (AC), for
clustering of paired continuous-valued data by maximizing the dependency be-
tween the clusters of X and Y, later called margin clusters. A sample appli-
cation is search for different types of city districts, by partitioning a city into
demographically homogeneous regions (Fig. 1B). Here the paired data are the
coordinates and demographics of the buildings of the city.

As a measure of dependency between the cluster sets, we suggest using a
Bayes factor, extended from an optimization criterion for DC [17]. The criterion
compares evidence for two models, one assuming independent margin clusters
(clusters for  and y), and the other allowing more general dependency of the
margin clusters in generating data. With suitable prior assumptions the Bayes
factor is equivalent to a hypergeometric probability commonly used as a de-
pendency measure for contingency tables. It is well justified for finite data sets,
avoiding the problems of empirical mutual information due to sampling uncer-
tainty. Yet it is asymptotically equivalent to mutual information for large data
sets. The Bayes factor is also usable as the cost function of IB [14].

AC will be applied for finding dependencies in gene expression data. It will be
compared with standard K-means, computed independently for the two margins,
which provides a baseline result. The comparison relevals how much is gained
by explicit dependency modeling.

AC will additionally be compared with a new variant of IB. IB operates on
discrete data, and therefore the continuous multivariates need first to be dis-
cretized into atomic regions, for example with K-means. The symmetric IB [5]
can then compose discrete representations for the margins as combinations of the
atomic regions. Again dependence of the representations is the criterion for clus-
tering, and a dependency-maximized contingency table spanned by the margin
clusters results. K-means discretization was chosen because its parameterization
is similar to AC and, more importantly, because it is perhaps the most obvious
alternative for multidimensional discretization.?

In IB, dependency has classically been measured by the (empirical) mutual
information. As margin clusters are here combinations of very small Voronoi
regions, IB finds dependencies between the data sets well, but on the other hand
produces clusters that are potentially less local than those obtained by AC or
standard K-means. We will evaluate the average dispersion of the clusters in the
empirical tests of Section 4.

Both mixture models for discrete data [2,3,8] and Mixture Discriminant Anal-
ysis (MDA)-like [7,13] models for continuous data have common elements with
our approach, and can readily be extended for the double-margin case. An im-

2 Note that discretizing the dimensions independently of each other and using the
Cartesian product as the multidimensional partitioning would fail badly for high-
dimensional @ or y. As far as we know, better discretization methods or other com-
parable methods for co-clustering of continuous data have not been published.



Fig. 1. A Demonstration of the difference between dependency modeling and joint den-
sity modeling. The hypothetical joint density of two one-dimensional variables z and y
is plotted with black, and the respective marginal densities are depicted as histograms
(grey). The marginals, here for simplicity univariate, correspond to the paired data of
the AC setting. The visualized joint distribution consists of two equally-sized parts: a
block in which z and y are independent (denoted by I) and another block (D) where
z and y are dependent. Models for the joint distribution would focus equally on both
blocks, whereas AC and IB focus on the dependent block D not explainable as products
of the marginals, and neglect the independent block I. B Partitioning of Helsinki region
into demographically homogeneous regions with AC. Here @ contains geographic coor-
dinates of buildings and y demographic information about inhabitants indicating social
status, family structure, etc. Spatially relatively compact yet demographically homoge-
neous clusters emerge. For instance downtown and close-by relatively rich (Kulosaari,
Westend) areas become separated from less well-off areas

portant difference is that our optimization criterion (as well as that of the In-
formation Bottleneck) focuses only on the dependencies between the variables,
skipping the parts of the joint distribution representable as a product of margins.
Both goals are rigorous but different, as illustrated in Figure 1A.

2 Associative Clustering

2.1 Bayes Factor for Maximizing Dependency between Two Sets of
Clusters

The dependency between two clusterings, indexed by i and j, for the same set
of objects can be measured by mutual information if their joint distribution p;;
is known. If only a contingency table of co-occurrence frequencies n;; computed
from a finite data set is available, the mutual information computed from the em-
pirical distribution would be a biased estimate. A Bayes factor, to be introduced
below, then has the advantage of properly taking into account the finiteness of
the data while still being asymptotically equivalent to mutual information. Bayes
factors have been classically used as dependency measures for contingency ta-
bles (see, e.g., [6]) by comparing a model of dependent margins to another one



for independent margins. We will use the classical results as building blocks to
derive an optimizable criterion for associative clustering; the novelty here is that
the Bayes factor is optimized instead of only using it to measure dependency in
a fixed table.

In general, frequencies over the cells of a contingency table are multinomially
distributed. The model M; of independent margins assumes that the multinomial
parameters over cells are outer products of posterior parameters at the margins:
0;j = 0;0;. The model M, of dependent margins ignores the structure of the
cells as a two-dimensional table and samples cell-wise frequencies directly from
a table-wide multinomial distribution ;;. Dirichlet priors are assumed for both
the margin and the table-wide multinomials.

Maximization of the Bayes factor

_ p({ni;}| Ma)
p({ni;}|M;)
with respect to the margin clusters then gives a contingency table where
the margins are maximally dependent, that is, which cannot be explained as a
product of independent margins. In the associative clustering introduced in this
paper, the data counts are defined by the training data set and the parame-
ters that determine how the continuous data spaces are partitioned into margin
clusters. Then BF'is maximized with respect to the parameters. If this principle
were applied to two-way IB, the margins would be determined as groupings of
nominal values of the discrete margin variables, and the BF would be maximized
with respect to different groupings.
After marginalization over the multinomial parameters, the Bayes factor can
be shown to take the form

H'ij F(n'ij + ’I’L(d))

BF = ,
1, D(ni. + n) II,T(n; + n®)

1)

with n;. = Zj ng; and n.j = Y, n;; expressing the margins. The parameters n(@,
n®) and n® arise from Dirichlet priors. We have set all three parameters to
unity, which makes BF equivalent to the hypergeometric probability classically
used as a dependency measure of contingency tables. In the limit of large data
sets, (1) becomes mutual information of the margins; [17] outlines the proof for
the case of one fixed and one parameterized margin.

2.2 Optimization of AC

For paired data {(xy,y,)} of real vectors (z,y) € R¥ x R%, we search for
partitionings {V;*)} for & and {Vj(”)}) for y. The partitions can be interpreted
as clusters in the same way as in K-means; they are Voronoi regions parameter-
ized by their centroids m;: & € Vi(z) if ||z — my|| < ||z — my]| for all k£, and
correspondingly for y. The Bayes factor (1) will be maximized with respect to
the Voronoi centroids.



The optimization problem is combinatorial for hard clusters, but gradient
methods are applicable after the clusters are smoothed. Gradients for the simpler
one-margin problem have been derived in [17], and are analogous here. An extra
trick, found to improve the optimization in the fixed-margin case [10], is applied
here as well: The denominator of the Bayes factor is given extra weight. A choice
of A() > 1 introduces a regularizing term to the cost function that for large
sample sizes approaches margin cluster entropy, and thereby in general favors
solutions with uniform margin distributions.

The smoothed BF, here called BF’, is then optimized with respect to the
{m} by a conjugate-gradient algorithm (see, for example [1]). We have

log BF’= "logT’ (ny (xx)g (”(yk)+n("))

ij

- )\(I)Zlogl“ <Zg(w) ) +n(z)) W Zlogl“ (Zg(y) +n(y)) 7
9" (@) = Z“”)(mr exp (~lle ~ mIPfoly) |

and similarly for g¥). The g(-) are the smoothed Voronoi regions at the margins.

The Z(-) is set to normalize ), q(z)( ) =3 q(y)( ) = 1. The parameters o
control the degree of smoothing of the V0r0n01 regions.

The gradient of log BF”’ with respect to an X-prototype mS”’

is
Vo108 B = —— 3" (@ = m?)g @a)ol (e (17 (w) - I ()
(@) kit

where

ng Z\I’ (Zg (y) yk)+n(d)> gj(_y) 2@ g (Zg(r x1) (I)) ,

and for y accordingly. In the gradient, ¥(-) is the digamma function.
Note that the smoothing is used during optimization only. Results are evaluated
with hard clusters and the original BF.

3 Reference Methods

3.1 Information Bottleneck with K-means (K-IB)

For discrete X and Y, AC-type of clustering translates to grouping the nominal margin
values to two sets of clusters that are maximally dependent. The setup is that of the
information bottleneck [18,21].

Our continuous data must be discretized before IB can be applied. One approach
is to first quantize the vectorial margins & and y separately by, for instance., K-means,
without paying attention to possible dependencies between the two margins. This re-
sults in two sets of margin partitions which span a large, sparse contingency table that
can be filled with frequencies of training data pairs (xx, ¥, ). The number of elementary



Voronoi regions is chosen by a validation set, as detailed in Section 4. In the second
phase, the large table is compressed by standard IB to the desired size by aggregating
the atomic margin clusters. At this stage, joins at the margins are made to explicitly
maximize the dependency of margins in the resulting smaller contingency table.

IB algorithms are well described in the literature. We have used the symmetric
sequential information bottleneck, described fully in [18]. The algorithm measures
dependency of the margins by empirical mutual information, and it is optimized by
re-assigning of individual samples (here atomic margin partitions) to clusters until a
differential, local version of the cost function does not decrease. Optimization is robust
and fast.

The final partitions obtained by the combination of K-means and IB are of a very
flexible form, and therefore the method is expected to model the dependencies of the
margin variables well—as long as one does not overfit to the data with too many K-
means clusters. As a drawback, the final margin clusters will consist of many atomic
Voronoi regions, and they are therefore not guaranteed to be especially homogeneous
with respect to the original continuous variables (x or y). Interpretation of the clusters
may then be difficult. Our empirical results support both the good performance of K-IB
and the non-localness of the resulting clusters.

3.2 K-means

The data sets will also be clustered by independent K-means clusterings in both data
spaces. Results will represent a kind of a baseline, with no attempt to model depen-
dency.

4 Experiments

4.1 Dependencies between Gene Expression Patterns and TF
Binding Patterns

We sought gene regulation patterns by exploring dependencies between gene expres-
sion on the one hand, and measurement data about potential regulatory interactions
on the other. The latter was measurements of binding patterns of putative regulatory
proteins, transcription factors (TFs), in the promoter regions of the same genes. Asso-
ciative clustering, K-IB, and K-means were applied to 6185 genes of the common yeast,
Saccharomyces cerevisiae. The first margin data (x) was 300-dimensional, consisting of
expressions after 300 knock-out mutations® [9]. The second margin data (y) consisted
of 113-dimensional patterns of binding intensities of TFs [12]. Margin clusters would
then ideally be internally homogeneous sets of expressions and TFs, selected to pro-
duce combinations (contingency table cells) with unexpectedly high or low numbers of
genes.

For AC, the numbers of margin clusters were chosen to produce cross clusters
(contingency table cells) with ten data samples on average. During the cross-validation
runs margin clusters were initialized by K-means, and in each fold the best of three
AC runs was chosen as the final AC clustering. The parameters o(.) were chosen with

3 Knocking out means elimination of single genes. In all the data sets, missing values
were imputed by gene-wise averages, and variances of dimensions were each sepa-
rately normalized to unity.



a validation set (half of the data as a training set, and half of the data as validation
set), and based on the previous experiments \()=1.2.

Essentially the same test was conducted for the combination of K-means and in-
formation bottleneck (K-IB). Now the number of atomic K-means clusters was chosen
with a validation set, resulting in 400 clusters for the expression space and 300 clus-
ters for the transcription factor binding space. In the cross-validation runs, the atomic
clusters were computed by K-means from three different random initializations, and
for each of these a symmetric IB was sequentially optimized [18]. Of the three runs the
best clustering (in the sense of IB cost) was chosen.

K-IB and AC tables were compared to each other and to tables obtained by bare
margin K-means (10-fold cross validation, tables evaluated by equation 1, paired t-test).
For this data, AC outperformed K-IB (p<0.01) and found more dependent clusters.
Not surprisingly, significant differences to K-means were found (p<0.01) for both AC
and K-IB.

The internal dispersion of the margin clusters was measured for all methods by the
sum of intra-cluster component-wise variances. As expected, K-IB clusters are more
scattered (Figure 2A) in both data spaces. Significant difference was found between
AC and K-IB, but not between AC and K-means, nor between the random partitioning
and K-IB.

Finally, data from the AC cross clusters was studied more closely to find potential
biologically interesting gene concentrations, focusing on contingency table cells with
the most unexpectedly high data counts. In two of the cells, for example, genes showed
a clear and significant bias towards an over-representation of ribosomal protein coding
genes. In the one cell, most of the genes coding for constituent proteins of the cellular
ribosomal complex are present. In the other cell several genes coding for the mitochon-
drial ribosomal subunits are present, and also another set of genes coding for cellular
ribosomal protein subunits.

4.2 Of Mice and Men

As a second test, we clustered human-mouse expression profiles of putative orthologs,
that is, gene pairs sequence-wise similar enough to be suspected to have the same evolu-
tionary origin (see Figure 3). Ideal margin clusters would be internally homogeneous by
expression in at least one species. Cross clusters (cells of the contingency table formed
from margin clusters) would then be cross-species clusters and will be optimized to
detect cross-species regularities in gene expression.

Gene expression from 46 and 45 cell-lines (tissues) of human and mouse were avail-
able, respectively [19]. After removing non-expressed genes (Affymetrix AD<200), 4499
putative orthologs from the the HomoloGene [15] data base were available. After ex-
periments analogous to those of Section 4.1, we found the human-mouse orthologs of
left-out data to be significantly dependent according to both K-IB and AC (10-fold cross
validation against K-means, paired t-test, p<0.001). Differences between AC and K-IB
were not very clear. AC clusters, however, were probably more condensed (p<0.05; Fig.
2B) while tables obtained by K-IB were more dependent (p<0.02).

To illustrate the use of AC for finding interesting relationships, that is, groups of
genes with functional similarity, we picked some cross clusters with significant deviation
from the null hypothesis of independent margin clusters (see also Figure 3).

In the first example AC found a gene pair with a rare and potentially interesting
functional relationship. This cell had unexpectedly few genes (p<0.01), in fact only
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Fig. 2. Average internal dispersion of expression and TF margin clusters obtained by
four methods. 'K’ denotes independent K-means for the margins, and is supposed to
produce very compact clusters. Clusters in 'RAND’ are produced by random assignment
and therefore represent an upper limit of dispersion. The AC and K-means clusters are
more condensed in the expression and in the TF binding space than the IB clusters.
Circles denote the average component-wise intra-cluster variances in left-out data of
cross-validation folds (n=10), and squares show the approximate 99 percent confidence
interval for the means over the cross validation folds. A: Yeast expression and TF bind-
ing. The differences between neither AC and K-means, nor between IB and RAND are
statistically significant (p>0.1, 10-fold cross validation, paired t-test), but the differ-
ence between IB and AC is significant for both expression and TF binding (p<0.01).
B: Homologous genes of human and mouse. The AC and K-means clusters seem to
be more condensed in human and in mouse expression space than the IB or RAND
clusters (p<0.05; paired t-test). Differences between AC and K-means or between IB
and RAND are not statistically significant (p>0.1).

a single gene pair (LocusIDs 1808 and 12934). Average margin profiles of the cluster
suggested activity in the human brain co-occurring with no activity in the mouse at
all. Combining the margin profile information and the fact that only one this kind of
gene exists in the contingency table, we may deduce that homologues which are active
in human brain but totally silent in the mouse are very rare. Examples of such gene
pairs may highlight interesting functional differences between the species. Indeed, the
function of the gene was found to be related to embryo-stage brains and later brain
activity only in humans (see Figure 3B).

In another example, a cross cluster contained unexpectedly many genes
(p<0.01), most of them testis-specific (see Figure 3D). Due to their tissue specificity
and importance for reproduction, they may have sustained their function during evo-
lution.

5 Discussion

We have presented a novel method, associative clustering (AC), for clustering contin-
uous paired data. It maximizes a Bayes factor between two sets of clusters. AC was
found to perform better or equally well than a combination of K-means and information
bottleneck (IB), and better than standard K-means. AC was also capable of extracting
biologically interesting structure from paired gene expression data sets.
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Fig. 3. A The contingency table from associative clustering of orthologous human-
mouse gene pairs (orthologous genes are supposed or known to have a common evolu-
tionary ancestor gene). White cross clusters contain an unexpectedly high number of
genes compared to the margin-based expectation. Black cross clusters contain exam-
ples of exceptional gene pairs. B An example of an interesting outlier homology from
a black cross cluster: the gene is highly active in most human tissues but is hardly
expressed at all in mouse. The first 21 tissues are common for both species in B, C and
D. C Cluster-wide average profiles reveal activity in heart tissue, and additional strong
activity in mouse skeletal muscle. Measuring human skeletal muscle would reveal either
a more complete homology or a species difference. D A densely populated cross cluster

of testis-specific genes.



Maximization of the suggested Bayes factor is asymptotically equivalent to max-
imization of mutual information, and could therefore be seen as a dependency cri-
terion alternative to empirical mutual information. It additionally gives information
bottleneck-type dependency modeling a new justification that is clearly different from
joint distribution models but still rigorously probabilistic. The Bayes factor could prob-
ably replace mutual informaton in the Information-Theoretic Co-Clustering Algorithm
[4] as well.

The work could possibly be extended towards a compromise between strict de-
pendency modeling and a model of the joint density (as has been done for one-sided
clustering, [10]). Then the margins could be estimated in part from non-paired data.
This would be analogous to “semisupervised learning” from partially labeled data (see
e.g. [20]), the labels having been replaced by samples of co-occurring paired data.
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Associative Clustering for Exploring
Dependencies between Functional

Genomics

Data Sets

Samuel Kaski, Janne Nikkila, Janne Sinkkonen, Leo Lahti, Juha E.A. Knuuttila, and Christophe Roos

Abstract—High-throughput genomic measurements, interpreted as cooccurring data samples from multiple sources, open up a fresh
problem for machine learning: What is in common in the different data sets, that is, what kind of statistical dependencies are there
between the paired samples from the different sets? We introduce a clustering algorithm for exploring the dependencies. Samples
within each data set are grouped such that the dependencies between groups of different sets capture as much of pairwise
dependencies between the samples as possible. We formalize this problem in a novel probabilistic way, as optimization of a Bayes
factor. The method is applied to reveal commonalities and exceptions in gene expression between organisms and to suggest
regulatory interactions in the form of dependencies between gene expression profiles and regulator binding patterns.

Index Terms—Biology and genetics, clustering, contingency table analysis, machine learning, multivariate statistics.

1 INTRODUCTION

ASSUME two data sets with cooccurring samples, that is,
samples coming in pairs (x,y), where x belongs to the
first set and y to the second set. In this paper, both x and y are
gene expression profiles or other multivariate real-valued
genomic measurements about the same gene. The general
research problem is to find common properties in the set of
pairs; statistically speaking, the goal is to find statistical
dependencies between the pairs.'

In this paper we search for dependencies expressible by
clusters. The standard unsupervised clustering methods,
reviewed for gene expression clustering for instance in [32],
aim at finding clusters where genes have similar expression
profiles. Our goal is different: to cluster the x and the y
separately such that the dependencies between the two
clusterings capture as much as possible of the statistical
dependencies between the two sets of clusters. In this sense,
the clustering is associative; it finds associations between
samples of different spaces. The research problem will be
formalized in Section 2.

1. The fundamental difference from searching for differences between
data sets [18], where the relative order of the samples within the two sets is
not significant, both sets are within the same space, and the goal is to find
differences between data distributions, is that our data are paired and we
search for commonalities between the pairs of samples that can have
different variables (attributes) and different dimensionalities.
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The problem of searching for common properties in two
or more paired data sets differs from classic machine
learning problems, commonly categorized into unsuper-
vised and supervised. Supervised learning targets at
finding classes (in classification) or predicted values of a
variable (in regression). In probabilistic terms, the goal is to
build a good model for the distribution p(y|x) while, in the
kind of dependency modeling discussed in this paper, the
goal should be symmetric. Basic unsupervised learning, on
the other hand, is symmetric in a trivial sense: All variation
of one variable—be it x, y, or the combination (x,y)—is
modeled, and there is no mechanism for separating
between-data-set variation from within-data-set variation.
Common to both kinds of learning, and indeed to all
machine learning, is model fitting: A model parameterized
by 0 is fitted to the data.

A different kind of problem to be addressed in this paper
is modeling only the variation in x and y that is common to
both variables. In other words, we search for dependencies
between the x and y. This symmetric goal has traditionally
been formalized as maximizing the dependency between
two representations, x = f,.(x;6") and y = f,(y; 6), of x and
y, respectively. A familiar example is canonical correlation
analysis [24], where both the f, and f, are linear projections
and the data are assumed to be normally distributed. This
idea has been generalized to nonlinear functions [4] and to
finding clusters of x informative of a nominal-valued y [3],
[37]. It has been formalized in the information bottleneck
framework [44], [40], resulting in efficient algorithms for two
nominal-valued variables [41], [35].

Symmetric dependency modeling with non or semipara-
metric methods (such as clustering) is a natural way of
formalizing the search for commonalities in cooccurring data
sets, when one is not able or willing to postulate a detailed
parametric model a priori. Such situations are common in
modern data-driven functional genomics: Microarray-based
high-throughput measurement techniques make it possible

Published by the IEEE CS, Cl, and EMB Societies & the ACM

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on August 13,2010 at 12:21:32 UTC from IEEE Xplore. Restrictions apply.



204 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.2, NO.3, JULY-SEPTEMBER 2005

to test broad hypotheses, related, for example, to organism-
wide differences in response or to functions of a gene over a
range of organisms. Mining the data stored in community-
resource databanks for new hypotheses is fruitful as well. In
data mining, the search for dependencies between data sets
is a considerably better-defined target than the common,
unsupervised search for clusters and other regularities.

We study two cases of symmetric dependency modeling:
search for regularities and differences in expression of
orthologous genes in different organisms and search for
regulatory interactions between expression and transcription
factor binding patterns. More generally, we argue that, once a
research goal can be dressed into a search for dependencies
between data sets, our approach is a well-defined middle
ground between purely hypothesis-driven research for
which hypotheses must be available and purely exploratory
research, where the task is often ill-defined.

Analogically to the two linear projections in canonical
correlation analysis, we use two sets of clusters as the
representations in the dependency search. Clusters are
more flexible than linear projections and they have a
definite role in exploratory data analysis, that is, in “looking
at the data:” Clustering reveals outliers, finds groups of
similar data, and simply compresses numerous samples
into a more manageable and even visualizable summary.
Clusters and other kinds of unsupervised models are of
particular importance as the first step of microarray data
analysis, where data are often noisy and even erroneous,
and in general not well-known a priori.”

For microarray data, the existing dependency-searching
techniques have two deficiencies. First, mutual information,
the dependency measure that they maximize, is defined for
probability distributions which in turn need to be estimated
from samples. The separate estimation stage with its own
optimality criteria will introduce uncontrollable errors to
the models. The errors are negligible for asymptotically
large data sets but nonnegligible for many real-life sets. We
will directly define a dependency measure for data instead
of distributions and justify it by combinatorial and Bayesian
arguments. For asymptotically large data sets, the depen-
dency measure becomes mutual information and can
therefore be viewed as a principled alternative to mutual
information for finite data sets.

The second shortcoming has been that the models are not
applicable to symmetric dependency clustering of contin-
uous data. While a trivial extension of existing continuous-
data methods may seem sufficient, a conceptual change is
actually required. Existing finite-data formulations either
maximize the likelihood p(y|x) of one data set, say y, given
x, or maximize the symmetric joint likelihood for p(x,y).
Neither of these approaches is dependency modeling:
Conditional models are asymmetric, while joint density
models represent all variation in x and y instead of
common variation and, therefore, do not even asymptoti-
cally reduce to mutual information. A solution we present

2. This very legitimate and necessary use of clustering in the beginning
of the research process should not be confused with the widespread use of
clusterings as a general-purpose tool in all possible research tasks, which
could better be solved by other methods.

in this paper is to use a hypothesis comparison approach
which translates to a Bayes factor cost function.

Bayesian networks, used also as models of expression
regulation [16], [36], are models for the joint density of all
data sources. In these models, the structure of dependencies
between variables is, at least to some extent, fixed in
advance. To a degree, dependencies can be learned from
data, but learning is hard and data-intensive. Our approach
complements Bayesian networks in two ways. First, it is
more exploratory and assumption-free because no depen-
dency structure is imposed, except the one implied by cluster
parameterization and division of the data set. Second, as
joint distribution models, Bayesian networks represent not
only the common variation between the data sets but partly
also the unique variation within each data set. In this sense,
the representations they produce are compromises for the
task of modeling the between-set variation.

From the biological perspective, the advantages of
clustering by maximizing dependency between two sources
of genomic information are at least two-fold. First, the new
problem setting makes it possible to formulate new kinds of
hypotheses about the dependency of the sources, not
possible with conventional one-source clusterings. Such
hypotheses are sought in the orthologous genes application
in Section 5. Second, mining for regularities in the common
properties of two data sets is a more constrained problem
that mining for any kinds of regularities within either of
them. Hence, assuming the sets are chosen cleverly, the
results are potentially better targeted. Our hypothesis is that
there will be less false positives in the discovered regulatory
interactions when expression and transcription factor
binding are combined in a dependency maximizing way,
compared to one-source clusterings. We will study the
interactions in Section 6.

2 ASSOCIATIVE CLUSTERING

The abstract task solved by associative clustering (intro-
duced in the preliminary paper [39]) is the following: cluster
two sets of data, with samples x and y, each separately, such
that 1) the clusterings would capture as much as possible of
the dependencies between pairs of data samples (x,y) and
2) the clusters would contain (relatively) similar data points.
The latter is roughly a definition of a cluster.

Fig. 1 gives a brief overview of the method. For paired
data {(x,y)} of real vectors (x,y) € R% x IR%, we search
for partitionings {V;*”)} for x and {Vj(y)} for y. The partitions
can be interpreted as clusters in the same way as in K-means;
they are Voronoi regions parameterized by their prototype
vectors m;. The x belongs to V") if [|x — m™|| < [jx — m{"||

for all i and correspondingly for y.

2.1 Bayes Factor for Measuring Dependency

between Two Sets of Clusters
The dependency between two cluster sets, indexed by ¢ and
Jj, can be measured by mutual information if the joint
distribution p;; is known. If only a contingency table of
cooccurrence frequencies n;; computed from a finite data set
is available, mutual information computed from the
empirical distribution would be a biased estimate. A Bayes
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Fig. 1. Associative clustering (AC) in a nutshell. Two data sets are clustered into Voronoi regions. The Voronoi regions are defined in the standard way
as sets of points closest to prototype vectors, but the prototypes are not optimized to minimize a quantization error but by the AC algorithm. In this
example, the data sets are gene expression profiles and transcription factor (TF) binding profiles. A one-to-one correspondence between the sets exist:
Each gene has an expression profile and a TF binding profile. As each gene falls to a TF cluster and to an expression cluster, we get a contingency table
by placing the two sets of clusters as rows and columns and by counting genes falling to each combination of an expression cluster and a TF cluster.
Rows and columns, that is, the Voronoi regions defined within each data set, respectively, are called margin clusters, while the combinations
corresponding to the cells of the contingency table are called cross clusters. Associative clustering, by definition, finds Voronoi prototypes that
maximize the dependency seen in the contingency table. Voronoi regions are representations for the data sets just as the linear combinations are in
canonical correlation analysis. In both cases, dependency between the two parameterized representations is maximized. Maximization of dependency
in a contingency table results in a maximal amount of surprises, counts not explainable by the margin distributions. The most surprising cross clusters
with a very high or low number of genes potentially give rise to interesting interpretations. Reliability is assessed by the bootstrap.

factor, to be introduced below, has the advantage of properly
taking into account the finite size of the data set while still
being asymptotically equivalent to mutual information.
Bayes factors have classically been used as dependency
measures for contingency tables (see, e.g., [20]) by compar-
ing a model of dependent margins to another model for
independent margins. We will use the classical results as
building blocks to derive an optimizable criterion for
associative clustering; the novelty here is that the Bayes
factor is optimized instead of only being used to measure
dependency in a fixed table. The categorical variables
defining the rows and columns of the contingency table
are defined by the Voronoi regions. They are parameterized
by the cluster prototypes which are optimized to maximize
the Bayes factor.

The Bayes factor compares two alternative models, one
describing a contingency table where the margins are
dependent and the other a table with independent margins.
The clusters are then tuned to make the dependent model
describe the (contingency table) data better than the
independent model, which can be interpreted as maximiza-
tion of dependency.

In general, frequencies over the cells of a contingency
table can be assumed to be multinomially distributed. The
model M; of independent margins assumes that the multi-
nomial parameters over cells are outer products of posterior
parameters at the margins: 6;; = 0;0;. The model Mp of
dependent margins ignores the structure of the cells as a two-
dimensional table and samples cell-wise frequencies di-
rectly from a table-wide multinomial distribution 6.
Dirichlet priors are set for both the margin and the table-
wide multinomials.

Maximization of the Bayes factor

BF — p({ni;}| Mp)
p({ni;}| M)
with respect to the margin clusters then gives a contingency

table where the margins are maximally dependent, that is,
the table is as far from the product of independent margins

as possible. In associative clustering, the counts are
influenced by the parameters of the Voronoi regions. The
BF' is maximized with respect to these parameters.

After marginalization over the multinomial parameters,
the Bayes factor takes the form (derivation in the technical
report [38])

[T Dnij + n(@)

BF = ,
[T T(ni + 0 T T (0 +n)

(1)

where n; =3>;n;; and n; =37, n;; express the margins.
The hyperparameters n@, n@, and n™ arise from Dirichlet
priors. We have set all three hyperparameters to unity,
which makes the BF equivalent to the hypergeometric
probability classically used as a dependency measure of
contingency tables. For large data set sizes N, the
logarithmic Bayes factor approaches mutual information
of the distribution p;; = n;;/ N with margins p; = n;./N and

1 Dij 1
—log BF = pijlog— —logN+1+O<—logN)
N ; " pip; N

J

2
=I(I,J)—logN +1 +O<]lvlogN>7

where I(I,J) is the mutual information between the
categorical variables I and .J having cluster indices as their
values.

2.2 Optimization of AC

The Bayes factor (1) will be maximized with respect to the
Voronoi prototypes. The optimization problem is combina-
torial for hard clusters, but gradient methods are applicable
after the clusters are smoothed. Gradients are derived in a
technical report [38]. An extra trick, found to improve the
optimization in the simpler case where one of the margins is
fixed [27], is applied here as well: The denominator of the
Bayes factor is given extra weight by introducing constants
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AU A choice of A > 1 introduces a regularizing term to
the cost function that, for large sample sizes, approaches
margin cluster entropy and, thereby, in general, favors
solutions with uniform margin distributions.

The smoothed BF, here denoted by BF', is then
optimized with respect to the cluster prototypes {m} by a
conjugate-gradient algorithm (for a textbook account, see
[2]). We have

o513t s 50 )
k

i

—\@ Z logT <Z gg"ﬂ)(xk-) + n(r)) (3)
AW Z log T’ (Z g;ﬂ)(yk_) + n(y)) ,
J k

where
07 (x) = 2)) " exp((—x — m(") |/,

and similarly for g). The g(-) are the smoothed Voronoi
regions at the margins. The Z(-) is set to normalize
> gg'r)(x) =Y, g;?/)(y) = 1. The parameters o control the
degree of smoothing of the Voronoi regions.

The gradient of log BF' with respect to an X-space
prototype m!") is

¥, log BF' =

> (o0 = ml) g (el (c) (L7 () = L7 (3

LYy =S v (Z 0 (x1)g " (yr) + n“”) &)
7 T

- Xw (Z ot (i) + W’)
k

and for y accordingly. In the gradient, ¥(-) is the digamma
function.
In summary, the optimization of AC proceeds as follows:

1. Parameters {m(} and {m®} are independently
initialized by choosing the best of several (here:
three) K-means runs initialized randomly.

2. On the basis of experience with other data sets, we
choose A\ = 1.2.

3. Parameters o, are chosen by running the algorithm
for half of the data and testing on the rest.

4. The {m®} and {m®} are optimized with a
standard conjugate gradients algorithm, using
log BF' as the target function.

Gradients of the m-parameters plugged into the algorithm
are shown above. The reported results are from cross-
validation runs.

In one-margin optimization with clusters in the other

margin fixed, the smoothing trick performs equivalently to
or better than simulated annealing [27]. Also note that

smoothing is for optimization only: Results are evaluated
with BF, which translates to having crisp clusters.

2.3 Uncertainty in Clustering

Our use of Bayes factors is different from their traditional
use in hypothesis testing, cf., [20]. In AC, we do not test
any hypotheses but maximize the Bayes factor to explicitly
find dependencies. This leaves the uncertainty of the
solution open.

A widely used “light-weight” (compared to posterior
computation) method to take into account the uncertainty in
clustering is bootstrap [12], [21]. As in [29], we use bootstrap
to produce several perturbed clusterings. We wish to find
cross clusters (contingency table cells) that signify depen-
dencies between the data sets and are reproducible.

Reproducibility of the found dependencies will be
estimated from the bootstrap clusterings as follows:

First, we define what we mean by a significantly
dependent cross cluster within a given AC-clustering. The
optimized AC model provides a way of estimating how
unlikely a cross cluster is, given that the margins are
independent. For this purpose, several (1,000 or more) data
sets of the same size as the observed one are generated from
the marginals of the contingency table (i.e., under the null
hypothesis of independence). The cross clusters with the
observed amount of data more extreme than that observed
by chance with probability 0.01 or less (Bonferroni corrected
with the number of cross clusters) are defined to be
significantly dependent cross clusters.

Next, the two criteria, dependency and reproducibility,
will be combined by evaluating how likely it is for each
gene pair to occur within the same significantly dependent
cross cluster in bootstrap (this is analogous to [29]). The
result, interpreted as a similarity matrix, will finally be
summarized by hierarchical clustering.

Please note that we do not expect to find dependencies
for all genes in the whole data sets, since, with noisy
genomic data, that would hardly be possible. In other
words, we are interested in finding the most dependent,
robust subsets of the data. This is exactly what the final gene
clusters from bootstrapped, most dependent cross clusters
provide.

2.4 Extremity of the Clusters

In the yeast case studies, we evaluate which cross clusters
are exceptional by their expression or TF binding profile.
For determining the extremity of the observed within-
cluster profiles, for each of them, 10,000 random sets of
genes were first sampled, each of the same size as the
cluster under study. We then computed within-cluster
average profiles for the observed cluster as well as for the
simulated ones. A part of the observed profile was denoted
as extreme if it was lower or higher in value than all the
simulations.

3 REFERENCE METHODS

First, we need a baseline method to give alower bound for the
results. For AC, it should not optimize the dependency of the
clusters, but only perform conventional clustering while
being as similar to AC as possible in other respects. In this
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AC

K-means

Fig. 2. Associative clustering concentrates on dependent subsets of
data. Here, both margin spaces, denoted by X and Y, are one-
dimensional, and the figure shows a scatterplot of the data (dots on the
plane where X and Y are the axes). Cluster borders in the X-space are
shown with the vertical lines and cluster borders in the Y-space with
horizontal lines. The resulting grid of so-called cross clusters then
corresponds to the contingency table; the number of dots within each
grid cell gives the amount of data in a contingency table cell. The AC
cells are sparse in the bulk of independent data in the middle and denser
on the sides where the X and Y are dependent. K-means, in contrast,
focuses on modeling the bulk of the data in the middle. (For this data set,
AC has lots of local maxima.)

work, the baseline method will be independent K-means
clusterings in both data spaces, since K-means is also
prototype-based clustering for continuous data-like AC. For
more detailed description and references of K-means, see, for
example, [7].

We compare AC to the information bottleneck (IB)
methods [17], [44]. The main problem with IB in our setting
is the continuous nature of our data: IB works on nominal-
valued data. We discretize the data first by K-means,
resulting in a new algorithm called K-IB here. For discrete
data, the closest alternative to AC among information
bottleneck methods would be symmetric two-way IB [17].
Our sequential implementation is based on [40].

We first quantize the vectorial margins x and y
separately by K-means without paying attention to possible
dependencies between the two margins. This results in
two sets of margin partitions which span a large, sparse
contingency table that can be filled with frequencies of
training data pairs (x;,y;). The number of elementary
Voronoi regions is chosen by using a validation set. In the
second phase, the large table is compressed by standard IB
to the desired size by aggregating the atomic margin
clusters. In this stage, joins at the margins are made with the
symmetric sequential algorithm [40] to explicitly maximize
the dependency of margins in the resulting smaller
contingency table.

The final partitions obtained by the combination of
K-means and IB are of a very flexible form and, therefore,
the method is expected to model the dependencies of the
margin variables well. As a drawback, the final margin
clusters will consist of many atomic Voronoi regions, and
they are therefore not guaranteed to be particularly homo-
geneous with respect to the original continuous variables (x
ory). Interpretation of the clusters may then be difficult. Our
empirical results support both the good performance of K-IB
and the nonlocalness of the resulting clusters.

AC in x-space AC in y-space

K-means in y-space

K-means in x-space

Fig. 3. Associative clustering focuses on modeling the variation that is
relevant to dependencies between the data sets. Both of the margin
spaces are two-dimensional here, and the data has been constructed
such that the vertical dimension of the x-space is dependent on the
horizontal dimension in the y-space. All other variation is uniform noise.
Lines are approximate cluster borders (Voronoi borders), and the small
crosses are the prototype vectors. Associative clustering neglects the
irrelevant variation in both margin spaces and models the relevant,
dependent variation. In contrast, K-means, as all purely unsupervised
clusterings, models all the variation including noise.

4 VALIDATION OF ASSOCIATIVE CLUSTERING
4.1 Demonstration with Artificial Data

Figs. 2 and 3 demonstrate two key properties of AC with
artificial data sets that are as simple as possible.

The clusters focus on modeling those regions of the
margin data spaces, that is, those subsets of data, where the
cooccurring pairs x and y are dependent. This is clearly
visible as the high-density area of cross clusters in Fig. 2.

AC neglects variation that is irrelevant to the dependen-
cies between x and y. In Fig. 3, the AC clusters have
effectively become defined by only the relevant one of the
two dimensions. By contrast, standard clustering methods,
such as K-means, model variation in both dimensions.

4.2 Validation of Bootstrapped AC Analysis with
Real Data
Especially in bioinformatics, it is often challenging to test
new methods since there rarely exists any ground truth, that
is, known correct answers. We validated the (bootstrapped)
AC approach by searching for dependencies between data
sets containing known, real-world duplicate measurements
that should be more dependent than random pairs.
Expression profiles of orthologous man-mouse gene
pairs with unique LocusIDs were derived from a public
source [43] (http:/ /expression.gnf.org/data_public_U95.gz,
http:/ /expression.gnf.org/data_public_U74.gz) using the
HomoloGene [46] database and Affymetrix annotation files.
The expression measurements include 46 human and
45 mouse arrays covering a wide range of tissues and cell-
lines. For 21 of the tissues, expression values were available
for both species.
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We have derived two different data sets from the original
data: 1) a larger one for this validation study, with known
ground truth in the form of naturally multiplicated genes
and 2) a smaller one for the actual analysis without any
multiplicated genes (presented in Section 5).

Due to technicalities related to the Affymetrix oligonu-
cleotide array platform, in the original data sets [43], one
gene (LocusID) may have multiple expression profiles. In
the verification data set, these profiles were considered as
independent samples, resulting in a total of 4,500 gene
expression profile pairs. These “duplicate orthologous
genes,” representing the same sequence-level similarity
between the species, should cooccur in the significantly
dependent cross clusters (see Section 2.3) more often than
randomly chosen orthologous genes, and, since AC should
model dependencies more effectively than K-means, also
more often than in the cross clusters produced by K-means.

The validation study was carried out by exactly the same
procedures as we will use in the rest of the experiments of
the paper, to validate the setting.

The number of clusters was chosen to be such that each
cross cluster would, on average, contain roughly 10 data
points. For the verification set, this translates to 19 clusters
in both margin spaces. We sampled 100 bootstrap data sets,
computed AC for each, got 100 different contingency tables,
and, from these, we computed a similarity matrix for the
genes as described in Section 2.3.

The optimization parameter o was chosen by leaving half
of the data for validation.

We then tested with a rank sum test whether the
similarity distribution of the known duplicates is different
from the similarity distribution of all the other genes. In AC,
the known duplicates turned out to cooccur unexpectedly
frequently in dependent cross clusters (rank sum test;
p< 2.2 x 10716,

Compared to K-means, AC detected connections of the
multiple ortholog profiles statistically significantly more
often (sign test, p < 0.001). These two results support the
validity of AC in finding dependent subsets of data better
than standard unsupervised clustering.

5 EXPERIMENTAL RESULTS: DEPENDENCIES
BETWEEN MAN AND MOUSE

Functions of human genes are often studied indirectly, by
studying model organisms such as the mouse. An under-
lying assumption is that so-called orthologous genes, that is,
genes with a common evolutionary origin, have similar
functional roles in both species. Exploration of dependencies
(regularities and irregularities) in functioning of ortholo-
gous genes helps in assessing to which extent this assump-
tion holds. In practice, gene pairs are defined as putative
orthologs based on sequence similarity, and we seek for
regularities and irregularities in their expression by asso-
ciative clustering.

An exceptional level of functional conservation of an
orthologous gene group may indicate important physiolo-
gical similarities, whereas differentiation of function may be
due to significant evolutionary changes. Large-scale studies
on orthologous genes may ultimately lead to a deeper

understanding of what makes each species unique. (For
related approaches, see, e.g., [6], [9], [11], [14], [30]).

5.1 Data and Experiments

In the original data [43], multiple expression profiles may
correspond to one gene. In Section 4.2, they were used for
validating the methods, whereas, in this section, we use a
single representative profile for each gene. The profiles
corresponding to a same gene are averaged after discarding
weakly correlating (r < 0.65) profiles of the same gene,
when multiple measurements from incomplete or poten-
tially nonspecific probe sets are available. This results in a
set of 2,818 orthologous gene pairs with unique LocusIDs.

5.2 Quantitative Comparisons of the Methods

A dependency-maximizing clustering method should 1) find
dependencies and 2) represent the results as homogeneous
clusters. We compared AC to a baseline method that does
not search for dependencies at all, that is, separate K-means
for both mouse and man, and to symmetric IB following a
discretization with K-means (see Section 3). The both o : s of
AC and the number of initial K-means clusters for IB were
chosen using a validation set as in Section 4.2.

AC produced significantly more dependent clusters than
standard K-means clustering (10-fold cross-validation,
paired t-test with d.f. =9; p <0.001). All methods were
run in each fold from three different intializations, of which
the best result according to each method’s own cost
function was selected. Averaged log-BF costs were —52.9
and —115.8 for AC and K-means, respectively. However,
cluster homogeneity was not significantly reduced by
focusing on dependency modeling (at the p < 0.05 signifi-
cance level). Differences of the methods in cluster homo-
geneity have been visualized in Fig. 4.

K-IB produced significantly (p < 0.001) more dependent
clusterings (log-BF=10.24 on average over cross-validation
folds) than AC and K-means. On the other hand, cross
clusters from AC studies are significantly more homoge-
neous than those of K-IB and random clustering (p < 0.002).
The measure of homogeneity (actually dispersion) was the
sum of intracluster variances.

In summary, as expected, AC extracts more dependen-
cies than K-means and the clusters are more homogeneous
(and hence easier to interpret) than those of K-IB. K-IB is a
good method for searching for dependencies if homogene-
ity is not essential.

5.3 Biological Results: Findings of Mice and Men
Bootstrapped AC produces a similarity matrix for the genes,
computed from the cooccurrence frequencies of genes in the
AC cross clusters. The matrix is summarized with simple
hierarchical clustering in this section, and a set of most
homogeneous gene clusters is extracted by cutting the
dendrogram at a specific cut-off level and discarding genes
belonging to clusters smaller than three genes.

As the most reliable dependencies produced by a high
cut-off are expected to be relatively trivial findings of
similar behavior of orthologous genes in mouse and man,
we set the threshold lower to include some unexpected
findings as well. The (arbitrary) cut-off limit was set to
include clusters with average cooccurrence frequency larger
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Fig. 4. Dispersion of (a) margin clusters and (b) cross clusters in mouse-man studies. AC produces clusters that are comparable to K-means,
whereas the clusters of K-IB are more dispersed (significantly in (b)). RAND is a kind of an upper limit for cluster dispersion, obtained by randomly

assigning samples to clusters.

than 80 percent (of the bootstrap samples). This resulted in
139 orthologous gene pairs in 31 clusters.

5.3.1 Overall Regularities in Ortholog Expression

Many orthologous genes are expected to be functionally
similar, and similarity can, at its simplest, be measured by
correlation. Weak correlation of expression of orthologous
genes suggests differentiated gene function (or heavy
noise), whereas strong correlation is an indication of
functional conservation. To some extent, a global trend
exists in our data: Median correlation of expression profiles
of orthologous man-mouse gene pairs in the common
21 tissues is 0.33. It is expected that this trend dominates the
AC analyses concerning unexpectedly common expression
trends (large cross clusters) as well. Indeed, the more
similar (highly correlating) the expression profiles of an
orthologous gene pair are, the more often it tends to be
located in an unexpectedly large cross cluster. This was
measured by correlating the occurrence frequency with the
correlation between the orthologs, and the resulting
correlation coefficient » = 0.41 suggests that AC is indeed
capable of detecting the simple tendency of the orthologs to
depend linearly.

Weakly or negatively correlating orthologs are the other
extreme; they are kinds of outliers and tend to be located in
exceptionally small cross clusters. Expression similarity
correlates negatively (r = —0.38) with frequency of occur-
rence in small cross clusters.

5.3.2 General Functional Trends of Dependent Genes
Orthologous genes are often functionally similar, although
some deviation may have occurred in the course of
evolution. Orthologous gene groups with exceptional
functional conservation could be expected to be of a specific
importance for species survival.

Such a cross-species feature is likely to contribute to
dependencies in the data and should be detected in AC
analyses. A straightforward approach to study such
functional trends is to check enrichment of Gene Ontology
(GO) [1] categories among the most dependent genes.

The most enriched GO categories among the genes
showing remarkable dependency (average cooccurrence
level > 80/100, minimum cluster size 3) were ribosomal
categories (all findings having EASE score with the
conservative Bonferroni correction < 0.05 are listed; EASE

[23] is a program that annotates the given gene list based on
GO and calculates various statistics for it). The three most
significantly enriched GOs, for both species, were cellular
component categories “cytosolic ribosome (sensu Eukarya)”
and “ribosome,” and the molecular function category
“structural constituent of ribosome.” Also, the biological
process “transmission of nerve impulse” was enriched for
both species. For human, the “eukaryotic 48S initiation
complex,” “cytosolic small ribosomal subunit (sensu Eu-
karya),” “small ribosomal subunit,” and “synaptic trans-
mission” categories were also enriched.

The dependency structure of data is mostly explained by
genes from these categories. A natural explanation for the
enrichment of ribosomal functions in large cross clusters is
that they often require coordinated effort of a large group of
genes and function in cell maintenance tasks that are critical
for species survival. High conservation of such genes has
been suggested also in earlier studies (see, e.g., [26]). The
current result is an additional indication of exceptional
conservation of ribosomal genes and of their crucial role for
the cellular functions of an organism.

By contrast, enrichment of the “transmission of nerve
impulse” category is somewhat surprising and worth more
careful studies. It is interesting to note that such genes seem
to contribute more to commonalities in the data than genes
with other conserved functions. No straightforward biologi-
cal explanation for this phenomenon could be found so far.

5.3.3 Examples of Finer-Scale Regularities

Minor regularities are revealed by the individual clusters. In
addition to conserved expression, AC can potentially reveal
orthologs with functional deviation.

We used median correlation as a rough measure to order
the clusters and picked two clusters: one with the highest
(suggesting preservation of function) and one with the
lowest (suggesting differentiation of function) median
correlation as examples.

The cluster with the highest median ortholog correlation
contained three genes with strongly testis-specific expres-
sion (LocusID pairs 8852-11643, 11055-53604, 1618-13164;
Fig. 5). Literature studies confirmed that the function of
these genes is related to reproduction. Disturbances in the
function of the last gene are known to cause infertility
although its functions are otherwise not well-known.
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Fig. 5. Average expression profiles of the genes within the cluster
showing the highest correlation between mouse and man. Only the
21 tissues which were measured for both species are shown for clarity.

No genes were expressed (AD < 200) in the remaining tissues. The
tissue list is in the Appendix.

Although the presence of strongly correlated orthologs in
the most dependent clusters of the two species is not
surprising as such, the strong relationship of the three genes
suggests a possibly unknown functional link.

The clusters having salient regularities suggest interac-
tions: The gene products may have physical interaction,
they may share a common pathway, or they may otherwise
be responsible of similar biological functions. Even corre-
lated expression within a single species is known to be a
valuable cue for such interactions (see, e.g., [8], [13], [19]),
and preservation of coexpression in evolution is an even
stronger hint. Moreover, such “conserved correlations”
have also been suggested to be useful in confirming
orthologous relationships between genes [15].

Low between-species correlation in a cluster with
five genes suggests differentiated gene function (Fig. 6).
Three of the genes are known to be related to embryonic
development and three are transcription factors. We were
not able to find an interpretation for the cluster from the
literature. It is reliable, however, and hence potentially
interesting; the genes were clustered together in an
exceptional cross cluster in over 80 out of 100 bootstrap
samples. Our data is from adults, in which the embryonic
genes may have unknown functions.

5.3.4 Functionally Exceptional Orthologs

Outliers, that is, genes having peculiarities in their function,
can be sought by computing how often they end up in an
unexpectedly small cross cluster in the bootstrap. Such

Human

Expression levels (AD)

Tissues
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genes are comparatively rare; only 1.5 percent of the
orthologs end up in an exceptionally small cross cluster
with a frequency of >50 percent. Such exceptional
orthologs tend to correlate weakly or negatively, and
potentially hint at differentiated gene function. Note that
AC takes more than correlation into account as only three of
the 43 found orthologs are among the 43 most weakly
correlating orthologs. Hence, these exceptional genes could
not have been found based on the correlation analysis alone.

Enrichment of certain GO categories among such excep-
tional orthologs would indicate functionalities that are more
often differentiated between species. Interestingly, closest to
significant enrichment were the “secretion” category with its
subcategory “protein secretion” and the “signal transduc-
tion” category with subcategories of “cell communication,”
“signal transduction,” and “cell surface receptor linked
signal transduction” for human, and “cell communication”
and “G-protein coupled receptor protein signaling path-
way” for mouse. These categories have EASE score of < 0.05
without Bonferroni correction. With Bonferroni correction,
the enrichment is not significant, however.

To some extent, the secretion categories above could be
related to the overall signaling phenomena. The protein
secretion category fits well into this picture since many of
these signaling pathway initiators are, in fact, secreted
molecules. For example, G protein pathways include a
variety of extracellular agents like hormones, neurotrans-
mitters, chemokines, and local mediators that are all
systemically secreted molecules [33]. From the relative
abundance of such orthologs among those with exceptional
functionality, we may derive a hypothesis of their role in
species divergence.

The most extreme gene (LocusIDs 998 and 12540 for
human and mouse, respectively) occurs in an exceptionally
small cluster in > 80 of the 100 bootstrap iterations. The
expressions in man and mouse correlate negatively (—0.47)
in this case and the ortholog is exceptional already as such.
The human gene is only expressed in neuronal tissues,
whereas the mouse gene is more generally expressed
(Fig. 7). Such outliers may be either real functional
differences in the species or measurement errors. Which-
ever the reason, the detection of the outlier was useful.

Groups of orthologous genes with a similar but excep-
tional functional relationship would be more reliable
findings than individual outliers. Unfortunately, cooccur-
rence of orthologous gene pairs in exceptionally small cross

Mouse

Tissues

Fig. 6. Expression profile plots of the genes in the cluster with weakest median correlation between the orthologs. Since the correlation is low, no
immediate relationships are visible. The cluster is very reliable, however, and hence the orthologs probably share some unexpected higher-order

dependency.
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Fig. 7. The most strongly exceptional outlier gene, detected based on its
most frequent occurrence in an unexpectedly small cross cluster.
LocusIDs 998 and 12540 for human and mouse, respectively.

clusters is rare. The two cases with the most frequent
cooccurrence in small cross clusters have a frequency of 45
out of 100 bootstrap iterations. It is interesting to note that,
in both cases (Fig. 8), mouse genes are only weakly or not at
all expressed in the 21 tissues common to the organisms. In
the first case, the mouse and human genes are known to be
related to translational regulation. Differences in the
expression levels might hint at differentiation in the
translational mechanisms. In the second case, the human
genes (Protein tyrosine kinase 2 and Glia maturation factor,
LocusID-pairs 5747-14083 and 2764-63985) are expressed
specifically in neuronal tissues and are known to participate
in the regulation of growth and differentiation of neurons.

5.4 Summary

In summary, AC reproduced known findings and per-
formed as expected in comparison with alternative meth-
ods. Although this case study is technically interesting and
completely new, its biological implications are not yet as
convincing as in the second one (Section 6).

From the man-mouse orthologs, we found clusters of
highly conserved orthologs, possibly unknown functional
relationships between genes, and examples of exceptional
relationships between orthologs suggesting differentiation
in gene function between species. Some of the findings
remain unexplained but could be used as starting points for
more detailed studies.
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6 EXPERIMENTAL RESULTS: DEPENDENCIES
BETWEEN GENE EXPRESSION AND
TRANSCRIPTION FACTOR BINDING

The baker’s yeast, Saccharomyces cerevisiae, is a popular
eukaryotic model organism due to the representativeness of
its genetic regulation and because of its easy experimental
handling.

Gene expression regulation operates on several levels, of
which perhaps the most crucial is transcriptional control.
This is handled by a set of regulatory proteins called
transcription factors (TFs) that bind to DNA in the gene
regulatory (promoter) region and can either enhance or
suppress the gene’s expression. In most cases, TFs interact
inter se to make up macromolecular complexes before
binding to the regulatory regions of DNA. Since TFs are
manufactured by expressing the relevant genes, they are the
key components of gene interaction networks. In this work,
we focus on the dependencies between the TFs and gene
expression, that is, on the gene regulatory network.

Regulatory interactions have been studied by measuring
genome-wide expression with microarrays in knock-out
mutation experiments and in time series experiments. In the
knock-out experiments, a mutation is targeted to a single
gene in the yeast genome to modify (usually knock out) the
normal function of that gene. It is then hoped that, by
measuring the gene expression changes with microarrays
after the mutation, the role of the mutated gene in cellular
processes is revealed. Genes belonging to the same
regulatory pathway as the mutated gene could be unveiled,
for example. In time series experiments, the goal is often to
infer causality in the gene regulatory network based on the
sequential changes in expression levels. However, since the
interaction network between the genes is complicated,
discerning the direct effects of the knock-out or the change
of expression in a time series from noise and the mass of
second-order effects can be very difficult, if not impossible.
At least a comprehensive, very expensive high resolution
time-series experiment with numerous replications would
be required. The same holds for knock-out experiments.
Thus, alternative approaches are worth exploring.
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Fig. 8. Two examples (A and B) of frequently cooccurring and exceptional “clusters” of gene pairs. (They cooccurred frequently in exceptionally small
crossclusters). Gene expression profiles belong to human-mouse Locus|D pairs A1 10438-57316, A2 7458-22384 and B1 5747-14083, B2 2764-63985.
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Gene expression is not the only source of information
about gene regulation. For instance, microarray-based
chromatin immunoprecipitation (ChIP) allows measuring
the binding strength of the transcription factor proteins on
any gene’s promoter region [31]. This reveals which TFs are
able to bind the specific gene’s promoter and are thus
potential regulators. But, many TFs bind numerous gene
promoter regions and are still not operational regulators.
The number of false positives can be very high and, thus,
inferring the regulatory relationships based on the binding
information alone is not in general possible.

Combining data from the several sources is a promising
option, and exploratory models are perfectly suited for the
first studies. We combine the functional information (gene
expression) and the potential regulator information (TF
binding). We make the following assumptions: First, it is
assumed that the genes are coexpressed in groups that are
unknown, cf., [16], [36]. Second, it is sensible to assume that
a common set of transcription factors binds to the
coexpressed genes. Otherwise, groupwise expression
would be very unlikely. This is of course an oversimplifica-
tion, but it has some biological justification. To be more
realistic, we do not assume that all the genes are regulated
in such a manner; we relax the simplification by assuming
that only subsets of genes behave this way, only a subset of
transcription factors need to be the same, and coexpression
needs to take place only in a subset of knock-out experi-
ments or time points.

Associative clustering, when applied to expression and
TF binding data, makes precisely these assumptions, and
we now aim to find subsets of genes whose expression is
maximally dependent on their transcription factor binding
profiles. These sets then act as hypotheses for expression
coregulation.

6.1 Knock-Out Expression and TF Binding

The yeast expression used in this analysis has been
measured from 300 different mutation strains with cDNA
microarrays [25] (http://www.rii.com/publications/2000/
cell_hughes.html). Transcription factor binding data on
genes for 113 transcription factors was obtained from [31]
(http:/ /web.wi.mit.edu/young/regulator_network). After
taking the logarithm of the expression ratios, imputing
missing values with genewise averages, standardizing the
treatmentwise variances to unity, and including only the
genes appearing in both data sets, we had two full data
matrices, each with 6,185 genes. The number of clusters in
the margin spaces was chosen to produce roughly 10 data
points in each cross cluster, resulting in 30 clusters in the
expression space and 20 clusters in the TF-binding space.

6.1.1 Quantitative Evaluation

We first used this data to validate the performance of AC in
the two tasks it addresses: maximizing the dependency and
keeping the clusters homogeneous. These were measured
in 10-fold cross-validation runs with prevalidated o for AC
and prevalidated number of K-means clusters for K-IB.
Prevalidation was analogous for both methods: The data
was divided into two equally sized parts and several
parameter values were tried from three different random
initializations. Of these, the parameter value giving the best

AC cost was chosen. The final cross-validation runs were
also started from three different random initializations.

AC discovered dependencies in the data significantly
better than the reference methods (10-fold cross-validation,
paired t-test; d.f.=9; p < 0.001). The dependency was
measured with (natural) logarithmic Bayes factor (log-BF),
the average value of which was 8.84 for AC, —46.37 for IB,
and —262.29 for K-means. The value of log-BF is tradition-
ally interpreted to signify strong evidence against the null
hypothesis if it is at least 6-10 [28].

The homogeneity, or actually dispersion, of the clusters
was measured simply by the sum of the componentwise
variances in cross-validation. The comparison was made for
both margin clusters as well as for cross clusters. Margin
clusters produced by AC were statistically significantly less
dispersed than those produced by IB, but for cross clusters
the difference was not significant.

6.1.2 Biological Results

We sought for biologically interesting findings by boot-
strapping the AC (100 bootstrap data sets) and by otherwise
using the same parameters as in the above cross-validation
tests. A similarity matrix was generated for the genes from
the bootstrap results (see Section 4.2) and summarized by
the average-distance variant of hierarchical clustering.
Clusters with average cooccurrence higher than 20 out of
100 and with the minimum size of 3 genes were chosen for
the final analysis, resulting in 20 clusters.

The clusters were first screened with EASE, which found
enriched gene ontology classes in 12 of the 20 clusters
(Fisher’s exact test, Bonferroni corrected; p < 0.05). It is of
course likely that clusters without significant GO enrich-
ments are also biologically meaningful, but their interpreta-
tion is more cumbersome and is therefore left for future
work. In the following, we present a sample of four
representative AC cluster types.

The first, most notable cluster is a large set of about
one hundred genes that all code for ribosomal proteins.
These genes are known to be expressed often very
homogeneously, and they can also often be found in
conventional cluster analyses, cf. [5], [34].

The next two clusters are examples of how AC identifies
and highlights modules where a subset of the genes and
their main regulator(s) have been previously identified in
wet lab experiments. However, the modules also contain
novel components not previously associated to the corre-
sponding biological function.

The second cluster is an example of a cluster type rarely
found in conventional analyses. It contains only four genes,
of which three are known to code for proteins involved in
lipid metabolism and one to code for a growth factor
transporter. The most reliable and strongest transcription
factor bindings in this cluster are by proteins INO2/
YDR123Cp and INO4/YOL108Cp that are known to form a
protein complex and then regulate lipid metabolism. The fact
that AC detects two interacting TFs shows that the method
can be used, to a certain extent, to predict TF interactions as
well. Moreover, it also unveils which potential target genes
are responsible for the lipid metabolism regulation observed
in wet lab experiments. In other words, the reliability of gene
function annotations is enhanced through the use of AC.
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Fig. 9. (a) Margin cluster and (b) cross cluster dispersion for all methods in cell-cycle experiments, demonstrating that AC produces clusters that are
almost as compact as K-means clusters, whereas the IB-clusters are significantly more dispersed. RAND is a kind of an upper limit for cluster

dispersion, obtained by randomly assigning samples to clusters.

The third cluster of 31 genes contains 20 genes involved
in amino acid and derivative metabolism. The best identi-
fied regulator for this cluster is GCN4/YEL009Cp, a
transcriptional activator of amino acid biosynthetic genes
known to respond to amino acid starvation. Here again, it is
shown that the AC creates a partially new cluster and
identifies a good candidate regulator.

About two thirds (28) of the genes in the fourth cluster,
the most interesting so far, are of unknown molecular
function. Even the biological process they contribute to may
be unknown. The known genes map to such GO categories
as “nuclear organization and biogenesis” and the most
reliable transcription factor associated to genes in this
cluster was YAP5p/YIR018Wp. This transcription factor is
known to be activated by the main regulators (SBF and MBF
[22]) of the START of the cell cycle, a time just before DNA
replication. This clearly refers to cell-cycle regulation and to
organization of the nucleus prior to replication.

6.2 Time Series Gene Expression and TF Binding
The expression data for this case study was measured during
yeast cell cycle and was originally published in two diff-
erent papers [10], [42] (http://genome-www.stanford.edu/
cellcycle/links.html). The data consisted of 77 timepoints in
total. The transcription factor binding data used here is the
updated (2003) version of [31] for 106 transcription factors. In
this case study, the missing values were imputed with the k-
nearest neighbor method (k = 10) [45] and logarithms were
taken from both of the data sets. Including only the genes
present in both data sets resulted in a total of 5,618 genes. The
chosen cluster numbers were 30 in the expression space and
20 in the TF-binding space.

6.2.1 Numerical Results

The tests were run as described in Section 6.1. The
differences in dependency modeling between all the
methods were statistically significant also for this data pair
(10-fold cross-validation, paired t-test; d.f. =9; p < 0.001).
Natural logarithmic Bayes factor for AC was 32.27, for
IB —13.17, and for K-means —92.30, implying that AC found
a very strong dependency between the data sets.

The measure of cluster homogeneity, or actually disper-
sion, was the same as in the previous cases: the sum of the
componentwise variances. For this data pair, AC produced
significantly (10-fold cross-validation, paired t-test; d.f. = 9;
p < 0.001) less dispersed cross clusters and margin clusters

than IB. Fig. 9 visualizes the margin cluster and cross cluster
dispersion for all methods.

6.2.2 Biological Results

In a similar manner as in the previous case, we sought for
biological findings from the bootstrapped AC clusters. The
clusters with average distance smaller than 60 (times in the
same dependent cross cluster out of 100) and with more than
two genes were chosen. This resulted in a total of 16 clusters.

Gene ontology classes were enriched statistically sig-
nificantly in 13 of the 16 clusters (EASE; Fisher’s exact test,
Bonferroni corrected; p < 0.05). In the similar spirit as in the
knock-out mutation case, we give a representative sample
of four clusters.

Two clusters are essentially the same as in the in knock-
out case study, the ribosomal proteins being the first of them.

The second cluster is the same as the most interesting
(fourth) cluster in the knock-out case. This provides more
evidence that the cluster represents a biologically robust
motif, having a homogeneous profile in both TF-binding
and expression.

The third cluster (Fig. 10) contains a significantly high
number of genes involved in cell cycle regulation and, more
specifically, at the stage of entry into the mitotic cell cycle
(nine genes out of 33). The main regulator identified in this
module is SIP4p/YJLO89Wp which is possibly involved in
SNF1p/YDR477Wp-regulated transcriptional activation.
This latter signaling factor is required for transcription in
response to glucose limitation. Interestingly, SIP4p/
YJLO89Wp has a DNA-binding domain similar to the
GAL4p/YPL248Cp transcription factor, involved in galac-
tose response, another route in energy metabolism. Taken
together, this cluster contains some clear references to cell
cycle regulation on one hand and energy metabolism on the
other and proposes a set of genes that can bridge and
connect these two biological processes. Thereby, AC offers
the hypothesis for a relation between biological functions, in
addition to some clues on what genes could be involved.

The fourth cluster contains nine genes of unknown
molecular function or associated biological process. The
associated transcription factor ACE2p/YLR131Cp is known
to activate expression of early G1-specific genes, localizes to
daughter cell nuclei after cytokinesis, and there delays G1
progression in the daughters. Based on this data, the
nine genes can be predicted to act during the G1 phase of
the cell-cycle, thus specifying what kind of targeted
experiments are needed to establish their function.
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Fig. 10. Two examples of bootstrapped cross clusters, associated to cell cycle, that reveal both known and novel dependencies between gene
expression and TF binding. The upper figures show the average expression profiles (bars) of the clusters and confidence intervals (curves). The
periodicity of the cell cycle in the expression is clearly visible. The lower figures show the average TF-binding profile of the clusters with confidence
intervals. The average TF-bindings rising above the confidence interval are considered reliable. Note that the confidence intervals are very
conservative; they have been estimated based on random clusters. In Cluster A, there was only one reliable TF binding, SIP4. It could be verified
from the literature (see text for details). SIP4 binds also the genes in Cluster B, but, additionally, there is one extremely strongly binding TF, SFL1
(the rightmost bar). Its putative regulatory interaction with the gene cluster during cell cycle is a new finding.

7 CONCLUSION AND FUTURE WORK

We have introduced a new approach for a relatively little-
studied machine learning or data mining problem: From
data sets of cooccurring samples, find what is in common.
We have formulated the problem probabilistically, ex-
tending earlier mutual information-based approaches. The
new solution is better-justified for finite (relatively small)
data sets.

The introduced method, coined associative clustering
(AC), summarizes dependencies between data sets as
clusters of similar samples having similar dependencies.
Such a method is particularly needed for mining functional
genomics data where measurements are available about
different aspects of the same set of functioning genes. Then, a
key challenge is to find commonalities between the measure-
ments. The answer should reveal characteristics of the genes,
not only characteristics of the measurement setups.

The work is pure machine learning in the sense that the
model is a general-purpose semiparametric model which
learns to fit a new data set instead of being manually
tailored. As a result, it is probably not as accurate as more
specific models, but it can be expected to be faster and
easier to apply to new problems. Its main intended
application area is in exploratory data analysis, “looking
at the dependencies in the data” in the first stages of a
research project.

The method was validated and applied in two functional
genomics studies. The first found regularities and differences
between the functioning of orthologous genes in different
organisms, suggesting evolutionary conservation and diver-
gence. The second explored regulatory interactions between

gene expression and transcription factor binding. Both trivial
and unexpected findings were made: known regularities,
outliers, and hints about unexpected regularities.

While the proposed method was shown to be viable
already as such, it can be further improved. We did not
address the problem of choosing an optimal number of
clusters. If clustering is interpreted as a partitioning or
quantization of data to compress its presentation, then the
exact number of clusters is not a crucial parameter, but
nevertheless, the results could be improved by optimizing
it. Since the task is formulated in Bayesian terms, Bayesian
complexity control methods are applicable in principle. The
setting is not standard, however, because of the nonstan-
dard (new) use of the Bayes factors and because of
discontinuities in the objective function.

Another direction of improvement is regularization of
the solution. Dependency-searching methods may poten-
tially overfit the data, which is well-known from canonical
correlation analysis and can be avoided by regularization.
We have developed two regularization methods for AC
with one fixed margin. “Entropy regularization” was used
here because it is easier in practice and has not been shown
to be worse than the alternative [27]. In the present case,
bootstrap also helped. Another related question is which
kinds of priors to use for the distributional parameters. The
simple constant Dirichlet priors used in this work may be
too informative. Hierarchical modeling should be more
appropriate but it is computationally more complex.

A third area worth investigating is the parameterization
of the clusters. It should be investigated whether the hard
Voronoi regions, used up to now because they are easily
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interpretable and make the theory manageable, could be
replaced by smooth and more regular-sized clusters.
Alternatively, the degrees of freedom of the clusterings
could be directly reduced to regularize the solution.

Finally, a comprehensive comparison of the relative
merits of dependency maximization and more traditional
Bayes networks and graphical models of the whole joint
distribution should be carried out. It is clear that the
two approaches focus on different properties of data and
that our semiparametric models need less prior knowledge
than specialized models of gene regulation, for instance,
and are hence more general-purpose. We expect that
exploratory models of the type introduced here are viable
as complementary methods for gathering the necessary
prior knowledge for the more specific models.

APPENDIX
TISSUES IN Mouse-HUMAN DATA

The first 21 tissues are considered to be common for both
species. (Listed in the following order: tissue number:
human tissue: mouse tissue. Tissues are separated with
commas.)

Common tissues: 1: cerebellum: cerebellum, 2: cortex:
cortex, 3: amygdala: amygdala, 4: testis: testis, 5: placenta:
placenta, 6: thyroid: thyroid, 7: prostate: prostate, 8: ovary:
ovary, 9: uterus: uterus, 10: 0DRG: 0DRG, 11: salivary gland:
salivary gland, 12: trachea: trachea, 13: lung: lung, 14:
thymus: thymus, 15: spleen: spleen, 16: adrenal gland:
adrenal gland, 17: kidney: kidney, 18: liver: liver, 19: heart:
heart, 20: caudate nucleus: striatum, 21: spinal cord: spinal
cord lower.

Noncommon tissues: 22: fetal brain: digits, 23: whole
brain: gall bladder, 24: thalamus: hippocampus, 25: corpus
callosum: large intestine, 26: pancreas: adipose tissue, 27:
pituitary gland: lymph node, 28: prostate cancer: eye, 29:
OVR278E: skeletal muscle, 30: OVR278S: snout epidermis,
31: fetal liver: tongue, 32: HUVEC: trigeminal, 33: THY+:
bladder, 34: THY-: small intestine, 35: myelogenous k-562:
stomach, 36: lymphoblastic molt-4: hypothalamus, 37:
burkitts Daudi: epidermis, 38: bukitts Raji: spinal cord
upper, 39: hep3b: bone, 40: A2058: brown fat, 41: DOHH2:
olfactory bulb, 42: GA10: mammary gland, 43: HL60:
umbilical cord, 44: K422: bone marrow, 45: ramos: frontal
cortex, 46: WSU: -.
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