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ABSTRACT

Several data analysis tools such as (kernel) canonical correla-

tion analysis and various multi-view learning methods require

paired observations in two data sets. We study the problem

of inferring such pairing for data sets with no known one-to-

one pairing. The pairing is found by an iterative algorithm

that alternates between searching for feature representations

that reveal statistical dependencies between the data sets, and

finding the best pairs for the samples. The method is applied

on pairing probe sets of two different microarray platforms.

Index Terms— canonical correlation, co-occurrence

data, dependency, multi-view learning

1. INTRODUCTION

Multi-view learning considers the task of learning from two

or more data sets with co-occurring observations. Increased

performance compared to traditional single-view learning

has been reported in various applications, including semi-

supervised classification [1], cross-lingual text mining and

machine translation [2], and multimodal information retrieval

[3]. The improvement comes from utilizing statistical depen-

dencies between the data sources, either in form of maximiz-

ing a consensus between models learned based on each data

source [4], through explicit maximization of a measure of

dependency between the views [5], or by building generative

latent variable models that capture the dependency [6].

The traditional multi-view learning methods require strict

co-occurrence. That is, the views must have known one-to-

one pairing for the samples. In some applications, such as

machine translation or analysis of microarray data, there are,

however, cases where such pairing in principle exists but is

unknown. For example, two different microarray platforms

attempt to measure activities of the same genes, yet the exact

probes on the chips are different and hence not directly paired

between platforms. Traditional multi-view learning methods

cannot be directly applied to such problems.
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We would like to be able to apply multi-view learning

methods also for non-paired data, typically in cases where

some kind of vague pairing information or prior information

on possible pairs is available. In this paper we study an ap-

proach where we explicitly find one-to-one pairing between

data sets, using the actual measurements for defining the pair-

ing. This complements approaches that would infer the pair-

ing based on additional data sources, such as sequence infor-

mation in the case of microarray platforms. Given the solution

of the proposed algorithm, any multi-view learning method

can be applied on the data.

The pairing is based on statistical dependency between

the data sources. We want to find such a pairing that the de-

pendency between the two sources becomes maximal. Given

a sample we should be able to predict with the measurement

values of its true pair in the other data set, and dependency is

a justified measure for two-way prediction accuracy. Maxi-

mizing the dependency should hence find the true pairs. Also

note that completely random pairing necessarily leads to in-

dependency between the sources.

In the remaining paper, we first introduce an algorithm for

finding the pairing and then demonstrate it in a practical ap-

plication of finding corresponding probe sets in two different

microarray platforms.

2. METHOD

Given two data sets, X ∈ R
N×Dx and Y ∈ R

M×Dy ,M ≥
N , we want to find a permutation p of the samples in Y such

that the ith sample in X is paired with the sample p(i) in

Y. The pairing will be primarily based on the actual data

vectors, though prior information on pairings can be included

as explained later.

We propose a generally applicable algorithm that can be

used to pair any two data sets that are supposed to have a

one-to-one pairing between the samples. The underlying as-

sumption is that a pairing that reveals statistical dependency

between the two data sets is more likely to be correct. We con-

sider lower-dimensional mappings f(x) and g(y) and learn

them and the pairing to maximize the dependency

max
p,f ,g

Dep (f(X),g(Y(p)) ,



where Dep(·, ·) denotes any measure of dependency between

the two arguments, and Y(p) ∈ R
N×Dy is a matrix obtained

by picking the rows indicated by p.

The dependency measure and parameterization of the

mappings f(·) and g(·) can be chosen freely. Here we resort

to Pearson correlation and linear projections f(x) = xWx

and g(y) = yWy . This gives a simple and computationally

efficient method with sufficient accuracy, but it is worth men-

tioning that these assumptions can be relaxed if needed. With

these assumptions, the optimization problem becomes

max
p,Wx,Wy

corr (XWx,Y(p)Wy)) .

For solving the problem, we propose an iterative algo-

rithm that alternates between learning the pairing and learning

the projections. Given fixed projections, we can write the cost

with the sample estimate of correlation as

max
p

WT
x XT Y(p)Wy

‖XWx‖‖Y(p)Wy‖
.

The numerator can equivalently be expressed as constant mi-

nus the sum of Euclidean distances between the projections

of paired samples. The denominator, in turn, is constant with

respect to p if N = M , and it can be safely assumed constant

even for M slightly larger than N . Hence, it can be ignored

in optimization and we get the task

min
p

N∑

i=1

‖xiWx − yp(i)Wy‖
2. (1)

This is a classical assignment problem where the cost of as-

signments is defined by the distance in the projection space.

The assignment problem can be solved exactly with e.g. the

Hungarian algorithm.

The projections, in turn, are solved by assuming a fixed

pairing. Then the task reduces to the canonical correlation

analysis (CCA) problem, which can be solved exactly with

linear algebra (see e.g. [7]). These two steps can be combined

into a simple alternating algorithm, which finds the pairing

but can also be considered as a way to compute CCA for non-

paired data. First a random pairing is given as an initialization

and CCA is used to find the optimal projections for that pair-

ing. Then a new pairing is solved via the assignment problem

using distances computed in the feature space. After this, the

algorithm repeats the CCA and assignment problem steps.

Notice that if the features of X and Y are paired, the

sample pairing can alternatively be inferred by directly solv-

ing the assignment problem minp

∑N

i=1 d(xi,yp(i)), where

d(xi,yp(i)) is some conventional distance measure between

the samples. This approach assumes that direct comparison

of samples is sensible, whereas the proposed algorithm learns

feature representations that can be compared in all cases.

2.1. Details and related work

Due to scale-invariance of correlation, CCA does not fix the

scales of the dimensions. Hence, we can choose the scales

of different dimensions in the optimization problem in (1)

to maximize the accuracy. In the experimental section we

empirically compare to choices. The first choice is to give

equal scale for each dimension. The other choice utilizes the

fact that dimensions with high correlation are more likely to

contain useful information and weights each dimension with

the corresponding canonical correlation. The latter choice is

shown to be better in practice.

Possible prior information on pairing, typically obtained

from yet another data source, can be taken into account in

numerous ways. Here we consider a simple method that ex-

cludes sets of possible pairs from consideration if we know

they definitely are not the true pairs. We formulate this

through the concept of candidate sets. Instead of allowing

any pairing, we use the prior information to create a subset of

samples in Y for each x. Samples not belonging to the can-

didate set are given infinite cost in the assignment problem.

This helps in avoiding overlearning. In all the experiments,

the algorithm is run for the maximum of 20 iterations, how-

ever, it converged in less than 10 iterations in most cases.

Recently, [8] studied a similar approach for learning bilin-

gual lexicons from monolingual corpora. They introduce a la-

tent variable model for the task, and optimize it with an EM

algorithm resembling our alternating algorithm. In the E-step

of their algorithm they solve the assignment problem to maxi-

mize the sum of pointwise mutual informations, but comment

that a heuristic using Euclidean distances between the projec-

tions is in practice more accurate. In our formulation, (1) fol-

lows directly from the cost function. They also consider the

paired corpus as the main result, whereas we solve the pairing

to enable the use of further multi-view learning methods.

3. MICROARRAY PLATFORM PAIRING

One application area for the method is combining microar-

ray measurements done on different measurement platforms.

We can infer pairing between different brands of microarrays

aiming to measure the same activities, and also for exam-

ple between arrays designed for different measurement types

(RNA or DNA) or species. As a demonstration, we apply the

method for pairing the probe sets of two different versions of

Affymetrix oligonucleotide arrays, HG-U95 and HG-U133.

As measurement data we use gene expression profiles of

pediatric acute lymphoblastic leukemia (ALL) patients from

[9, 10]. The data consists of expression measurements of the

same 131 patients on both HG-U95 and HG-U133 platforms,

providing an excellent test bed for the algorithm. Typically

the probes of different array platforms would be paired pri-

marily based on sequence information, which is available in

this special case of pairing problems. Here we demonstrate
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Fig. 1. Accuracy in finding Affymetrix best matches amongst

all possible matches in the task of pairing HGU-95 probe sets

with HGU-133 probe sets. CCA-based pairing methods have

the best accuracy, with correlation-weighted distance in CCA

projection space providing the best result. All methods clearly

exceed the baseline accuracy 0.31 of random pairing.

how it is possible to improve the pairing based on the expres-

sion measurements. Sequences are only used as prior infor-

mation to define the candidate sets.

To evaluate the accuracy, we use Affymetrix’s comparison

sheet between HGU-95 and HG-U133 as the ground truth.

For each probe set in HG-U95, the sheet lists a set of poten-

tial matches in HG-U133, defined based on sequence infor-

mation. There are generally more than one match for each

HG-U95 probe set, and the quality of each match is charac-

terized as ”match”, ”good match”, or ”best match”. We cre-

ate each candidate set as the collection of all matches for the

probe set, and measure the accuracy by checking how often

the found pair has the ”best match” label. It is not possible to

obtain a perfect score due to the best matches not providing a

one-to-one mapping, and hence we report accuracies normal-

ized so that 1 means the best possible score.

In total we have N = 11728 HG-U95 and M = 17857
HG-U133 probe sets. 2171 of the HG-U95 probe sets have

only one match in HG-U133, and hence the pairing is fixed

for those. Since M is here so much larger than N , we apply

a slight heuristic to remedy the fact that Y(p) is not constant

with respect to p. In all experiments with the microarray data,

we normalize the distances in (1) by ‖xiWx‖‖yiWy‖ to pri-

oritize pairing probe sets with higher total activity.

4. RESULTS AND TECHNICAL VALIDATION

4.1. Pairing of Affymetrix probe sets

We study the accuracy of the algorithm with two different

ways to compute the distance in the projection space. The

first solution finds a fixed-dimensional CCA subspace and

treats each dimension with equal weight. The other approach

Table 1. Pairing accuracies in different feature settings. All

differences in accuracy are statistically significant (t-test, all

p-values below 10−14).

Feature setting Method Mean Accuracy Std Dev

1. Paired
CCA 0.64 0.04

Corr 0.56 0.04

2. Permuted
CCA 0.64 0.04

Corr 0.29 0.01

3. Different
CCA 0.54 0.03

Corr 0.30 0.01

4. Paired + Noise
CCA 0.60 0.03

Corr 0.34 0.02

finds the full CCA subspace, but weights each dimension with

the corresponding canonical correlation. Since the data has

paired features, we can compare the accuracy of the proposed

algorithm with the simple method of directly solving the as-

signment problem in the original data space. We use both

correlation and Euclidean distance for comparison.

The pairing accuracies are shown in Figure 1. The pro-

posed CCA-based method outperforms the comparison meth-

ods, and the weighted version provides better accuracy com-

pared to using lower-dimensional subspaces. As the weighted

solution also sidesteps the need to choose the dimensionality,

it is to be preferred. For the comparison method correlation

seems to be clearly better choice of distance, indicating scale

differences between the data sets.

This application, chosen to enable comparison with the

naive method, is a special case as the features are known to be

paired. In practice, however, we typically will not have data

sets with paired features. Next, we demonstrate on modified

versions of the data how the results would change in scenarios

where the features are not paired. The studied scenarios are:

1. 35 paired features (patients)

2. The same, but the features in Y are randomly permuted

3. 35 different features in each data

4. 20 paired features, along with 15 noise features created

by permuting the values for genes randomly

We repeated the same experiment for 20 randomly sub-

sampled versions for each scenario, each having around 1000
samples, and used the better variants of the two approaches

(correlation-weighted CCA and correlation-based method)

for pairing the samples. The results are shown in Table 1.

The main observation is that the performance of the CCA-

based method is comparable for all scenarios, whereas the

comparison method works only with the paired features, as

expected. The proposed method works well even with the

noisy dimensions showing that it is able to ignore them.

4.2. Technical validation on artificial data

To study the accuracy of the method as a function of depen-

dency between the data sources, we created artificial data sets
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Fig. 2. Pairing accuracy as a function of maximal correla-

tion (ρmax) between the data sets. The advantage of the CCA-

based method increases with higher dependency. The bars

represent one standard deviation (over 20 runs).

with varying degree of dependency. The toy data is generated

by drawing 1000 samples from a 10-dimensional multivariate

normal distribution with zero mean and a given covariance

matrix. The data is split into two 5-dimensional matrices, X

and Y, so that the true canonical correlations are of the form

λ × (0.3, 0.25, 0.15, 0.05, 0), where λ ∈ [1, 3]. The candi-

date sets for each sample in X were created so that each set

includes the true pair and 4 random samples.

Figure 2 shows the pairing accuracy for different degrees

of dependency. With low dependency CCA is comparable

to directly using Euclidean distance, but with higher depen-

dency CCA clearly outperforms the comparison methods. In

the microarray application the largest correlations were close

to 0.9, so it falls into the region where CCA helps most. In

this case the Euclidean distance works better than correlation,

whereas for microarray data the order was opposite. This

demonstrates how the choice of the distance measure plays

an important role for the comparison method, while the CCA-

based method overperforms both choices in both problems.

5. CONCLUSIONS

Multi-view learning tasks require co-occurring observations

in the different views. In many applications no clear one-

to-one mapping is known, but we may have some informa-

tion on possible pairs. To enable running multi-view learning

algorithms in such applications, we presented a method for

finding co-occurring samples based on the actual measure-

ments. The method uses an alternating iterative algorithm

to find such a pairing that statistical dependency between the

data sets is maximized. The method was demonstrated in an

application of pairing probe sets of two microarray platforms.

In addition to pairing the samples, the method can be

used to compute CCA for unpaired data sets. Even in cases

where the pairing accuracy is not perfect, the projection vec-

tors seem to converge towards the true projection vectors. On

the toy data the cosine similarity between the true and esti-

mated projections was above 0.98 for all CCA components

even in cases where the pairing accuracy was only 65% (re-

sults not shown due to lack of space).

The proposed algorithm, available on request from the au-

thors as R code, is an example of a wider family of pairing al-

gorithms. It uses linear projections to find a feature represen-

tation that allows comparison of samples, and correlation for

measuring the dependency. Methods relaxing these assump-

tions could be devised, e.g. by maximizing a non-parametric

estimate of mutual information as in [5].
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