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Abstract

Nonlinear dimensionality reduction has so
far been treated either as a data represen-
tation problem or as a search for a lower-
dimensional manifold embedded in the data
space. A main application for both is in in-
formation visualization, to make visible the
neighborhood or proximity relationships in
the data, but neither approach has been de-
signed to optimize this task. We give such
visualization a new conceptualization as an
information retrieval problem; a projection
is good if neighbors of data points can be re-
trieved well based on the visualized projected
points. This makes it possible to rigorously
quantify goodness in terms of precision and
recall. A method is introduced to optimize
retrieval quality; it turns out to be an exten-
sion of Stochastic Neighbor Embedding, one
of the earlier nonlinear projection methods,
for which we give a new interpretation: it op-
timizes recall. The new method is shown em-
pirically to outperform existing dimensional-
ity reduction methods.

1 INTRODUCTION

Early nonlinear projection methods introduced a rep-
resentation for the data points and optimized the rep-
resentations to minimize representation error. Most
can be interpreted as multidimensional scaling (MDS)
methods (Borg & Groenen, 1997) which minimize
some measure of preservation of pairwise distances be-
tween data points.

More recently, there has been a lot of interest in meth-
ods that construct the projection by searching for
data manifolds embedded in the original data space.
Isomap (Tenenbaum et al., 2000) infers the manifold

through local neighborhood relationships, and visu-
alizes it by MDS; Locally Linear Embedding (LLE;
Roweis & Saul, 2000) approximates the manifold lo-
cally by linear surfaces; Laplacian Eigenmap (LE;
Belkin & Niyogi, 2002) and Hessian Eigenmap (HLLE;
Donoho & Grimes, 2003), are very similar but based on
graph theory; Semidefinite Embedding (SDE; Wein-
berger et al., 2004) aims at maximizing the variance in
the feature space while preserving the angles and dis-
tances between neighbors; Alignment of Local Models
(ALM; Verbeek et al., 2004) and other similar ap-
proaches first fit local models to the data and then
search for a transformation that aligns them glob-
ally. Finally, there are more heuristically derived but
surprisingly well-performing algorithms, such as the
Curvilinear Components Analysis (CCA; Demartines
& Hérault, 1997).

Nonlinear dimensionality reduction methods are com-
monly used for two purposes: (i) as preprocessing
methods to reduce the number of input variables or
to represent the inputs in terms of more natural vari-
ables describing the embedded data manifold, or (ii)
for making the data set more understandable, by mak-
ing the similarity relationships between data points
explicit through visualizations. The visualizations are
commonly needed in exploratory data analysis, and in
interfaces to high-dimensional data. In this paper we
will focus on the latter types of applications and call
them information visualization, with the understand-
ing that the goal is to visualize neighborhood or prox-
imity relationships within a set of high-dimensional
data samples. The introduced methods are expected
to be useful for other kinds of dimensionality reduction
tasks as well, however.

In information visualization applications, a problem
with all the existing dimensionality reduction meth-
ods listed above is that they do not optimize the per-
formance for the task of visualizing similarity relation-
ships. The cost functions measure preservation of pair-
wise distances for instance, but that is only indirectly



related to the goodness of the resulting visualization.
Manifold search methods, on the other hand, have
been designed to find the “true” manifold which may
be higher than two-dimensional, which is the upper
limit for visualization in practice. Hence, evaluating
goodness of visualizations seems to require usability
studies which would be laborious and slow.

In this paper we view information visualization from
the user perspective, as an information retrieval prob-
lem. Assume that the task of the user is to under-
stand the proximity relationships in the original high-
dimensional data set; then the task of the visualiza-
tion algorithm is to construct a display that helps in
this task. For a given data point, the user wants to
know which other data points are its neighbors, and
the visualization should reveal this for all data points,
as well as possible. If this task description matches
the users goals, our analysis gives rigorous grounds for
constructing a visualization algorithm.

Any visualization algorithm will make two kinds of er-
rors: Some neighbors will be missed (which reduces
recall) and some non-neighbors will be visualized as
neighbors (which reduces precision). In information
retrieval it is traditional to evaluate systems based on
curves of precision vs. recall, or optimize the system
to minimize some combination of the two measures.
Our suggestion is to do the same in information visu-
alization.

It turns out (derived below) that one of the manifold
extraction methods, Stochastic Neighbor Embedding
(SNE; Hinton & Roweis, 2002), can be interpreted to
optimize a smoothed version of recall. In this paper
we introduce a measure of precision to the algorithm,
and optimize a parameterized compromise between the
two. In the resulting Neighbor Retrieval Visualizer
(NeRV) the compromise can be tuned according to the
relative costs of the two criteria. It turns out that the
method outperforms its alternatives on a wide range
of values of the compromise parameter.

2 DIMENSIONALITY REDUCTION

AND INFORMATION

RETRIEVAL

2.1 BACKGROUND: STOCHASTIC

NEIGHBOR EMBEDDING

The SNE algorithm (Hinton & Roweis, 2002) was origi-
nally motivated as a method for placing a set of objects
into a low-dimensional space in a way that preserves
neighbor identities. Such a projection does not try to
preserve pairwise distances as such, as MDS does, but
instead the probabilities of points being neighbors.

A probability distribution is defined in the input space,
based on the pairwise distances, to describe how likely
it is that the point i is a neighbor of point j. The
same is done in the low-dimensional output or projec-
tion space. The algorithm then optimizes the config-
uration of points in the output space, such that the
original distribution of neighborness is approximated
as closely as possible in the output space. The natural
measure of approximation error between distributions
is the Kullback-Leibler (KL) divergence, which is av-
eraged over all points.

More formally, the probability pij of the point i being
a neighbor of point j in the input space is defined to
be

pij =
exp (−

d(xi,xj)
2

σ2

i

)
∑

k 6=i exp (− d(xi,xk)2

σ2

i

)
, (1)

where d(xi,xj) is the Euclidean distance between the
data points xi and xj . The width of the Gaussian, σi,
is set either manually or by fixing the entropy of the
distribution. Setting the entropy equal to log k sets
the “effective number or neighbors” to k.

Similarly, the probability of the point i being a neigh-
bor of point j in the output space is defined to be

qij =
exp (−

‖yi−yj‖
2

σ2

i

)
∑

k 6=i exp (− ‖yi−yk‖2

σ2

i

)
. (2)

The SNE algorithm searches for the configuration of
points yi that minimizes the KL divergence D between
the probability distributions in the input and output
spaces, averaged over all points. The cost function is

ESNE = Ei[D(pi, qi)] ∝
∑

i

D(pi, qi)

=
∑

i

∑

j 6=i

pij log
pij

qij

, (3)

where Ei is the average over data samples i.

2.2 SNE AS AN INFORMATION

RETRIEVAL METHOD

SNE was originally motivated differently; we will next
give it a new interpretation. It turns out that SNE
can be seen as an information retrieval algorithm; it
optimizes a smoothed form of recall. Assume that the
user wants to retrieve neighbors of each data point,
and do that with the help of the visualization (output
space) only.

To show the connection we need to define neighbor-
hoods as step functions. The user is studying r neigh-
bors in the output space, and her goal is to find a large



proportion of the k “true” neighbors, that is, neighbors
in the input space.

Technically, we assume the k closest points to be neigh-
bors with a high probability and the rest with a very
low probability. Define

pij =







a ≡
1−δ

k
,

if point j is among the k nearest
neighbors of i in the input space

b ≡
δ

N−k−1 , otherwise

(4)
where N is the total number of data points, k is the
size of the desired neighborhood and 0 < δ < 0.5 gives
the non-neighbors a very small probability.

Similarly, we define the probability of j being a neigh-
bor of i in the output space by

qij =







c ≡
1−δ

r
,

if point j is among the r nearest
neighbors of i in the visualization

d ≡
δ

N−r−1 , otherwise

(5)
where r is the neighborhood size in the output space.

Now each KL divergence in the cost function can be
divided into four parts,

D(pi, qi) =
∑

pij=a,qij=c

a log
a

c
+

∑

pij=a,qij=d

a log
a

d
+

+
∑

pij=b,qij=c

b log
b

c
+

∑

pij=b,qij=d

b log
b

d

= CTPNTP + CMISSNMISS + CFPNFP + CTNNTN.
(6)

Here NTP is the number of true positives, that is,
points where the probability of being a neighbor is high
in both spaces. The number of misses, points not be-
ing chosen for retrieval because of a low probability in
the output space although the probability in the input
space is high, is NMISS. The number of false positives
is NFP; high in the output space but low in the input
space. Finally the number of true negatives (low in
both spaces) is NTN. The C are constant coefficients;
CTP = (1 − δ)/k log(r/k), and the rest analogously.

It is straightforward to check that if δ is very small,
then the coefficients for the misses and false positives
dominate the cost ESNE

D(pi, qi) ≈ CMISSNMISS + CFPNFP =

NMISS

1 − δ

k

(

log
(N − r − 1)

k
+ log

(1 − δ)

δ

)

+

+ NFP

δ

N − k − 1

(

log
r

N − k − 1
− log

(1 − δ)

δ

)

(7)

and, moreover,

D(pi, qi) ≈
(

NMISS

1 − δ

k
− NFP

δ

N − k − 1

)

log
(1 − δ)

δ

≈ NMISS

1 − δ

k
log

(1 − δ)

δ
=

NMISS

k
C, (8)

where C is a constant. This is the cost function SNE
would try to minimize, and hence it would maximize
recall which is defined as

recall =
NTP

k
= 1 −

NMISS

k
. (9)

In summary, with a step function as a neighborhood
distribution, the SNE would optimize average recall.
This result is mainly theoretical, however, since op-
timization with such step functions would be very
difficult in practice. Instead, SNE uses a Gaussian
neighborhood function which can be interpreted as a
smoothed step function. With the Gaussian the recall
turns into smoothed recall which takes into account
the sizes of the errors as well as their number.

3 NEIGHBOR RETRIEVAL

VISUALIZER

Understanding SNE in the information retrieval sense
opens up new avenues for improvement. SNE max-
imizes (smoothed) recall, and it is well known that
maximizing recall typically leads to low precision. In
other words, SNE only optimizes one end of the spec-
trum.

If we want to maximize precision, we can reverse the
direction of the KL divergence in (3). For step func-
tions and for small δ, it is straightforward to show,
analogously to the previous section, that

D(qi, pi) ≈
NFP

r
C, (10)

where NFP is the number of false positives and r is
the number of retrieved points. Minimizing this would
correspond to maximizing precision defined as

precision = 1 −
NFP

r
. (11)

Hence, by reversing the direction of the KL divergence
in the cost function we get a method that focuses on
gaining a high precision. Again, we could switch to
Gaussian neighbor distributions instead of step func-
tions, to get an algorithm that is analogous to SNE
but that would maximize smoothed precision instead
of smoothed recall.



In practice it would be best to optimize a compromise.
If we assign a relative cost λ to misses and (1 − λ)
to false positives, then the total cost function to be
optimized is

ENeRV = λEi[D(pi, qi)] + (1 − λ)Ei[D(qi, pi)]

= λ
∑

i

∑

j 6=i

pij log
pij

qij

+ (1 − λ)
∑

i

∑

j 6=i

qij log
qij

pij

.

(12)

For step functions and small δ this reduces to a to-
tal information retrieval cost, a compromise between
precision and recall, and for Gaussian functions as in
SNE it can be interpreted as a smoothed cost. We call
the new method that optimizes (12) Neighbor Retrieval
Visualizer (NeRV), since it interprets the visualization
problem as a problem of retrieving neighbors based on
the visualization.

By setting the parameter λ ∈ [0, 1] we choose to focus
more on either the probabilities that are high in the
input space (recall) or in the output space (precision).
When λ = 1 the method becomes SNE and when λ = 0
it focuses purely on avoiding false positives.

We optimize the cost function using a conjugate gra-
dient algorithm. A heuristic but very effective way
of avoiding local minima is to initialize the optimiza-
tion by starting with a large width of the Gaussian
neighborhood, σ2

i , and reducing it stepwise after each
optimization step until the final value is reached. Af-
ter this initialization, normal conjugate gradients are
run with a fixed Gaussian for each data point.

The computational cost of the gradient step in the
NeRV algorithm is of complexity O(n3), which can be
prohibitive for large data sets. We will next sketch two
alternative approximate cost functions with complex-
ity O(n2), to be compared empirically.

Zhu and Rohwer (1995) have developed an information
geometric extension of the KL divergence that is valid
for all positive measures instead of only normalized
measures. The divergence is

DKLe(p, q) =
∑

q − p + p log
p

q
. (13)

Replacing the KL divergence in the NeRV cost func-
tion with the extension allows us to use the exponen-
tial density values without the soft-max normalization
used in SNE and NeRV; this reduces the complexity of
the gradient step. Furthermore, the change in the cost
function makes it possible to replace conjugate gradi-
ents with stochastic gradient steps in the beginning of
optimization, which avoids local optima. We call this
approximate version fast NeRV (fNeRV).

The new algorithms NeRV and fNeRV will addition-
ally be compared with a similarly motivated but more

heuristic earlier algorithm called Local MDS (Venna &
Kaski, 2006). The Local MDS algorithm focuses on
preserving distances that lie within a certain area of
influence around each data point both in the input and
output space. A parameter λ controls whether the fo-
cus is more on the preservation of distances that are
local in the input space (λ = 0) or in the output space
(λ = 1).

4 EMPIRICAL COMPARISON

We compared the performance of NeRV with alterna-
tive methods on four data sets; the first is a small
artificial low-dimensional set, the next two very high-
dimensional real-world sets, and the fourth is a.very
high dimensional partly artificial set.

4.1 DATA SETS

Thick S-curve. The first data set is a simple toy
set sampled from a folded low-dimensional manifold,
a three-dimensional S-shaped manifold in a three-
dimensional space. The 1000 data points were con-
structed as follows: First, the data was uniformly sam-
pled from a two-dimensional S-shaped sheet. Then, to
give the manifold a thickness, a spherical normally dis-
tributed displacement was added to each point.

Mouse gene expression. The second data set is
a collection of gene expression profiles from different
mouse tissues (Su et al., 2002). Expression of over
13,000 mouse genes had been measured in 45 tissues.
We used an extremely simple filtering method, similar
to that originally used in (Su et al., 2002), to select
the genes for visualization. Of the mouse genes clearly
expressed (average difference in Affymetrix chips, AD
> 200) in at least one of the 45 tissues (dimensions),
a random sample of 1600 genes (points) was selected.
After this the variance in each tissue was normalized
to unity.

Gene expression compendium. The third data
set is a large collection of human gene expression ar-
rays (http://dags.stanford.edu/cancer; Segal et
al., 2004). Since the current implementations of all
methods do not tolerate missing data we removed sam-
ples with missing values altogether. First we removed
genes that were missing from more than 300 arrays.
Then we removed the arrays for which values were still
missing. This resulted in a data set containing 1278
points and 1339 dimensions.

Faces. The fourth data set is a selection of 698,
synthetic images of a face (64x64 pixels). The pose
and direction of lighting are changed in a system-



atic way to create a manifold in the image space.
(http://web.mit.edu/cocosci/isomap/datasets.html;
Tenenbaum et al., 2000). The raw pixel data was
used.

4.2 METHODS

The performance of NeRV was compared with the fol-
lowing dimensionality reduction methods: Principal
Component Analysis (PCA; Hotelling, 1933), met-
ric Multidimensional Scaling (MDS; Borg & Groe-
nen, 1997), Locally Linear Embedding (LLE; Roweis
& Saul, 2000), Laplacian Eigenmap (LE; Belkin &
Niyogi, 2002), Hessian Eigenmap (HLLE; Donoho
& Grimes, 2003), Isomap (Tenenbaum et al., 2000),
Alignment of Local Models (ALM; Verbeek et al.,
2004), Curvilinear Component Analysis (CCA; De-
martines & Hérault, 1997) and Curvilinear Distance
Analysis (CDA; Lee et al., 2004), which is a variant
of CCA that uses graph distances to approximate the
geodesic distances in the data. LLE, LE, HLLE and
Isomap were computed with code from their develop-
ers; MDS, ALM, CCA and CDA use our code.

Each method that has a parameter k for setting the
number of nearest neighbors was tested with values of
k ranging from 4 to 20, and the value producing the
best results was selected. Methods that may have local
optima were run several times with different random
initializations and the best run was selected. For the
NeRV and local MDS we set the (effective) number of
neighbors k to 20 (without optimizing it further). A
very small value will diminish the effect λ has on the
tradeoff. This value was also used for fNeRV on all
other data sets except for the Gene expression com-
pendium data set for which the effective number of
neighbors was set to 50. The smaller value caused the
fNeRV algorithm to be stuck in local minima on this
data set. In each case Euclidean distances were used
in the input space.

4.3 RESULTS

We used three pairs of performance measures to com-
pare the methods. The first one comes directly
from the NeRV cost function: Ei[D(pi, qi)] measures
smoothed recall and Ei[D(qi, pi)] smoothed precision.
We plot the results of all methods on the plane spanned
by the two measures (Fig. 1 left column). NeRV, fN-
eRV and local MDS form a curve parameterized by λ.
NeRV was clearly the best-performing method on all
four data sets, on this pair of measures. Local MDS
and fNeRV have a relatively good smoothed precision
but do not perform as well in terms of the smoothed re-
call, whereas Laplacian Eigenmap seems to be consis-
tently good in this regard. Plain MDS is consistently

a relatively good method as well.

Although the NeRV cost function is arguably a mea-
sure worth optimizing, we verified the results with two
other pairs of performance measures. Since our moti-
vation comes from information retrieval we plot stan-
dard precision–recall curves, as a function of the num-
ber of neighbors chosen from the output space. Finally
we will use a pair of measures that is analogous to our
smoothed precision and recall but is less sensitive to
outliers on the other hand, and small local errors on
the other. Trustworthiness (Kaski et al., 2003) mea-
sures how many of the neighbors defined in the out-
put space are neighbors also in the input space, and
continuity the other way around. Errors are penalized
according to the rank distance from the neighborhood.

The precision–recall behavior of the methods is shown
in the middle row of Figure 1. The CDA algorithm
performed very well in terms of precision, being the
best or second best on all four data sets. NeRV, fNeRV
and local MDS perform well with a wide range of λ.

The trustworthiness and continuity measures (Fig.1,
rightmost column) result mostly in similar conclusions
as the KL plots in very leftmost column. One dif-
ference is that the highest trustworthiness for NeRV
and fNeRV was often gained with λ in the middle of
the scale. An explanation for this could be the dif-
ferences in the definition of the neighborhood between
the trustworthiness measure and the cost functions of
NeRV and fNeRV. The neighborhood in the trustwor-
thiness measure is defined as a step function instead of
a smooth continuous function that covers all the data,
like in NeRV. Moreover, the trustworthiness measure
does not care about what happens to the points that
are correctly inside the neighborhood. Thus NeRV
uses resources in reducing errors that the trustworthi-
ness measure does not care about. Another difference
is that both local MDS and fNeRV seem to have a
better performance when measured with the continu-
ity measure than with the KL divergence. The KL
divergence is sensitive to situations where the output
probability is close to zero when the input probability
is not. This situation can easily happen with fNeRV
and local MDS when λ is set close to zero.

To illustrate how the λ affects the NeRV (and fNeRV)
results in practice, we used a difficult demonstration
data set. The points are sampled from the surface of a
three-dimensional sphere, and they are to be projected
to two dimensions. A perfect mapping is naturally im-
possible, and a compromise is needed. Figure 2 illus-
trates that NeRV with small value of λ cuts the sphere
open to avoid false positives, resembling a geographical
projection, whereas for large λ the sphere is squashed
flat to minimize misses, resembling a linear projection.
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Figure 1: KL-KL curves (left), precision–recall curves (middle) and trustworthiness–continuity curves (right) for
different values of λ on four data sets. Other nonlinear projection methods have been added for reference. The
precision–recall curves have been calculated with 20 nearest neighbors in the input space as the set of relevant
items and the number of retrieved items (neighbors) is varied from 1 to 100. Only the reference methods that
achieved the highest precision and the highest recall and the λ values that had the largest area under curve
are included for clarity. The KL–KL curve and the trustworthiness-continuity curve are calculated using 20
nearest neighbors. On each plot the best performance is in the top right corner. PCA: Principal Component
Analysis, MDS: metric Multidimensional Scaling, LLE: Locally Linear Embedding, LE: Laplacian Eigenmap,
CCA: Curvilinear Component Analysis, CDA: CCA using geodesic distances, HLLE: Hessian Eigenmap, ALM:
Alignment of Local Models.



Figure 2: Two nonlinear projections of data that lies
on the surface of a three-dimensional sphere. One
of the input coordinates governs the rotation of the
glyphs, the second their scale, and the third their de-
gree of elongation. As a result, similarity of the glyphs
indicates that the corresponding points are close to
each other in the input space. On the left, λ = 0, the
sphere has become split open and the glyphs change
smoothly, but on the opposite ends of the projection
there are similar glyphs that are projected far from
each other. On the right λ = 1, the sphere has been
squashed flat. There are areas where the different
kinds of glyphs are close to each other, but there are
no areas where similar glyphs are very far from each
other. Only a small portion of the points used for
computing the mapping are shown for clarity.

To further test how well the methods were able to re-
cover the neighborhood structure inherent in the data
we studied the face data set more closely. The true
parameters for the pose and lighting used to generate
the images in the data set are available. These pa-
rameters define the manifold embedded in the very
high dimensional image space. We calculated the
trustworthiness–continuity curves and the precision–
recall curves using Euclidean distances in the pose
and lighting space as the ground truth. In spite of
the very high dimensionality of the input space and
the reduction of the manifold dimension from three
to two the results in Figure 3 show that NeRV, fN-
eRV and Local MDS were able to recover the structure
well. The overall best trustworthiness was gained with
NeRV (λ = 0.1) followed by CDA. The best continuity
was gained by MDS followed by Laplacian Eigenmap.

5 DISCUSSION

We have introduced a new rigorous principle for op-
timizing nonlinear projections. The task of nonlinear
projection for information visualization was conceptu-
alized as neighbor retrieval and formulated as an infor-
mation retrieval problem. The cost function measures
the total cost of misses and false positives. We intro-
duced an algorithm called NeRV (Neighbor Retrieval
Visualizer) that extends the earlier Stochastic Neigh-
bor Embedding method.

NeRV outperformed alternatives clearly for all four
data sets we tried, and for two goodness criteria. By
the third criterion NeRV was among the best but not
a clear winner. Many of the popular manifold extrac-
tion methods perform surprisingly badly. The reason
is that they have not been designed to reduce the di-
mensionality below the intrinsic dimensionality of the
data manifold.

The weak point of NeRV is that it is computationally
demanding. We constructed an approximate method
by slightly changing the cost function; the resulting
method fast NeRV (fNeRV) was empirically among
the best performing methods although not as good as
NeRV. Also our earlier similarly motivated but more
heuristic method local MDS was comparable to or even
better than fNeRV, and could hence be recommended
as an alternative to it.

An implementation of the NeRV, fNeRV and
local MDS algorithms, and of the trustwor-
thiness and continuity measures is available at
http://www.cis.hut.fi/projects/mi/software/

dredviz
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