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Abstract Multi-view learning studies how several views, different feature repre-
sentations, of the same objects could be best utilized in learning. In other words,
multi-view learning is analysis of co-occurrence data, where the observations are
co-occurrences of samples in the views. Standard multi-view learning such as joint
density modeling cannot be done in the absence of co-occurrence, when the views are
observed separately and the identities of objects are not known. As a practical example,
joint analysis of mRNA and protein concentrations requires mapping between genes
and proteins. We introduce a data-driven approach for learning the correspondence
of the observations in the different views, in order to enable joint analysis also in the
absence of known co-occurrence. The method finds a matching that maximizes sta-
tistical dependency between the views, which is particularly suitable for multi-view
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Matching samples of multiple views 301

methods such as canonical correlation analysis which has the same objective. We apply
the method to translational metabolomics, to identify differences and commonalities
in metabolic processes in different species or tissues. The metabolite identities and
roles in the different species are not generally known, and it is necessary to search for a
matching. In this paper we show, using different metabolomics measurement batches
as the views so that the ground truth is known, that the metabolite identities can be
reliably matched by a consensus of several matching solutions.

Keywords Bipartite matching · Canonical correlation · Consensus matching ·
Co-occurrence data · Multi-view learning

1 Introduction

Multi-view learning considers the task of learning from two or more data sets with
co-occurring observations. Intuitively, using all of the views for learning is beneficial,
regardless of the learning task. The basic approach for using the views would be to
build a model for the joint representations of all views, for example a hierarchical
Bayesian model, but recently more targeted multi-view learning methods have also
been introduced. Bickel and Scheffer (2005) maximize a consensus between models
learned from each view, and Klami and Kaski (2008); Rogers et al. (2010) build hier-
archical models specifically designed to capture statistical dependencies between the
views in a latent variable representation. The latter line of work provides a generative
alternative for canonical correlation analysis that is also applicable for the same task.
Examples of multi-view learning applications include cross-lingual text mining and
machine translation (Li and Shawe-Taylor 2006), multimodal information retrieval
(Farquhar et al. 2006), modeling joint collections of text and images (Blei and Jordan
2003), and integration of mRNA and protein expression measurements in systems
biology (Rogers et al. 2008).

The traditional multi-view learning methods require strict co-occurrence. That is,
the views must have known one-to-one matching of samples. Text analysis can be
done for sentence-aligned corpora, images must be paired with their captions in mul-
timodal retrieval, and mRNA and protein expressions can be analyzed jointly only if
we know which protein corresponds to which mRNA sequence. Strict co-occurrence
holds for many applications, but not for all. While the amount of bilingual text is abun-
dant, for instance through the world wide web, the alignment of such corpora is not
always known. Aligning such documents in two languages, for instance at sentence-
level (Melamed 1999; Barzilay and Elhadad 2003), would provide useful resources
for machine translation. In systems biology, the views may be measurements made
with different technologies, for instance, different brands of microarrays use different
probe sets to measure the activities of the same set of genes. The correspondence of
probes between different microarray brands is not always known. Nevertheless, it can
be assumed that the views do in fact measure mostly the same objects, we just do
not know which object corresponds to which in the other view. It would be useful
to use various multi-view learning techniques for these kinds of applications as well,
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which requires learning the correspondence from the data. In this paper we propose an
algorithm for learning the correspondence or match between the objects of two views.

In a specific simplified setting solving the matching is easy in principle: If the two
views are known to be independent replications of the same measurements, then we can
directly compare the vectorial representations of the objects in the two views. A natural
solution is to match objects whose representations are similar. The only complication
then is in satisfying constraints of the matching, such as one-to-one property: each
object in one view should match exactly one object in the other. With this particular
restriction the task reduces to weighted bi-partite graph matching or linear assignment
problem with costs stemming from a distance measure between the representations.
Kuhn (1955) provides a classical algorithm that solves the problem, and Burkard et
al. (2009) give a very recent extensive treatment on assignment problems in general.

The matching problem gets considerably more challenging when the views are not
replications and do not share a common representation. They can either consist of
different sets of features used to characterize the objects, or even be completely dif-
ferent domains: one view could be a time series of gene expression, while the other
could be the gene sequence. This type of applications are the primary motivations
for modeling dependencies between multiple views, and are routinely addressed in
analysis of co-occurrence data (for example, Vinokourov et al. (2003) used kernelized
CCA for learning a mapping between image descriptions and content that have very
different representations), but tools for applications without co-occurrence are miss-
ing. We introduce methods for this general case, based on finding a representation
where the views can be compared. If such a representation can be extracted for each
of the views, then we can use the simple bi-partite graph matching solution for solving
the correspondence. The problem is thus reduced to finding a good representation, a
representation where comparing the measurements is sensible.

In our preliminary work (Tripathi et al. 2008, 2009), done simultaneously and inde-
pendently of a similar method presented by Haghighi et al. (2008), the representations
were sought using the following idea: The two views can be compared in a representa-
tion that maximally captures the statistical dependencies between the two views. The
underlying idea is to capture all the variation in a view that is shared with the other
view, and use this shared representation for comparisons, whereas variation indepen-
dent of the other view may be ignored. Measures of dependency between the views,
such as correlation or mutual information, require matched sets of objects, which leads
naturally to an iterative alternating algorithm. Given any matching we can find the best
possible representation by maximizing the dependency, and given the representation
we can find the best matching by solving the assignment problem. In this paper we
present this approach in detail, with its connection to mutual information, and extend it.

Both Tripathi et al. (2008, 2009) and Haghighi et al. (2008) learn the matching from
a single observation of the objects in each of the views. This is a well-defined optimi-
zation problem, yet the solution is likely to involve uncertainty; another realization of
the feature representations would typically lead to a different match. It is infeasible to
expect that a purely data-driven solution could learn an accurate and reliable matching
given just a single observation. We further extend the methods to more realistic appli-
cations where each view is represented by multiple independent realizations, and learn
the matching given all the available data, as a consensus of the individual matches.
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Fig. 1 Mapping between the abstract terminology used in the paper and the application of translational
metabolomics. The task is to learn a consensus match between metabolite identities of humans and mice,
pairing each human metabolite with one mouse metabolite. The consensus match is found by combining
individual matches of several realizations of the two species. Each realization is a data matrix measuring
the metabolic activity of a single individual, human or mouse. The rows of the data matrices correspond to
the objects being matched, in this case the metabolites. The columns, in turn, are features that are used for
learning the match, and they are the metabolic concentrations at different time points

To clarify the terminology, we use the term realization to represent a data matrix, and
a match or matching refers to a one-to-one correspondence computed for the samples
of two such data matrices. The terminology is illustrated in Fig. 1 that maps the terms
to the application introduced below. Each row of the data matrix is an object and the
columns are features that are typically different for the views and also for different
realizations. Furthermore, we use the term pair to represent a single pair of objects,
one for each view. In other words, a match consists of a set of pairs, and a consensus
can be learned from a collection of matches computed from several realizations.

One of the most promising application fields of the matching methods is in trans-
lation of findings from model organisms, such as mice, to men. There it is crucial to
know which properties of the model organisms generalize to men and which do not.
Metabolites, i.e. small molecules in cells and biofluids, are common across species
and thus provide a best chance to find translational biomarkers, as has been previously
demonstrated in metabolic syndrome (Damian et al. 2007). Comparative metabolome
analysis is commonly performed by mass spectrometry, and comparisons of metabolic
profiles require solving the matching problem between the metabolites in the two pro-
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files for two reasons: the identities are not clear due to various technical reasons of
the measurement process, and the functions of the metabolites may be different in the
different tissues or species.

In a typical metabolomic experiment we will have metabolite concentrations for a
collection of humans and mice, and the task would be to learn a global match between
the two organisms, not only between any two individuals. The individual matching
solutions between any two individuals are samples of the complete problem. We intro-
duce a computationally feasible solution by learning the individual matching solutions
for sufficiently many realizations of both views, and then combining the matching
results to find a global consensus. Coincidentally, the global consensus can be found
by again solving an assignment problem, this time applied to a matrix of co-occur-
rences in individual matching solutions instead of comparison costs. In addition to
finding the global match, we suggest how alternative matchings can be inferred based
on the collection of the independent matching results.

We start by solving a translational metabolomics problem where we know the
ground truth. By matching the metabolites of two populations of the same species,
here humans, we can evaluate how well the known matching is revealed. Even this
problem is far from trivial because of differences in individuals (and their diets), and
technical differences in measurement batches. We can then move to the biologically
more interesting problem of translation between humans and mice in follow-up works.

It is worth noticing that our solution for combining the individual matching solu-
tions does not make any assumptions about how the individual matchings have been
computed; the matching algorithm could be replaced with any other method. One
recent alternative would be the kernelized sorting method by Quadrianto et al. (2009),
which translates within-view distances to between-view distances using the Hilbert-
Schmidt independence criterion (HSIC; Smola et al. 2007). This results in a quadratic
assignment problem, which Quadrianto et al. (2009) address by iteratively solving a
linear assignment problem. The main difference is that our approach explicitly finds
the representations that can then be analyzed to understand the relationship between the
views, whereas kernelized sorting is less transparent but it can more straightforwardly
use non-linear kernels.

The paper is organized as follows: Sect. 2 describes the matching problem and our
dependency-based solution for it, whereas Sect. 3 discusses alternative approaches
for the same problem. Section 4 then introduces the concept of consensus matching
and presents an algorithm for finding it based on any of the alternatives for finding
individual matchings. Finally, in Sect. 5 we apply the algorithm to a simplified trans-
lational metabolomic experiment with known ground truth, and conclude the article
by discussion in Sect. 6.

2 The matching problem

Given two data sets or views X ∈ RN×Dx and Y ∈ RM×Dy , M ≥ N , we want to
find a permutation p of the objects in Y such that the i th row (object) xi in X is
paired with the row yp(i) in Y. In other words, we assume that each object or obser-
vation in X is paired with exactly one object in Y, while Y may also have objects that

123



Matching samples of multiple views 305

will be left without a pair. The matching will be primarily based on the actual data
vectors, although prior information on matchings can be included as will be explained
later.

If the two views can be assumed to be replicates (e.g., repeated measurements with
the same sensor, or biological replicates in a gene expression study) of each other, the
observations x and y lie in the same data space. Then it makes sense to assume that the
distance d(xi , y j ) between xi and y j is a measure on the likelihood of y j matching
xi ; the smaller the distance the more likely the two objects correspond to each other.
Finding the complete match then reduces to the optimization problem

arg min
p

N∑

i=1

d(xi , yp(i)). (1)

That is, the goal is to find a permutation such that the total distance between the two
views of all matched objects is minimized. The problem (1) is the so-called assignment
problem, for which a global optimum can be found with the well-known Hungarian
algorithm (Kuhn 1955; Burkard et al. 2009). Note that the distance measure d(·, ·)
affects the result, and care should be taken in choosing it. We will not discuss the
choice further for the special case of replicate measurements, since our main goal is
in extending the solution to non-replicate views.

When the views are not replicate measurements, the above approach does not work.
This is because there is no easy way to define the distance measure. Even if both views
had vectorial representations of equal length, the features themselves may not be
directly comparable, making standard measures like Euclidean distance inapplicable.
Below, we will give a justified choice of metric for such cases.

A new principle is needed, and we build that on statistical dependency. If the per-
mutation p is random the views will necessarily be statistically independent, that is,
p(X, Y(p)) = p(X)p(Y(p)). Hence, if the views are not independent, some system-
atic approach has been exercised in choosing the matching and, vice versa, systematic
structure in the views can be found by maximizing the dependency with respect to
p. Assuming that the systematic structure is maximized if the permutation pairs the
two views of the same object, which makes sense at least if the views are informa-
tive enough, then maximizing dependency should be a good solution to the matching
problem.

We conjecture that maximizing the dependency, measured as the mutual information

I (X, Y(p)) =
∫

p(x, yp(i)) log
p(x, yp(i))

p(x)p(yp(i))
dxdy,

with respect to the permutation p finds a good matching. In practice the mutual infor-
mation cannot be directly used as the cost function, but it can be approximated with
various levels of detail.
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2.1 Matching in a subspace

Information processing can only lose information, and hence I (X, Y(p)) ≥
I (f(X), g(Y(p)) for any functions f and g. This can be utilized in maximizing the
mutual information, since it is practically not feasible to directly estimate mutual
information in high-dimensional spaces. For dependency search any transformation
hence gives us a lower bound, which we may be able to maximize in practice instead
of the complete mutual information,

max
p,f,g

I (f(X), g(Y(p)) ≤ max
p

I (X, Y(p)) . (2)

In practice estimation of mutual information from finite data faces two serious prob-
lems: over-fitting and computational complexity. Both can be reduced by using simple
transformations that reduce dimensionality, and simple estimates of mutual informa-
tion. In practice we will use linear projections. To estimate mutual information in the
lower-dimensional space, we will use (canonical) correlations, which will not detect
dependencies in higher-order moments but are faster to compute than for instance the
non-parametric estimates used in (Klami and Kaski 2005). For normally distributed
data, there is a monotonous relationship between correlations and mutual information
(Gretton et al. 2003), and hence finding projections that maximize correlations will
maximize mutual information as well; for other distributions the relationship is only
approximative and chosen because of computational reasons.

2.2 Technical details

For linear projections let f(x) = xwT
x where x, wx ∈ R1×Dx , and g(y) = ywT

y where
y, wy ∈ R1×Dy . When using correlation as the dependency measure, the optimization
problem becomes

max
p,wx ,wy

corr
(

XwT
x , Y(p)wT

y

)
. (3)

This has a direct relationship to the assignment problem (1) which can be seen as
follows.

Given fixed projections, we can write the cost with the sample estimate of correla-
tion as

max
p

wx XT Y(p)wT
y

‖XwT
x ‖‖Y(p)wT

y ‖ . (4)

The numerator can be expressed as

wx XT Y(p)wT
y = 1

2

(
‖XwT

x ‖2 + ‖Y(p)wT
y ‖2 − ‖XwT

x − Y(p)wT
y ‖2

)
. (5)
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Assuming we are looking for a full one-to-one match, that is, N = M and each
object in Y is being matched to one object in X, the first two terms in (5) as well as
the denominator in (4) are constants with respect to p; the order of objects does not
affect the norm. Ignoring the constant terms gives

min
p

‖XwT
x − Y(p)wT

y ‖2 = min
p

N∑

i=1

‖xi wT
x − yp(i)wT

y ‖2 (6)

as the optimization problem for p. The important difference compared to (4) is that
the cost has now been factorized over the objects, which allows treating the objects
as independent samples in the minimization task. Given the constraint of one-to-one
mapping, we have in fact arrived at an assignment problem (1) where the distance d
is the Euclidean (squared) distance between the projected values.

Now we propose an iterative algorithm to solve the optimization problem, by
alternating between two steps: optimizing the matching p and learning the pro-
jections wx and wy . Above, the former turned out to be the classical assignment
problem where the cost of assignments was defined by the distance in the pro-
jection space, and which can be solved exactly with for instance the Hungarian
algorithm.

For the second step of the alternating algorithm, the projections are computed
assuming a fixed matching of objects. The cost function is still (3), but the opti-
mization is with respect to the projection vectors wx and wy . This is the familiar
canonical correlation analysis (CCA) problem, which can be solved exactly with
linear algebra (see Hardoon et al. 2004). CCA is a classical method for finding
linear relationship between two multidimensional variables. It finds a set of basis
vectors for two multidimensional variables such that the projections of variables
onto these basis vectors are maximally correlated. The correlation between the pro-
jections is called canonical correlation. Each CCA component is associated with
the corresponding canonical correlation ρi that characterizes the strength of depen-
dency.

In this case, given the matched data matrices X and Y(p), CCA will find the basis
vectors wx and wy such that corr

(
XwT

x , Y(p)wT
y

)
is maximal. The CCA solution is

not, however, restricted to one-dimensional projections, but instead we can search for
projection matrices Wx ∈ RD×Dx and Wy ∈ RD×Dy such that all the components

are uncorrelated: corr
(

XW(i)T
x , XW( j)T

x

)
= 0 ∀ j (= i , using the notation W(i)

x to
denote the i th row of the matrix Wx . Here, D = min(Dx , Dy) is the maximal number
of CCA components, and the additional components extracted by CCA can naturally
be used also when solving the matching as well, by extending the distance measure in
(6) to use multi-dimensional projections.

As correlation is scale-invariant, the different CCA projections can be re-scaled for
maximal informativeness. For normal distributions I (X, Y) = −1/2

∑
i log

(
1 − ρ2

i

)
,

showing that mutual information decomposes additively over the components, with
the canonical correlation ρi signifying the contribution of that particular component.
Since we have no guarantee of normality we will not fixate on this specific functional

123



308 A. Tripathi et al.

form, but we use the same idea of using canonical correlations for weighting the
contributions. In particular, we re-scale each dimension of XWT

x and YWT
y with the

corresponding canonical correlation, giving

min
p

N∑

i=1

D∑

j=1

ρ2
j

∥∥∥xi W
( j)T
x − yp(i)W

( j)T
y

∥∥∥
2

(7)

as the final cost function to be used when learning the match.
The two steps explained above are combined together as a single alternating opti-

mization algorithm: first a matching of objects is given as initialization and CCA is
used to find optimal projections based on the matching. A new matching is then solved
via the assignment problem using distances computed in the feature space. These two
steps are repeated until convergence, detected as a step that leaves both the permuta-
tion and the projections intact. The matching is initialized randomly; given possibly
completely different feature representations for the views it would be hard to use joint
modeling to improve on random initializations. By starting from several random ini-
tializations it is possible to avoid local optima; the algorithm can be guaranteed to
converge to a local but not a global optimum.

It is worth noticing that possible prior information on the match, typically obtained
from yet another data source, can be taken into account as additional (hard or soft)
constraints for the permutation matrix. The simplest approach is to use hard con-
straints that exclude certain matches from the set of possible solutions. We formulate
this through the concept of candidate sets. For each observation x we define a subset
of observations in Y as candidates. Given reliable information on the candidates, the
constraints can trivially be added by modifying the cost matrix used for the assign-
ment problem. Instead of filling the matrix with the computed distances, the excluded
candidates are given an infinite distance, making it impossible for the assignment
problem solver to match them. This not only improves the accuracy of the match,
but also decreases the computational cost dramatically for large sample sizes when
using relatively small candidate sets. Then the assignment cost matrix will be sparse,
enabling efficient algorithms such as those of Jonker and Volgenant (1987); Duff and
Koster (2001).

As a technical detail, the optimization problems (4) and (6) are equivalent only for
M = N . For M > N the terms containing

∥∥∥Y(p)wT
y

∥∥∥ have to be included, since the
set of objects in Y may change when changing the permutation. This means that the
assignment problem cost matrix cannot be filled with the object-wise distances. In
practice, however, the factorized cost gives a good approximation also for the cases
where M is slightly larger than N (Tripathi et al. 2009). To counter the potential bias
of favoring objects with small norm (a priori the Euclidean distance between x and y
is positively correlated with ‖x‖ and ‖y‖), we suggest dividing the distances in (7) by
∑D

j=1 ρ j

∥∥∥xi W
( j)T
x

∥∥∥
∥∥∥yp(i)W

( j)T
y

∥∥∥ when M > N . This particular form of normaliza-
tion is motivated by the form of (4). Even though we perform all the experiments in this
article with M = N , we empirically study in Sect. 5.3 the effect of the normalization.
The experiments suggest that the normalization should be used even when M = N .
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Input: Matrices X ∈ RN×Dx and Y ∈ RM×Dy . Candidate sets Si for each row xi of X, consisting
of sets of indices for the objects in Y. Each element in Si is an index from 1 to M .

Output: A match between the objects in X and Y, given as a vector p ∈ [1..M]N . All the elements
in p must be unique and pi ∈ Si ∀i .

Initialization: Choose random p that satisfies the candidate set constraints.1
repeat2

Find the projection matrices Wx and Wy and the canonical correlations {ρ j }D
j=1, where3

D = min(Dx , Dy), by maximizing the correlation between X and Y(p).
Compute pair-wise distances d(i, k) between objects in X and objects in Y where4

k ∈ Si , d(i, k) =
{∑D

j=1 ρ2
j

∥∥∥xi W( j)T
x − ykW( j)T

y

∥∥∥
2
}

/
{∑D

j=1 ρ j

∥∥∥xi W( j)T
x

∥∥∥
∥∥∥ykW( j)T

y

∥∥∥
}

.

Set d(i, k) = ∞ for all pairs (i, k) for which k /∈ Si .5

Find the match in the subspace defined by Wx and Wy by optimizing minp
∑N

i=1 d(i, p(i)),6
taking into account the constraint of unique values for the elements of p.

until p, Wx , and Wy do not change;7

Algorithm 1: Summary of the matching algorithm.

The final algorithm with all the technical details is summarized in Algorithm 1.
The input for the algorithm consists of the data matrices and the candidate sets chosen
based on application domain knowledge, and the output consists of the learned match
p together with the CCA projections Wx and Wy . The computational complexity at
each iteration of the matching algorithm can be described as follows: (1) Perform
canonical correlation analysis which is a generalized eigenvector problem. (2) Com-
pute the distance matrix in the latent space which is of the order O(N |c|), where |c| is
the size of the candidate sets. (3) Solve Assignment Problem which takes O(N M2).
The Assignment Problem can be solved faster if the sparsity of the distance matrix
due to candidate sets is utilized.

3 Related work

A number of other works have addressed the problem of making two data matrices
commensurable when no co-occurrences are known. These works can be divided into
two categories: methods that seek a match between the objects of the two views, like
our method, and methods that aim at computing distances between the objects rep-
resented by different views. Even though the latter works typically only provide the
distance measure, they can be converted to achieve also the former by solving a bi-par-
tite matching problem for costs stemming from the distances. That is, our viewpoint
makes it obvious on how the actual matching problem can be solved given a distance
measure.

Haghighi et al. (2008) introduced an algorithm very closely resembling ours, devel-
oped independently of our initial works (Tripathi et al. 2008, 2009). The main dif-
ference is that Haghighi et al. (2008) use a slightly different, heuristic cost for the
assignment problem, whereas we derived the cost by connecting the distances to the
original cost function. Another difference is that Haghighi et al. (2008) started from a
probabilistic formulation of canonical correlation analysis, searching for the maximum
likelihood estimate of the probabilistic CCA. This difference is, however, superficial,
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since the maximum likelihood solution has been shown to be equivalent to the solution
of classical CCA (Bach and Jordan 2005), and hence in this step the algorithms are
identical.

Quadrianto et al. (2009) provide an alternative approach motivated along the
same lines: objects should be matched to maximize statistical dependency between
the views. Instead of correlation they use Hilbert-Schmidt independence criterion
(HSIC; Smola et al. 2007) for measuring the dependency. HSIC can be computed
directly for the original representations, and hence their algorithm does not pro-
vide explicit low-dimensional representations. The algorithm is still iterative in the
same way as ours, since the HSIC results in a quadratic assignment problem instead
of a linear one and they solve it by iteratively applying linear assignment problem
solvers.

Wang and Mahadevan (2009) propose a method for aligning different manifolds,
by constructing a distance measure between objects of the two different views. The
measure is based on aligning local neighborhoods within each of the views, and in a
sense converts within-view distances into between-view distances. In brief, a distance
from xi to y j is based on alignment of the neighborhoods of the k nearest neighbors
in both spaces. The objects are deemed to be close to each other if the set of dis-
tances from xi to its closest neighbors is close to the set of the distances from yi to its
neighbors. The algorithm is not iterative in the same sense as the earlier approaches,
but on the other hand is computationally very complex: Determining the distance
between two neighborhoods requires going through all k! permutations of the neigh-
boring objects. The approach does not directly return one-to-one mappings between
the objects but merely allows measuring distances between the objects in the different
views.

Some methods have also been presented for the related problem of matching the
objects given a small training data for which the matching is already known. This prob-
lem is considerably simpler since the seed matching provides information on which
features are informative of the match. Wang and Mahadevan (2008) apply “procrustes
analysis” for creating a distance measure for the rest of the objects, whereas Tripathi
et al. (2010) study the semi-supervised problem for solving the actual match. As
expected, providing some supervision clearly increases the accuracy.

In Sect. 5.2 we empirically compare our approach with the above alternatives,
excluding the almost identical method of Haghighi et al. (2008) and the semi-super-
vised variants, in the application of metabolite matching. To ensure fair comparison
we adopt parts of our algorithm for the others as well, including the candidate sets and
coupling the manifold alignment of Wang and Mahadevan (2009) with the assignment
problem.

4 Consensus match

As far as we know, all solutions proposed to the matching problem, including our
solution to the generalized problem for different data domains, find the match for a
single realization of two data matrices. In a realistic matching application the task is,
however, to find an underlying match between several realizations of the object collec-
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tions. For example, when matching metabolic identities between two species we often
have measurements for several individuals of both species. The main task is to find the
match between the species, not between the individuals. By assuming the metabolic
activity of a single individual to be a noisy example of generic species-specific activity,
the match between the species is obtained by averaging over the matches of different
individuals.

Let X̄ = {Xs}, s ∈ {1 : S} and Ȳ = {Yt }, t ∈ {1 : T } be the T and S realizations
of the two views, where Xs ∈ RN×Dxs and Yt ∈ RM×Dyt . Again M ≥ N . The task is
to learn a single permutation p to match the objects. Algorithm 1 provides a solution
between any two realizations Xs and Yt , and now we would like to utilize this existing
pairwise algorithm to solve the global matching problem. In brief, the basic idea is to
find the matches between sufficiently many realizations, and then to find a consensus
of all these matches.

We will make two simplifying assumptions. First, the included pairs of realizations
are assumed to be independent samples, which holds approximatively assuming the
total number of realizations is large. Second, when combining the matchings we will
neglect some of the constraints as detailed below; this is necessary to keep the com-
putations manageable. The quality of the solution needs to be evaluated empirically,
which we will do in Sect. 5.

Let pk, k ∈ {1 : S × T } be a match between the objects of any two Xs and Yt ,
obtained by solving (3). We combine the individual solutions pk by creating a con-
tingency table C ∈ NN×M , where cell C(i, j) is the count of solutions where the
i th observation of Xs has been paired with the j th observation of Yt . Intuitively, if
two objects are paired with each other in many individual matching solutions the
corresponding cell value will have a high count.

Now we make the simplifying assumption of using only the information provided
in the contingency table. Then the problem reduces to solving a maximum weight
bipartite matching between the rows and columns of the contingency table C, where
the cost (or weight) of matching comes from the cell frequency C(i, j), i ∈ {1 :
N }, j ∈ {1 : M}, and

∑M
j=1 C(i, j) = S × T,∀i . Let P be the consensus matching

based on the contingency table, obtained as solution to the optimization problem

max
P

N∑

i=1

C(i, P(i)). (8)

Coincidentally, this problem can be solved using the Hungarian algorithm used
above for solving the individual matchings as well. The only difference is that instead
of minimizing the total distance we now maximize the counts.

After solving the consensus match, the individual pairs can be ordered according
to decreasing count. That is, the rows and columns of C(i, P(i)) are re-ordered so that
the found pairs are on the diagonal in decreasing order. This corresponds to a crude
measure or reliability of any given pair; those occurring in the beginning of the list
are more likely to be correct than those at the end.

Finally, we propose a simple way to characterize potential alternative pairs for each
object. This may be useful for applications where one-to-many correspondences are
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also possible, or simply to provide more information on the match. This is done by
comparing the counts of all possible pairs to the simple null distribution of all matches
being a priori equally likely. We use C(r, i) as a test statistic for all i ∈ [1, M], and
estimate the p-values for each pair of objects as the proportion where Z(r, i) > C(r, i).
The null distribution Z(r, i) is generated by drawing 1000 random matches that satisfy
the candidate sets, and counting in how many of those each of the potential pairs occurs.
That is, the distribution is constructed in the same way as the matching algorithm is
being initialized. The pairs with low p-values are given as a list of potential alternative
matches for any particular object in X, complementing the original consensus match
for real biological use cases.

5 Application: translational metabolomics

In metabolomics studies concentrations of metabolic products in tissue samples are
measured, typically with mass spectrometry combined with a chromatography method
such as Liquid Chromatography. The result is a set of peaks in the mass spectrum,
in the two-dimensional plane of retention time vs. mass-to-charge ratio. Some of
these peaks can be identified to stem from specific metabolites but many cannot, and
uncertainties remain in the metabolic profiles even after sophisticated preprocessing
methods.

A typical goal in the studies is to find differences in the metabolic profiles of
two populations, for instance diabetic and healthy (Orešič et al. 2008b) or males and
females (Nikkilä et al. 2008). Also similarities in populations are interesting, in partic-
ular when comparing metabolic profiles of different organisms, such as mice and men,
in order to find out which properties of the model organisms generalize to humans and
which do not. The goal of translating findings from one study or population to another
can be called translational metabolomics.

A main problem in comparing two populations is that, due to the measurement
and preprocessing process, the matching between the metabolites between the pop-
ulations is not completely known. This is obviously problematic for the unidentified
metabolites but also the roles of identified metabolites may be different in different
organisms or tissues. A matching needs to be found, and it is an attractive idea to
compute the matching in a data-driven way, in order to both circumvent imperfectness
in preprocessing methods and to be able to find non-trivial correspondences where the
functional role of the metabolites may be different.

Due to the nature of the measurement process, there is a translational problem even
within the same tissue in the same organism. In large scale studies involving sev-
eral hundreds of samples, the metabolic profile measurements are commonly made in
multiple analytical batches. Within a single batch the metabolic profiles are compara-
ble, but across the batches there is a possibility of larger variation due to instrumental
drift. For us this is an excellent opportunity to test the method, because for the iden-
tified metabolites within a single tissue and single organism, the ground truth of the
matching is known. We will compute a data-driven matching and compare it to the
ground truth, in order to estimate how reliable the method is, and then in future studies
apply it to translation.
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5.1 Data

The data consist of measurements of lipids from a recent large birth cohort study
of Type 1 diabetes (DIPP; Orešič et al. 2008b). In this study, lipidomic profiles of
healthy human patients and patients developing into type 1 diabetes were measured
at variable intervals. The data corresponding to each individual is a time series of
metabolic expression for a given set of metabolites. The length of time series for each
individual is different, ranging from 2 to 30. Also the sampling points are different,
implying that each individual forms a different data domain. We use below altogether
126 individuals, with time series of more than two points, and 53 metabolites which
have been measured and identified for all individuals, so the true matching is known.

We randomly partition the set of individuals into two sets, X̄ and Ȳ, each consisting
of 63 individuals. Each set (X̄ or Ȳ) represents a view. An individual in any view is
called a realization, which is a data matrix with metabolites as observations and time
points as variables. The task is to find a matching of metabolites between the two
views, X̄ and Ȳ. Any two realizations, one from each view, can be used to match the
metabolites. There are altogether 63 × 63 = 3969 such combinations of realizations,
and hence the final match can be computed as a consensus of 3969 matching solutions.

The lipids are traditionally categorized into known classes (Orešič et al. 2008a)
which we can take as prior information. In practice, matches should occur only within
a class, and the idea is to search within a functional class to find a pair for any given
metabolite. This also speeds up the process by restricting the search space.

Further, it is in general a good idea to restrict the search to only a subset of the
possible pairs if possible. We call such subsets candidate sets, and for each metabolite
in any of the Xs , a candidate set is a subset of the corresponding metabolites in Yt .
In the metabolomics application we use mass-to-charge ratio (MZ) and retention time
(RT) of metabolites to create the candidate sets. For a given metabolite, we pick a fixed
number of closest metabolites based on MZ and RT values weighted by corresponding
thresholds (0.001 for MZ and 10 seconds for RT, coming from field experts). In our
experiments, the size of the candidate sets was 10 for those functional classes having
more than 10 metabolites. For smaller functional classes the whole class formed the
candidate set.

5.2 Experiments

In this section we will study empirically the accuracy of the matching results for a
data set where the ground truth is known. The experiments are designed to answer the
following questions: (i) How exactly should the match be computed? (ii) How does
finding the consensus of several matches help and to what extent? (iii) How much data
do we need to get a good matching solution? We also compare the performance of our
matching algorithm with manifold alignment and kernelized sorting.

First, we study the performance of our algorithm on a single pair of realizations
and study the effect of normalization on the distances (7) between the objects when
learning the match. The purpose of this experiment is to both illustrate the accuracy
of a match learned from a single realization, and also to show how normalizing the
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distances in the projection space to emphasize data points with high variation improves
the accuracy.

We then compare our CCA-based matching algorithm to manifold alignment (Wang
and Mahadevan 2009) and kernelized sorting (Quadrianto et al. 2009) by matching
the objects between a single pair of realizations. In order to make the comparison
fair, the concept of candidate sets is incorporated also for the manifold alignment
and kernelized sorting; the information about functional classes of lipids is used to
restrict the search space for matching as in our algorithm. Manifold alignment is used
for matching in two settings. (i) We choose the true match for each object to be the
closest object in the other data set as suggested in the original publication. (ii) The
distance provided by the manifold alignment method is used as a cost for the assign-
ment problem, and a one-to-one match is learned with the Hungarian algorithm as
in our method. In case of Kernelized sorting, we used both of the initialization alter-
natives suggested by Quadrianto et al. (2009), namely initialization with kernel-PCA
and random initialization. For both methods we use Gaussian kernels and choose the
kernel parameters as in (Quadrianto et al. 2009) for both, since Wang and Mahadevan
(2009) do not give suggestions on how the choice should be made. The neighborhood
parameter k of the manifold alignment was chosen to be 4, following the suggestion
in the original publication.

Next, we move to studying the consensus match. The consensus is computed
using our CCA-based matching algorithm. We show how the accuracy is consid-
erably improved already when learning the match from two realizations of both views
instead of one, and continue with experiments on increasing number of realizations.
At the same time, we study the effect of initialization of the individual matches, and
conclude by studying the choice of distance normalization in a larger experiment. We
also study how many realizations (that is, individual measurements) are needed for
learning a good match between the metabolites, using the optimal settings learned in
the first experiment. In a real biological experiment the measurement resources are
always constrained, and knowing in advance how much data is needed for reliable
results would be beneficial. We seek to answer this question for the data studied in
this paper, expecting the result to roughly generalize to experiments of similar nature.

5.3 Results

We start by assessing the quality of the match learned from a single realization of
views. As we have access to a number of realizations, we measure the performance
over 1,000 random choices of the humans used for matching the metabolites. We learn
the match using both the distance measure of (7) and a normalized variant shown in
Algorithm 1, in order to compare these two approaches. Figure 2 shows the distribu-
tion of the proportion of correct matches, with average percentage at 35.7% for the
normalized variant and 26.3% for the un-normalized variant. The normalized variant
is hence considerably more accurate, and is to be preferred at least for individual
matches.

Both variants are more accurate than a baseline provided by the hard constraints
of the candidate sets (average accuracy of random matches satisfying the constraints
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Fig. 2 Matching accuracy in the task of matching metabolites given a single realization of each view.
The matching accuracy is computed against the known ground truth. The boxplots represent the matching
accuracies of 1,000 randomly selected realization pairs. The matching given by the proposed algorithm is
more accurate than the baseline given by the random matching satisfying the candidate sets, showing it is
possible to infer the match from the data. Furthermore, using the normalized distance for optimizing the
match is superior to the un-normalized variant by a margin of almost 10%

is 15.2%), indicating that the algorithm has found useful information already from a
single realization. For a practical biological application the accuracy of the method
would not be acceptable, however. The poor accuracy is primarily due to the difficulty
of the task itself—some humans have only three-point time series, and the two views
may have very different time-scales and dimensionalities. It would be unfeasible to
expect high accuracy for such a matching problem.

Figure 3 shows the comparison of our algorithm with manifold alignment and kern-
elized sorting. The average matching accuracy of our CCA-based matching algorithm
(35.7%) is clearly better than the average matching accuracy of manifold alignment
(23.4%), and both the variants of kernelized sorting; KPCA-based initialization gives
27% and random initialization reaches 30.7%. All the differences are statistically sig-
nificant (p-value below 1e − 14) based on Welch Two Sample t-test. When coupled
with the assignment problem, the average accuracy of manifold alignment (36.08%)
is comparable to our CCA-based matching approach. In this case, the difference is not
statistically significant (p-value 0.37). The manifold alignment method is, however,
orders of magnitude slower than both of the alternative methods. In summary, we
observe that the proposed CCA-based matching method is, for this application, more
accurate than kernelized sorting, and comparable but much faster than the manifold
alignment solution complemented with an assignment problem solver. This warrants
using the proposed algorithm for learning the consensus match, but it is worth keeping
in mind that the consensus could also be learned from the solutions of the other align-
ment methods—or from a combination of solutions learned with different algorithms.

Next we illustrate how the accuracy is improved when more realizations are used for
learning the match, using the consensus solution of Sect. 4. As shown in Fig. 4, already
the consensus learned from two realizations (that is, a total of 4 individual matches)
gives a notable increase in accuracy. The real power of the consensus, however, is in
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Fig. 3 Comparison of Manifold alignment, Kernelized sorting and our CCA-based matching. MA repre-
sents Manifold alignment as proposed in the original publication, MA + AP represents MA with Assignment
problem. KS + KPCA represents Kernelized sorting with KPCA-based initialization, KS + Random repre-
sents Kernelized sorting with random initialization. CCA represents our CCA-based matching algorithm.
In all the methods, the same candidate sets and information about metabolite functional classes is used.
Matching accuracy is based on 1,000 randomly selected single realizations

combining a large number of individual matches, learned from tens of realizations.
We illustrate this by adding more and more realizations. We start again from the case
of 1 + 1 humans that gives one matching solution, and progressively increase the
number of humans on both sides, always computing the consensus match over all
possible matching solutions that can be computed based on the given data. For each
data collection size we average the results over 100 random choices of individuals for
both collections. Note that we use separate humans for the X and Y, since this study
is a proxy for translation studies where the populations would indeed be different.

We also study the effect of initialization of the individual matches on the con-
sensus matching. The individual matching solutions solved by maximizing (3) are
not global optima, but only local ones affected by the initial matching. Intuitively, it
makes sense to start each individual matching from a different random initialization
to maximize the independence of the solutions. In Fig. 5 we show the accuracy of
the consensus matches for two different initialization strategies, one using different
random initialization for each individual matching solution and one using the same
initial matching for all. The result confirms the intuition, showing that maximizing
the independence between the individual matches through different initializations is
crucial for good matching accuracy. While random initialization might not be optimal
for a single match, it guarantees sufficient diversity for the consensus.

In the above experiment we used the normalized distances, as suggested by the
results of the experiment with one realization. To verify whether it is the better choice
also for consensus matches, we run a similar experiment over the whole range of
possible data collections. Figure 6 shows that the normalized variant is more accurate
for all data collection sizes, confirming the initial observation. In conclusion, we have
shown that the choices made in Algorithm 1 are superior to the possible alternatives.
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Fig. 4 Illustration of the gain in performance from using more realizations for matching the objects between
two views. The two boxplots correspond to: (i) the matching of metabolites based on single realization for
each view, and (ii) the matching accuracy based on the consensus of matchings using two realizations for
each view. The gain from adding the second realization is clear, on average around 9%. The normalized-
distance variant is used in both the cases
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Fig. 5 Accuracy of the consensus matching as a number of realizations, combining all possible individual
matches between the humans in both collections. The matching accuracies of two alternative initialization
strategies are averaged over 100 random selections of individuals to the two the data collections, and the
dotted curves show the standard deviation over the randomization. The variant having different random
initializations (solid line) for each individual match is shown to be clearly more accurate than the consensus
computed from individual matches with identical initializations (dashed line). Both variants clearly surpass
the baseline accuracy given by random matches (dash-dotted line)
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Fig. 6 Comparison of the normalized and un-normalized distance variants in a consensus match. The
normalized variant is slightly more accurate for all data collection sizes, and is hence to be preferred. The
final accuracy of the better variant reaches 96%, and already with 30 realizations the accuracy is at 90%,
which could be considered as a sufficient accuracy for a practical translational metabolomics application

In particular, the distances in (7) should be normalized by the norms of the projec-
tions, and giving a different random initialization for each individual match is a good
strategy.

Finally, we turn our attention to the actual matching results. Both Figs. 5 and 6
show that the accuracy grows rather monotonously as a function of available data,
eventually reaching 96.15% accuracy for the case with 63 realizations (3,969 individ-
ual matches). This means that only 2 metabolites out of 52 are matched incorrectly,
which is the second best achievable result—a single mistake in one-to-one matching
naturally implies that another metabolite must also have been matched incorrectly.
Furthermore, the statistical test for finding alternative pairs indicates that for both of
the erroneously paired metabolites the true pair would be the most likely alternative
pair. In summary, it is possible to learn the match between the metabolites of the two
data collections in a data-driven way, given enough data.

The remaining question is, how much data is actually needed. This can be studied
by looking at the curve in Fig. 6. We know from Fig. 2 that the accuracy with just one
realization is not sufficient. However, the accuracy rises steeply when more data is
added. Already at 10 realizations (consensus of 100 individual matches) the accuracy
is at 70%. This represents the kind of accuracy obtainable with small-scale metabolo-
mics data sets. Going further, we notice that 30 realizations (900 individual matches)
are enough for roughly 90% accuracy, which would typically already be sufficient in a
biological experiment. While the results do not directly generalize to other metabolo-
mics measurements, we can still conclude that measurement collections of feasible
size (tens of realizations) are sufficient for learning sufficiently accurate matches, at
least for collections where the number of time points is comparable to our data (on
average around 10 time points).
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6 Discussion

In this paper we introduced the problem of learning the match between sets of objects
that have not been measured as co-occurring data. The goal is to make it possible to
combine different views even when the co-occurrence of the objects is not known,
to enable joint analysis of the views or application of various multi-view learning
methods.

We presented an algorithm that matches the objects of the two views by repeat-
edly solving linear assignment problems. If the feature spaces of the two views can
be directly compared, then the matching can be solved as a single assignment prob-
lem. When the views can not be directly compared, we need an iterative algorithm
that alternatingly solves the match and finds a better representation for comparing
the objects. The representations are learned to maximize the statistical dependency
(mutual information) between the views, with the intuitive idea that a representa-
tion capturing the dependency between the views gives the most reliable measure of
similarity.

We also showed how several independent matching results, obtained by applying
the algorithm for several realizations of the views, can be combined to improve the
accuracy of the match. The consensus is again learned by solving an assignment prob-
lem, which makes the whole approach computationally straightforward: The whole
process only requires a standard assignment problem solver, linear algebra to solve the
canonical correlation analysis problem to find the representations, and simple book-
keeping. For larger problems the computational efficiency of the assignment problem
can be improved by using prior information to introduce sparsity in the cost matrix. The
algorithm used for finding the consensus is general, and can be applied on top of any
other algorithm for finding the individual matching solutions, such as those presented
by Quadrianto et al. (2009) or Wang and Mahadevan (2009). In this work we showed
that the accuracy of our individual alignments is better than one and comparable to
the other, and computationally much faster than the comparable one.

We used the problem of translational metabolomics, that is, study of differences
and commonalities between metabolic activity of different species, as a prototype
application. Model organisms such as mice are being used for more extensive bio-
logical experiments, and it is crucial to be able to generalize the findings to humans.
However, the metabolic profiles, measured by mass spectrometry, are not directly
comparable between the species, and hence the match needs to be inferred from the
data. In this article we applied the method to a partially artificial problem of matching
the metabolites between two collections of the same species, in order to evaluate the
performance of the method in a setting having a gold standard baseline. We showed
that the accuracy learned from a single realization of noisy objects is not sufficient
for further analysis, but that with large enough measurement collections near 100%
accuracy can be achieved. For the particular metabolomic data in question around
30 examples of both species would be needed for adequate 90% matching accuracy,
which is within the limits of current measurement practices. The algorithm is being
applied at the moment in lipidomics studies, for matching lipids between humans and
mice.
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Damian D, Orešič M, Verheij E, Meulman J, Friedman J, Adourian A, Morel N, Smilde A, van der Greef
J (2007) Applications of a new subspace clustering algorithm (COSA) in medical systems biology.
Metabolomics 3:69–77

Duff IS, Koster J (2001) On algorithms for permuting large entries to the diagonal of a sparse matrix. SIAM
J Matrix Anal Appl 22(4):973–996. doi:10.1137/S0895479899358443

Farquhar JDR, Hardoon DR, Meng H, Shawe-Taylor J, Szedmak S (2006) Two view learning: SVM-2K,
theory and practice. In: Weiss Y, Schölkopf B, Platt J (eds) Advances in neural information processing
systems, vol 18. MIT Press, Cambridge, MA pp 355–362

Gretton A, Herbrich R, Smola A (2003) The kernel mutual information. In: Proceedings of ICASSP’03,
IEEE international conference on acoustics, speech, and signal processing, IEEE, pp IV-880–IV-883

Haghighi A, Liang P, Berh-Kirkpatrick T, Klein D (2008) Learning bilingual lexicons from monolingual
corpora. In: Proceedings of ACL-08: HLT. Association for Computational Linguistics, Columbus,
Ohio, pp 771–779

Hardoon DR, Szedmak S, Shawe-Taylor J (2004) Canonical correlation analysis: an overview with appli-
cation to learning methods. Neural Comput 16(12):2639–2664

Jonker R, Volgenant A (1987) A shortest augmenting path algorithm for dense and sparse linear assignment
problems. Computing 38(4): 325–340. doi:10.1007/BF02278710

Klami A, Kaski S (2005) Non-parametric dependent components. In: Proceedings of ICASSP’05, IEEE
international conference on acoustics, speech, and signal processing, IEEE, pp V-209–V-212

Klami A, Kaski S (2008) Probabilistic approach to detecting dependencies between data sets. Neurocom-
puting 72(1–3):39–46

Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Res Logist Quart 2(1–2):
83–97

Li Y, Shawe-Taylor J (2006) Using KCCA for Japanese-English cross-language information retrieval and
document classification. J Intel Inf Syst 27(2):117–133. doi:10.1007/s10844-006-1627-y

Melamed D (1999) Bitext maps and alignment via pattern recognition. Comput Linguist 25(1):107–130
Nikkilä J, Sysi-Aho M, Ermolov A, Seppänen-Laakso T, Simell O, Kaski S, Orešič M (2008)
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