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Abstract

Visualization methods that arrange data objects
in 2D or 3D layouts have followed two main
schools, methods oriented for graph layout and
methods oriented for vectorial embedding. We
show the two previously separate approaches
are tied by an optimization equivalence, mak-
ing it possible to relate methods from the two
approaches and to build new methods that take
the best of both worlds. In detail, we prove a
theorem of optimization equivalences between
[5- and -, as well as - and Rényi-divergences
through a connection scalar. Through the equiv-
alences we represent several nonlinear dimen-
sionality reduction and graph drawing methods
in a generalized stochastic neighbor embedding
setting, where information divergences are min-
imized between similarities in input and output
spaces, and the optimal connection scalar pro-
vides a natural choice for the tradeoff between
attractive and repulsive forces. We give two ex-
amples of developing new visualization meth-
ods through the equivalences: 1) We develop
weighted symmetric stochastic neighbor embed-
ding (ws-SNE) from Elastic Embedding and ana-
lyze its benefits, good performance for both vec-
torial and network data; in experiments ws-SNE
has good performance across data sets of dif-
ferent types, whereas comparison methods fail
for some of the data sets; 2) we develop a ~-
divergence version of a PolyLog layout method;
the new method is scale invariant in the output
space and makes it possible to efficiently use
large-scale smoothed neighborhoods.
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1. Introduction

We address two research problems: nonlinear dimension-
ality reduction (NLDR) of vectorial data and graph layout.
In NLDR, given a set of data points represented with high-
dimensional feature vectors or a distance matrix between
such vectors, low-dimensional coordinates are sought for
each data point. In graph layout, given a set of nodes (ver-
tices) and a set of edges between node pairs, the task is to
place the nodes on a 2D or 3D display. Solutions to both
research problems are widely used in data visualization.

The two genres have yielded corresponding schools of
methods. To visualize vectorial data, many NLDR meth-
ods have been introduced, from linear methods based on
eigendecomposition, such as Principal Component Anal-
ysis, to nonlinear methods such as Isomap or Locally
Linear Embedding. Recent well-performing methods in-
clude Stochastic Neighbor Embedding (SNE; Hinton &
Roweis, 2002), Neighbor Retrieval Visualizer (Venna et al.,
2010), Elastic Embedding (EE; Carreira-Perpifian, 2010),
Semidefinite Embedding (Weinberger & Saul, 2006), and
the Gaussian process latent variable model (Lawrence,
2003). However, these methods often yield poor embed-
dings given network data as input, especially when the
graph nodes have heavily imbalanced degrees.

Force-based methods are probably the most used graph lay-
out method family. They set attractive forces between ad-
jacent graph nodes and repulsive forces between all nodes,
and seek an equilibrium of the force system analogous to
having springs attached between nodes. The methods typ-
ically modify an initial vertex placement by iteratively ad-
justing vertices. Many layout methods have been proposed,
such as sfdp (Hu, 2005), LinLog (Noack, 2007), OpenOrd
(Martin et al., 2011), and MaxEnt (Gansner et al., 2013).
The methods can be used for vector-valued data as well,
transformed into a neighborhood graph, but have not been
designed for that task and often do not find good low-dim-
ensional embeddings for high-dimensional neighborhoods.

Several NLDR and graph drawing methods can be ex-
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pressed as optimizing a divergence between neighborhoods
in the input and output spaces, collectively called Neighbor
Embedding (NE; Yang et al., 2013). Two common kinds
of NE objectives are 1) using a separable divergence' on
non-normalized neighborhoods, as in e.g. EE, and 2) using
a nonseparable divergence on normalized neighborhoods,
as in e.g. SNE. However, it remains unknown whether the
two kinds of objectives are essentially equivalent.

In this paper we address the question by introducing novel
relationships between the objectives. We prove an opti-
mization equivalence between a separable divergence (a or
() and its corresponding nonseparable divergence (Rényi
or 7y) through an optimizable connection scalar. This theo-
rem provides a connection between common NLDR and
conventional force-directed methods, allowing develop-
ment of more general and robust visualization methods by
using extensions and insights from either side. Separable
force-directed objectives are easier to design and optimize,
but the tradeoff between attraction and repulsion as a hy-
perparameter is hard to determine. On the other hand, ob-
jectives formulated with Rényi- or ~y-divergence are scale
invariant. Moreover, the optimal connection scalar yields a
principled choice for the attraction-repulsion tradeoff.

We demonstrate two applications of the optimization
equivalence. First, we introduce a weighted variant of sym-
metric SNE (ws-SNE) by integrating the “edge-repulsion”
strategy from the force-directed graph layout algorithms
and applying the optimization equivalence which automat-
ically selects the best tradeoff between attraction and repul-
sion. Experiments show that ws-SNE works well for both
vectorial and network data, whereas the other compared
neighbor embedding or graph drawing methods achieve
good results for only one of the two types of data. The su-
perior performance of ws-SNE is explained through the op-
timization equivalence. Second, we develop a new variant
of the PolyLog method that minimizes the ~y-divergence.
This new method is invariant to scale of the mapped points
and allows large-scale smoothed input neighborhoods.

We review popular divergence measure families in Section
2. We introduce the optimization equivalence theorem in
Section 3 and the neighbor embedding framework in Sec-
tion 4. We introduce the new visualization methods and
their analysis in Section 5, and show their goodness by ex-
perimental comparisons in Section 6. Section 7 concludes.

2. Divergence measures

Information divergences, denoted by D(p||q), were origi-
nally defined for probabilities and later extended to mea-

'A separable divergence here means a divergence that is a sum
of pairwise terms, where each term depends only on locations of
one pair of data.

sure difference between two (usually nonnegative) tensors
p and g, where D(p||q) > 0 and D(pl||q) = 0iff p = q. To
avoid notational clutter we only give vectorial definitions;
it is straightforward to extend the formulae to matrices and
higher-order tensors. We focus on four important families
of divergences: «-, -, y- and Rényi (parameterized by
r). Their deﬁniti(l)ns are (see e.g. Cichocki et al., 2011):
Da(pllg) = ala—1) Z [pfq; ™ — api + (@ = Dail,

?

Dps(pllg) = ﬁ Z [pf F(B-1)gf — Bpiqiﬁfl}’
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where p; anc7ln qi 1are the entries in p and q respectively,
pi = pi/ > pj and ¢ = ¢;/ ;q;. To handle p’s
containing zero entries, we only consider nonnegative o,
B, «v and r. These families are rich as they cover most
commonly used divergences in machine learning such as

S P
Dy (pllg) =Y _hiln 7
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where Dy; (obtained from D, with r — 1 or D, with
v —=1),D (¢ - lorf — 1), and Dig (6 — 0) de-
note normalized Kullback-Leibler (KL) divergence, non-
normalized KL-divergence and Itakura-Saito divergence,
respectively. Other named special cases include Euclidean
distance (8 = 2), Hellinger distance (a« = 0.5), and Chi-
square divergence (o = 2). Different divergences have be-
come widespread in different domains. For example, Dy,
is widely used for text documents (e.g. Hofmann, 1999)
and Dig is popular for audio signals (e.g. Févotte et al.,
2009). In general, estimation using a-divergence is more
exclusive with larger o’s, and more inclusive with smaller
a’s (e.g. Minka, 2005). For -divergence, the estimation
becomes more robust but less efficient with larger 3’s.?

3. Connections between divergence measures

Here we present the main theoretical result. Previous
work on divergence measures has mainly focused on re-
lationships within one parametrized family. Little research
has been done on the inter-family relationships; it is only
known that there are correspondences between D,, and D,.,
as well as between Dg and D, (see e.g. Cichocki et al.,

2A robust estimator is insensitive to small departures from the
idealized assumptions. An efficient estimator is the minimum
variance unbiased estimator. See e.g. (Cichocki et al., 2011).
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2009). We make the more general connection precise by a
new theorem of optimization equivalence:

Theorem 1. Forp; >0,q;, >0,i=1,...,M,and T > 0,
arg mqin D+ (p|lq) = arg mqin [rcn>161 DﬁﬂT(pch)}. (1

argmin Dy (pllq) = arg min [min Doy (pllcg)]. ()

The proof is done by zeroing the derivative of the right hand
side with respect to c (details in the appendix). The optimal
c is given in closed form:

g

¢* = argmin Dg_,,(p||cq) = ==———,
¢ ’ >4 .
AN
Zi qi ’
229 In(qi/pi)
Zi qi
0. Obviously ¢* > 0 as p and ¢ are nonnegative.

¢ = arg chin Do+ (pllcq) =

with the special case ¢* = exp ( ) for a —

The optimization equivalence not only holds for the global
minima but also all local minima. This is justified by the
following proposition (proof at the end of the Appendix):

Proposition 2. The stationary points of D~ _,;(p||q) and
mingso Dg—-(pl|cq), as well as of D,_(pllq) and
ming>o Do—+(pl|cq), in Theorem 1 are the same.

To understand the value of the above theorem, let us first
look at pros and cons of the four divergence families. The
~- and Rényi divergences are invariant of the scaling of p
and ¢, which is desirable in many applications. However,
they are not separable over the entries which increases opti-
mization difficulty, and it is more difficult to design variants
of the divergences due to the complicated functional forms.
On the other hand, a- and S-divergences are separable and
yield simpler derivatives, thus stochastic or distributed im-
plementations become straightforward. However, the sep-
arable divergences are sensitive to the scaling of p and q.

Theorem 1 lets us take the advantages from either side.
To design a divergence as a cost function for an applica-
tion one can start from the separable side, inserting opti-
mization and weighting strategies as needed, for example
based on analyzing the resulting gradients, and then for-
mulate the final scale-invariant objective by a - or Rényi-
divergence and analyze its properties (see an example in
Section 5.1). In optimization, one can turn back to the sep-
arable side and use efficient algorithms. In visualization,
we show below that the scalar ¢ (denoted A in Section 4)
controls the tradeoff between two learning sub-objectives
corresponding to attractive and repulsive forces. Unlike
in conventional force-directed approaches, here Theorem 1
gives an optimization principle to adaptively and automati-
cally choose the best tradeoff: in order to be equivalent to a
scale-invariant objective, the objective is formulated as on
the right-hand side of (1) or (2), and the optimal tradeoff c*
is found as part of the minimization.

4. Neighbor Embedding optimizes
divergences

We present a framework for visualization based on in-
formation divergences. We start from multivariate data
and generalize to graph visualization in the next sec-
tion. Suppose there are N high-dimensional data ob-
jects {z1,...,xn}. Their neighborhoods are encoded in
a square nonnegative matrix P, where P;; is proportional
to the probability that x; is a neighbor of x;. Neigh-
bor Embedding (NE) finds a low-dimensional mapping
z; — y; € R™ such that the neighborhoods are approx-
imately preserved in the mapped space. Usually m = 2 or
3. If the neighborhood in the mapped space is encoded in
@ € R™ ™ where @);; is proportional to the probability that
y; is a neighbor of y;, the NE task is to minimize D(P||Q)

over Y = [y1,¥2,... ,yN]T for a certain divergence D.

The formulation originated from Stochastic Neighbor Em-
bedding (SNE; Hinton & Roweis, 2002). Let p;; >
0 and ¢i; £ ¢ (g —y;|?) > 0. SNE minimizes
> i Dxi(Pi||Qs:) where Pj; = % and Q;; =
Z‘i’ifl —.  Typically g;; is proportional to the Gaus-
sian distribution so that ¢;; = exp (—[yi — y;[?),
or proportional to the Cauchy distribution so that
¢ij = (1+ |lyi — y;|I*)~" (i.e. the Student ¢-distribution
with a single degree of freedom).

Different choices of P, @, and/or D give different NE
methods. For example, minimizing a convex combination
of D,_,; and D, _,q, that is, Zz HDKL(PZ':HQZ':> + (1 —
K)DxL(Qi:]|P;;) with k € [0,1] a tradeoff parameter, re-
sults in the method NeRV (Venna et al., 2010) which has
an information retrieval interpretation of making a tradeoff
between precision and recall; SNE is a special case (k = 1)
maximizing recall, whereas x = 0 maximizes precision. If
the normalization is matrix-wise: Pj; = p;;/ >, Pri and
Qij = ij/ Yy Q> minimizing Dy (P]|Q) over Y gives
a method called Symmetric SNE (s-SNE; van der Maaten
& Hinton, 2008). When ¢;; = (1+ ||ly; —y;[|?) !, itis also
called t-SNE (van der Maaten & Hinton, 2008).

Although NE methods can be interpreted as force-directed
methods, their design is different from conventional ones:
in NE a divergence is picked, and forces between data arise
from minimizing it. We distinguish SNE from conventional
force-directed layouts because, by Theorem 1, SNE pro-
vides an information-theoretic way to automatically select
the best tradeoff between attraction and repulsion.

Next we show that two other existing visualization methods
can also be unified in the framework.

Proposition 3. FElastic Embedding (EE) is a separable-
divergence variant of s-SNE; s-SNE is a non-separable di-
vergence variant of EE. Proof: Carreira-Perpifian (2010)
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proposed EE which minimizes a Laplacian Eigenmap
term (Belkin & Niyogi, 2002) plus a repulsive term:
Tee(Y) = 305, pijllyi — i 1P+ X 2255 exp (=llyi — y511%).
where A controls the tradeoff between attraction and repul-
sion’. The EE objective can be rewritten as Jgp(Y) =
Di(pllAg) + C(X), where gij = exp (—|ly; — y;]|*). and

C()\) = (Z” pl]) In\ — Zij [pij hlplj _Pij] is con-
stant with respect to Y. Minimizing Jgg over Y is
thus equivalent to minimizing the separable divergence
Di(p||\q) over Y. Notice that we do not optimize Jgg
over \. This information divergence formulation also pro-
vides an automatic way to choose A by using Theorem 1:
arg miny [min ADy(p||Aq)] = argminy Dxi.(pl||g), with
the best A = 3. pij/ >, @ij- The non-separable diver-
gence on the right-hand side is the s-SNE objective. Thus
EE with the best tradeoff (yielding minimum I-divergence)
is essentially s-SNE with Gaussian embedding kernels.

Proposition 4. Node-repulsive LinLog is a divergence min-
imization method. Proof: Noack (2007) proposed the Lin-
Log energy model which is widely used in graph draw-
ing. The node repulsive version of LinLog minimizes
Tharoe(Y) = A5 pijllye — ysll = 325 nllyi — w5 Al-
gebraic manipulation yields jfi‘nLog(Y) = Dis(p||r\g) +
—y;ll~t

A recent work (Bunte et al., 2012) also considers SNE for
dimension reduction and visualization with various infor-
mation divergences, but their formulation is restricted to
stochastic matrices, and gives no optimization equivalence
between normalized and non-normalized cases.

constant, where ¢;; = ||y;

S. Developing new visualization methods

The framework and the optimization equivalence between
divergences not only relate existing approaches, but also
enable us to develop new visualization methods. We give
two examples of such development: 1) a generalized SNE
that works for both vectorial and network data, and 2) a -
divergence formulation of PolyLog (Noack, 2007) which
is scale invariant in the output space and allows large-scale
smoothed input neighborhoods. In both examples, Theo-
rem 1 plays a crucial role in the development.

5.1. Example 1: ws-SNE

We want to build a method for a vectorial embedding but
incorporating the useful edge repulsion (ER) strategy from
graph drawing. ER would be easy to add to the EE ob-
jective as it is pairwise separable. Borrowing the ER strat-

3For notational clarity we only illustrate EE with w,,,, = 1
(see Carreira-Perpifidn, 2010, Eq. 6). In his experiments Carreira-
Perpifidn (2010) also used uniform w™. It is straightforward to
extend the connection to the weighted version.

egy from Noack (2007), we insert weights M in the re-
pulsive term:  Jueigheare(Y) = Y. pijllyi — y5l1* +
)‘Zij Mij exp <_Hyi - yj||2)’ where Mij = didj, and
the vector d measures importance of the nodes. We use
degree centrality as the measurement, i.e., d;=degree of the
i-th node. Jyeighed-ee(Y") has downsides: it needs a user-
set edge repulsion weight A, and is not invariant to scaling
of p. By Theorem 1 we create a corresponding improved
method, ws-SNE, minimizing a nonseparable divergence.

Proposition 5. Weighted EE is a separable divergence
minimizing method and its non-separable variant is ws-
SNE. Proof: Writing ¢;; = exp(—|ly; — y;[|?) with
¢i = 0, we have Jyeigheare(Y) = Di(p||[AM o
q) + F(\), where o denotes element-wise product and
F(A) = C(\) + >,;pijlndid; is a constant to
Y. In the final and most important step, by a spe-
cial case of Theorem 1: argminy Dxi(p||M o q) =
arg miny [miny>o Di(p||AM o q)], we obtain a new vari-
ant of SNE which minimizes Dy (p||M o q) over Y
jws—SNE(Y) = — Zpij In Qij + In Z Mijqij -+ constant
? 7

We call the new n]lethod weighted s]ymmetric Stochastic
Neighbor Embedding (ws-SNE). As in SNE, other choices
of ¢ can be used; for example, the Gaussian ¢ can be re-
placed by the Cauchy ¢;; = (1 + [ly; — y;||*)~" or other
heavy-tailed functions (see e.g. Yang et al., 2009).

We used degree centrality as the importance measure for
simplicity. Other centrality measures include closeness, be-
tweenness, and eigenvector centralities. Note that for vec-
torial data with K-Nearest-Neighbor (KNN) graphs, ws-
SNE reduces to s-SNE if out-degree centrality is used.

The ws-SNE method is related to the multiple maps t-SNE
method (van der Maaten & Hinton, 2011), but differently
the latter aims at visualizing multiple views of a vectorial
dataset by several sets of variable node weights. In addi-
tion, ws-SNE does not impose the stochasticity constraint
on the node weights. It is unknown whether multiple maps
t-SNE can handle imbalanced degrees in graph drawing.

Analysis: best of both worlds. As shown by Proposi-
tion 5, ws-SNE combines edge-repulsion merits from graph
drawing with the scale-invariance and optimal attraction-
repulsion tradeoff from SNE. We find it performs consis-
tently well for vectorial and network data visualization.

SNE and its variants were originally designed for nonlinear
dimensionality reduction, where all data points are gen-
erally assumed equally important; this assumption works
well for neighborhoods of vectorial data, e.g. p coming
from a symmetrized KNN graph, where degrees do not
differ much. However, for graph or network data where
the degree distribution can be highly imbalanced, SNE
often yields poor visualizations where high degree nodes
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are placed in the center (see Figure 1, C3 to C6 for ex-
amples). In contrast, ws-SNE uses edge repulsion to
handle such cases of imbalanced degrees. When the d;
are not uniform, ws-SNE behaves differently from con-
ventional s-SNE, which can be explained by its gradient
0D — S5 ey (yi — v3) — cdidials™ (vi — v5)»
where ¢ =37, pi; /(32;; did;qij) is the connection scalar,
and 6 = 0 for Gaussian ¢ and § = 1 for Cauchy q. The
first term in the summation is for attraction of nodes and
the second for repulsion. Compared with the s-SNE gradi-
ent, the repulsion part is weighted by d;d; in ws-SNE. That
is, important nodes have extra repulsive force with the oth-
ers and thus tend to be placed farther. This edge-repulsion
strategy has been shown to be effective in graph drawing to
overcome the “crowding problem”, namely, many mapped
points becoming crowded in the center of the display.

On the other hand, conventional graph drawing methods do
not work well for multivariate data. They are usually de-
signed by choosing various attractive and repulsive force
terms, as in the “spring-electric” layout (Eades, 1984),
Fruchterman-Rheingold (Fruchterman & Reingold, 1991),
LinLog (Noack, 2007), and ForceAtlas2 (Jacomy et al.,
2011). These force-directed models have a serious draw-
back: the layout is sensitive to scaling of the input graph,
thus the user must carefully (and often manually) select the
tradeoff between attraction and repulsion. A constant trade-
off or annealing scheme may yield mediocre visualizations.

The optimal tradeoff is automatically selected in ws-SNE
by the optimization equivalence, yielding an objective in-
variant to the scale of p. This is more convenient and often
performs better than conventional force-based methods.

Information retrieval interpretation. Venna & Kaski
(2007) and Venna et al. (2010) gave information retrieval
perspectives of the unweighted SNE. As a new contribu-
tion, we show in the supplement that ws-SNE optimizes vi-
sualizations for a two-stage retrieval task: retrieving initial
points and then their neighbors. In brief, we prove the cost
can be written as a sum of divergences as Jyssne(Y) =
D ({pi H{@:}) + 22 piDxi ({85)i H[{@;):}) where p; =
Yok Pik/ D Pim and @ = (di Dy diqir) /(D gy drdigr)
are marginal probabilities in the input and output space, and
Djli = Pij/ >y, Pir and G5 = djqiz/ (32}, diqix) are con-
ditional probabilities in the input and output space around
point ¢. The divergence between marginal probabilities is
interpreted as performance of retrieving initial points; di-
vergences between conditional probabilities are interpreted
as performance of retrieving neighbors. In both stages the
retrieval performance is mainly measured by recall (cost
of missing points and their neighbors), and the weighting
causes optimization to distribute high- and low-importance
nodes more evenly.

5.2. Example 2: v-QuadLog

In graph layout, smoothing graph adjacencies by random
walks is potentially beneficial but computationally unfea-
sible for many methods as smoothed adjacencies can be
non-sparse. We use Theorem 1 to develop a layout method
that efficiently incorporates random-walk smoothing.

A sparse input graph A can be smoothed by computing
a random-walk transition probability matrix p = (1 —
p) (I — pD=Y2AD=1/2) ™" with p € (0,1) and D;; =
> j A;j. Smoothing can help layout methods avoid poor
local optima and reveal macro structure of data. However,
the matrix p is dense and infeasible to use explicitly in com-
puting layout cost functions for large graphs. We start from
QuadLog, a force-based method in the r-PolyLog family
(Noack, 2007): Touuarog(Y) = AXi; il — usl* —
> Inllyi — y;[*. While random walk smoothing can be
applied in QuadLog, it is not scale-invariant and needs a
user-set tradeoff parameter \; we now solve this.

Proposition 6. QuadlLog minimizes a separable diver-
gence, and there exists an equivalent minimization of a
non-separable divergence that still permits fast use of ran-
dom walk smoothing. Proof: We show the QuadLog ob-
jective is an Itakura-Saito divergence plus constants with
respect to Y: simple manipulation gives jé\uadLog(Y) =
Dis(pl[Ag) + >2;; In(pij/A) + N(N — 1), where ¢;; =
llyi — y;]|~2. By Theorem 1, minimizing jé‘uadLOg(Y) with
respect to X is equivalent to minimizing D~ _,o(p||q). We
call the new method y-QuadLog as it is a counter-part of
QuadLog in the 7y-divergence family. Dropping the addi-
tive constants, the v-QuadLog objective is ,
n ||y; — vy

j'y—QuadLog(Y) =In iszij ”yi_yj H2_ ZUN(]”\;J 1§/J H
The new objective has two advantages: 1) It is scale-invari-
ant in input and output: multiplying p by a scaling factor
does not change the optima; multiplying Y by a scaling fac-
tor does not even change the objective value. 2) It allows
use of smoothed neighborhood graphs: the v-QuadLog ob-
jective can be computed using the matrix product pY’, and
as in QuadLog, pY can be scalably computed by iterative
approaches (e.g. Zhou et al., 2003, if random walk is used).

~v-QuadLog is the only method we know with both advan-
tages 1) and 2). We could e.g. develop a scale-invariant ver-
sion of node-repulsive LinLog (take the divergence form of
JL’\mLOg(Y) from Proposition 4: by Theorem 1, optimizing
it w.r.t. A is equivalent to miny D,_,0(p||g)) but it would
not allow efficient use of smoothed graphs.

6. Experiments

We compare the ws-SNE method with EE, t-SNE and two
widely used graph drawing programs graphviz and Lin-
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Figure 1. Visualizations of (rows 1-6) shuttle, MNIST, worldtrade, usair97, mirex07, and luxembourg using (columns
A-E) graphviz, LinLog, t-SNE, EE, and ws-SNE. We manually label acceptable (see text) visualizations by a green border. Only ws-SNE
yields acceptable results on all data. For data with ground truth classes, “AUC” denotes area under the retrieval precision-recall curve in
KNN neighborhoods (curves in Figure 2). ws-SNE is the best or second best in all cases, yielding the most consistent good performance.
Displays D1, E1, and D2 are zoomed to the densest area; full displays are in the supplemental document. The figure is best viewed in
color.
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Log. For EE, ws-SNE, graphviz and LinLog, we used sym-
metrized 10-NN graphs as input. For ws-SNE, we adopted
the Cauchy kernel, spectral direction optimization (Vla-
dymyrov & Carreira-Perpifidn, 2012) and scalable imple-
mentation with Barnes-Hut trees (van der Maaten, 2013;
Yang et al., 2013). Both ws-SNE and t-SNE were run for
the maximum 1000 iterations. We used default settings for
the other compared methods (graphviz uses sfdp layout;
Hu, 2005). The compared methods were used to visualize
six data sets, two vectorial data and four network data. The
descriptions of the data sets are given in the supplemental
document. Figure 1 shows the resulting visualizations.

First let us look at the results for vectorial data. In a de-
sired layout of shuttle and MNIST, data points should
be grouped according to ground truth classes shown as col-
ors. In this respect, graphviz and ws-SNE are successful
for shuttle. In contrast, LinLog fails badly by mixing
up the classes in a hairball. In the t-SNE layout, the classes
were broken up into unconnected small groups, without a
meaningful macro structure being visible. For MNIST, t-
SNE and ws-SNE correctly identify most classes through
clear gaps between the class point clouds; ws-SNE has
even better AUC. In contrast, graphviz and LinLog perform
much worse, heavily mixing and overlapping the classes.

Next we look at the visualizations of network data. For
the worldtrade data set, a country generally has higher
trading amounts with its neighboring countries. Therefore,
a desired 2D visualization of the countries should correlate
with their geographical layout. Here we illustrate the conti-
nents of the countries by colors. We can see that graphviz,
LinLog and ws-SNE can basically group the countries by
their continents. In the high-resolution images annotated
with country labels (in the supplemental document), we can
also identify some known regional groups such as Scan-
dinavian and Latin-American countries in the LinLog and
ws-SNE visualizations. In contrast, Figure 1 C3 shows a
typical failure of t-SNE for graphs with imbalanced de-
grees: the high-degree nodes are crowded in the middle
while those with low degrees are scattered in the periphery.

In the usair97 data set, the network links denote whether
two cities have direct flights or not. A desired visualization
of the data should correlate with geographical locations of
the airports. LinLog and ws-SNE are more successful in
this sense. We present the names of the 50 biggest airports
(by degrees) in the supplemental document, where we see
that the geographical topology is almost recovered in these
two visualizations except southeast airports. In contrast,
graphviz and t-SNE are problematic in this task, especially
for placing continental airports; they tend to squeeze big
airports in the middle and dangle small ones in periphery.

For mirex07, a desired visualization should be able to il-
lustrate the music genres (shown as colors) of the songs.

shuttle graphviz MNIST
----LinLog
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graphviz graphviz
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Figure 2. Recall-precision curves of the retrieval by KNN in the
2D space (with different K’s) for the four data sets with ground
truth classes. Corresponding areas under the curve (AUCs) are
shown in Figure 1. This figure is best viewed in color.

LinLog and ws-SNE perform better for this purpose. In
contrast, graphviz has a “broccoli-like” display which can
only barely show the classes. The t-SNE method again suf-
fers from the imbalanced degree problem: a lot of low-
degree nodes occupy a large area and squeeze the high-
degree nodes into the middle.

For 1uxembourg the ground truth is the geographical co-
ordinates of the nodes as the edges are streets (see the sup-
plemental document). However, visualization methods can
easily fall into trivial local optima, for example, LinLog
and t-SNE simply give meaningless displays like hairballs.
In contrast, graphviz and ws-SNE successfully present a
structure with much fewer crossing edges and higher re-
semblance to the ground truth, even though the geographi-
cal information was not used in their learning.

We fixed A = 1 in EE and the results are given in D1-D6 in
Figure 1. In this setting, EE only works well for shuttle
and fails badly for all the other datasets. This indicates that
EE performance heavily relies on A. The EE layouts tend
to be uniform with too large \’s (e.g. D3 and D4) or fail to
unfold the structure with too small \’s (e.g. D2 and D6).

Besides qualitative results, we also quantify the visualiza-
tion performance of data sets with ground truth classes.
We plot the curves of mean precision vs. mean recall of
retrieval in the KNN neighborhoods (in the visualization)
across different K’s in Figure 2. The area under the curves
(AUCs) are shown in Figure 1. The quantified results show
that the ws-SNE method performs the best or very close to
the best for the four data sets.

In summary, ws-SNE is the only method that gives good vi-
sualizations over all the six data sets. The other four meth-
ods can only discover the data structures in either some vec-
torial or network data, but not over all data of both types.

We also provide a preliminary result of y-QuadLog for
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Figure 3. Visualization of shutt le using y-QuadLog.

the shuttle dataset, where we used the random walk
smoothing (p = 0.99) and gradient descent optimization,
with the step size selected by backtracking to guarantee
the cost function decreases. The visualization is given in
Figure 3, and the ROC curve in Figure 2 (top left). ~-
QuadLog ties with graphviz as the best in retrieval perfor-
mance (AUC). Note that zooming the display to a dense
area as in EE and ws-SNE was not needed for y-QuadLog.

7. Conclusions

We proved an optimization equivalence theorem between
families of information divergence measures. The theorem,
together with the known relationships within the families,
provides a powerful framework for designing approxima-
tive learning algorithms. Many nonlinear dimensionality
reduction and graph drawing methods can be shown to be
neighbor embedding methods with one of the divergences.
As examples, we used the theorem to develop two new
visualization methods. Remarkably, the ws-SNE variant
works well for both vectorial and network data.

In this paper the divergence measure was selected man-
ually. Methods exist to automatically select the best [-
divergence (e.g. Simsekli et al., 2013; Lu et al., 2012). Our
finding on divergence connections could extend the meth-
ods to ~y-divergence and to «- and Rényi-divergences by a
suitable transformation from /3 to .

Both kinds of divergences have good properties: separa-
ble divergences are easy to modify, thus we started method
derivations from them, whereas non-separable divergences
have appealing invariances and need no connection scalars.
The benefit of changing to non-separable divergences is
greatest when many connection scalars are needed on the
separable side; in our examples the change got rid of a sin-
gle tradeoff parameter, in cases involving many such pa-
rameters the benefit would be even greater.

We gave preliminary empirical results of the two newly de-
veloped methods. In ws-SNE, one could additionally use
our framework and equivalence theorem to analyze effects
of other centrality measures for the edge repulsion and even
other weighting schemes. The y-QuadLog method will be
tested on more datasets and with more advanced optimiza-
tion methods in the future.
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Appendix: proofs

Lemma 7 arg min, af(z) = argmin, aln f(z) fora € R
and f(z) > 0. Proof: by the monotonicity of In().

Proof of Theorem 1. Next we prove the first part in The-
orem 1. For 7 ¢ {0,1}, ODg_,(pl|cq)/Oc = 0O gives

(X pigf 1)/, q7). Putting it back, we ob-
tain min, [min.>¢ Dg— - (p||cg)] = min, T(%_l) [Zip{—
(Z pig] ) (2,47
)Z p;, and by Lemma 7, the above is equiv-

ln(z piq; b,

Adding a constant ﬁlm(zi pz), the objective be-

Dropping the constant

T(T 1
alent to minimizing iln(zj a) —

comes D, (p||q).

We can apply a similar technique to the second part
in Theorem 1. O0Dg—,(p||cq)/0c = 0 gives ¢* =

(g, Pla Til/T for = ¢ {0,1}. Putting
it back we obtain ming [mingsg Do—-(pllcq)] =

Lprd Y+ e with G =

Droppmg the constant Z ﬁ =, and by Lemma

7, the above is equivalent to mmlmlzmg Ind . pig "
for 7 > 0. Adding a constant "~ In ), p; to this equation
the objective becomes DTHT(p| \q)

mmq

i/ > 95

The proofs for the special cases are similar:

Dp=~v—1(ra=r— 1) dDsg,1(p|lcq)/0c =0
gives ¢* = (3, pi)/(>_; ;). Putting it back, we obtain
Dgi(plle™q) = (32 pi) Dy-1(pllg)-

2) B = — 0: 0Dg_o(pl|lcq)/0c = 0 gives ¢* =
J\—Z Zz(pz/Q1) where M is the length of p. Putting it back,
we obtain Dg_,o(p||c*q) = M D~—0(p||q).

3)a =71 —0: 0Da—0(p||cq)/dc = 0 gives ¢* = exp ( —
>2:Giln(qi/pi)), where §; = q;/ > q;. Putting it back,
we obtain D0 (p||c*q) = —exp (=Y, ¢ In %) +> i
Dropping the constant ) _ p;, minimizing Do—o(pllc*q) is
equivalent to minimizing . ¢; In & o . Adding the constant
In ) p; to the latter, the objective becomes D0 (p||q).

Proof of Proposition 2. When proving Theorem 1, the
optimization equivalence consists of three steps: 1) substi-
tuting the closed form solution of the connection scalar, 2)
adding or subtracting constants, and 3) applying Lemma
7. Obviously 1) and 2) do not change the stationary
points. For 3), the stationary point condition of aIn(z) is

[aln f(2)] = “J]:(/S) = 0. For f(z) > 0, this is equivalent

to af’(z) = 0, the condition of stationary points of a f(z).
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