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Abstract. We introduce a problem called relevant subtask learning, a
variant of multi-task learning. The goal is to build a classifier for a task-
of-interest having too little data. We also have data for other tasks but
only some are relevant, meaning they contain samples classified in the
same way as in the task-of-interest. The problem is how to utilize this
“background data” to improve the classifier in the task-of-interest. We
show how to solve the problem for logistic regression classifiers, and show
that the solution works better than a comparable multi-task learning
model. The key is to assume that data of all tasks are mixtures of relevant
and irrelevant samples, and model the irrelevant part with a sufficiently
flexible model such that it does not distort the model of relevant data.
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1 Introduction

All too often in classification tasks there is too little training data to estimate
sufficiently powerful models. This problem is ubiquitous in bioinformatics; it
appears also in image classification from few examples, finding of relevant texts,
etc. Possible solutions are to restrict the classifier complexity by prior knowledge,
or to gather more data. However, prior knowledge may be insufficient or may
not exist, measuring new data may be too expensive, and there may not exist
more samples of representative data. Most classifiers assume that learning data
are representative, that is, they come from the same distribution as test data.

Often, partially representative data is available; e.g., in bioinformatics there
are databases full of data measured for different tasks, conditions or contexts; for
texts there is the web. They can be seen as training data from a (partly) different
distribution as the test data. Assuming we have several sets, each potentially
having some portion of relevant data, our research problem is, can we use the
partially relevant data sets to build a better classifier for the test data?

This is a special type of multi-task learning problem. In multi-task learning
[1], where learning a classifier for one data set is called a task, models have mainly
been symmetrical, and transfer to new tasks is done by using the posterior from
other tasks as a prior (e.g. [2,3]). By contrast, our problem is fundamentally
asymmetric and more structured: test data fits one task, the “task-of-interest,”
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and other tasks may contain subtasks relevant for the task-of-interest, but no
other task needs to be wholly relevant. Our models are better suited in the task-
of-interest yet have the same order of complexity as earlier multi-task models.

Previous work. The problem is partly related to several other learning problems:
transfer learning, multi-task learning, and semisupervised learning.

A common multi-task learning approach is to build a hierarchical (Bayesian)
model of all tasks, with constrained priors favoring similar parameters across
tasks. Tasks may be learned together [4-6] or a new task can use a prior learned
from previous tasks [2, 3]. Both approaches model all tasks symmetrically. Sup-
port vector machines (SVMs) have been used in symmetric hierarchical modeling
as well (e.g. [7]). We study an asymmetric situation with a specific task-of-
interest for which only some tasks, or parts thereof, are relevant.

In some multi-task solutions all tasks are not relevant for all others. In [8]
tasks are assumed to come in clusters, and tasks in the same cluster are generated
with the same parameters. Tasks are also clustered or gated in [9], and based on
SVMs in [7]. In all these approaches all tasks are equally important with respect
to the clustering so there is no specific task-of-interest.

In some interesting partly heuristic approaches a single task-of-interest is
assumed. In [10] a global parameter controls the weight of auxiliary samples in
nonparametric classification, or background data are used as support vectors or
constraints in SVMs. In [11] extra variables are used to artificially improve the
log-likelihood of undesirable samples of auxiliary data, and a constraint on the
use of the extra variables forces the model to seek useful auxiliary samples.

2 Relevant Subtask Learning

Consider a set of classification tasks indexed by S = 1,..., M. Each task S has
a training data set Dg = {xi,ci}f\fl where x; € R% are d-dimensional input
features, ¢; are class labels, and Ng is the number of samples for that task. For
simplicity, in this paper we assume all tasks are two-class classification tasks (¢;
is +1 or -1) with the same d, but the process that generates the classes is different
in each task. One task, with index U, is the task-of-interest. The other tasks are
supplementary tasks; in each, some portion (0-100%) of the samples are assumed
to come from the same distribution as the task-of-interest. The rest come from
another distribution, potentially different for each supplementary task.

We wish to learn to predict classes well for data coming from the task-of-
interest. We are not interested in the other tasks except as a source of information
for the task-of-interest. There are no paired samples between tasks; the only con-
nections between tasks are possible similarities in their underlying distributions.

The relevant subtask learning problem is to build a classifier, more specifically
a model for the class density p(c|x,U) in task U, because test data is known to
come from this distribution. In addition to data Dy = {(ci,x;)}~Y of task U,
data Dg from other tasks S are available. The assumption is that some samples
of each Dg may come from the distribution p(c|x,U) but the rest do not.
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As usual, the analyst chooses a model family for the task-of-interest, by prior
knowledge, or resorting to a nonparametric or semiparametric model. Particular
models are denoted by p(c|x,U;wy ), where the parameter values wy identify
the model. The interesting question is how to model the relationships between
the task-of-interest and the other tasks, which we discuss next.

For each supplementary task .S we assume part of the samples come from the
same distribution p(c|x,U;wy ), part from a different one. Only the former are
relevant for modeling the task-of-interest. The analyst must specify a model for
the non-relevant samples as well; typically a nonparametric or semiparametric
model would be used to avoid collecting prior infomation about all tasks. Denote
the model for the non-relevant samples of subtask S by Pronrelevant(¢|X, S; Ws).
Since task S is a mix of relevant and nonrelevant data, its model should be

p(C|X, Sa 0) = (1 - WS)p(C|X, U7 WU) + TSPnonrelevant (C|X7 Sa WS) ) (1)

where mg € [0, 1] is a parameter modeling the mixture proportion of irrelevant
samples in task S and @ denotes all parameters of all tasks. Note that this model
reduces to p(c|x,U; wy) for the task-of-interest (where mg = 0).

The solution is to use (1) to model the data. The idea behind the functional form
is that a flexible enough model for phonrelevant “€xplains away” irrelevant data in
the auxiliary subtasks, and hence p(c|x, U; wy ) learns only on the relevant data.
By forcing one of the subtasks to use the same parameters in all tasks, we force
the model to find from the other tasks the common part that is useful for the task
of interest. The tradeoff is that to improve performance on the task-of-interest,
we spend much computational time to model data of the supplementary tasks
too. This is sensible when the bottleneck is the amount of data in the task-of-
interest. We call this method Relevant Subtask Model (RSM).

We introduce our solution with a simple parametric model; it can easily be
generalized to more general parametric or semiparametric models. We model the
task-of-interest U with logistic regression, p(c|x,U;0) = (1 + exp(—cwix)) L.
We include the bias in the weights wy, yielding standard logistic regression when
one element in the inputs x is constant.

We model the non-relevant data in the other tasks with logistic regression
models as well. Each supplementary task S has a different regression model,
having its own parameters: Pponrelevant (¢|X, S;0) = (1 + exp(—cwkx)) ™1, where
wg is the weight vector. Hence the supplementary tasks are each generated from
a mixture of two logistic regression models (with mixture weight 7g):

plelx,5;0) = (1 —7mg)/(1+ exp(—cng)) +7ms/(1+ exp(—cng)) ) (2)

In this first paper we use simple optimization and spend effort in designing
controlled experiments. More advanced methods will be added in later papers.

Since the task is to model the distribution of classes given data, the objective
function is the conditional log-likelihood Lrsm = ) gD ;cp, logp(cilxi, S;0)
where S goes over all tasks including the task-of-interest, and p(c;|x;, S;0) is
given in (2). To optimize RSM, we use standard conjugate gradient to maximize
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Lgrsm with respect to the parameters (wy;, the wg, and the 7g). The computa-
tional cost per iteration is linear with respect to both dimensionality and number
of samples.

3 Comparison Methods

As a proof-of-concept we compare RSM to three standard approaches, which as-
sume progressively stronger relationships between tasks, using simple but com-
parable models, all optimized by maximizing the (conditional) likelihood with a
conjugate gradient. More advanced versions will be compared in later work.

One of the most promising multi-task strategies is to assume tasks come
from task clusters, and parameters of tasks are shared within each cluster [8].
We implement a simplified maximum likelihood-based clustering comparable to
the other methods. Generality is not reduced: all approaches can in principle be
given a state-of-the-art full-Bayesian treatment.

Assume there is a fixed number K of task clusters. To keep complexity com-
parable to RSM, each cluster k is a mixture of two logistic regression models':
p(elx, k;0) = 7 /(1 + exp(—ewl ;x)) + (1 — m1) /(1 + exp(—cwi ,x)) where the
weight vectors w1 and wy o and the mixing weight 7 are the parameters of
cluster k. Each task is fully generated by one cluster but it is unknown which.
The class probability of task S is ps(0) = Zszl Yris [ Lie g P(cilXi, k; 8) where
the parameter ;g models the probability that task S comes from cluster k.

The parameters are optimized by maximizing the conditional class likelihood
Lrem = ) glogps(@). We call this model “Task Clustering Model” (TCM). It
is meant to be a maximum likelihood version of [8], but having a more complex
model per cluster (mixture of two instead of one logistic regression model).

We try two naive models. “Single-task learning” uses data of the given task,
but does not exploit other tasks. This may work well if there is a lot of data,
otherwise it will overfit. It is also good if the other tasks are known to be very
different. We simply used a single logistic regression model for single-task learn-
ing. The “extreme” multi-task strategy, here called “all together”, is: learn as
if all data from all tasks came from the task-of-interest. This may work well
if tasks are very similar, otherwise the mixture will hide the features of the
task-of-interest. This strategy is essentially TCM with a single cluster.

4 Experiments

We have three experimental settings. In the first two we study how RSM and
TCM tolerate deviations from their assumptions. We then study news classifica-
tion according to the interest of one user, when classifications from other users
are available. A note on terminology: A multi-task problem has several tasks,
each with its own data. The multi-task problem comes from a domain specifying
the data distribution in each task, and the relationships of the tasks.

! We have checked that RSM outperforms a regular one-submodel clustering.
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Experiment 1: When Task Clustering Fuails. Here we created a continuum of
multi-task domains where the relationship between the task-of-interest and the
other tasks changes. The continuum was set up so the tasks always follow the
assumptions of RSM but the assumption of underlying task clusters in TCM
starts to fail. The setting is explained in a schematic diagram in Fig. 1 (left).
We created 10 domains and generated 40 learning problems from each. Each
problem had 10 tasks; the task-of-interest had less samples than others. Inputs
x; were Gaussian and labels ¢; were from a task-dependent mixture of two logistic
regression models, with weight vectors chosen differently in each domain, so the
domains form a continuum progressively worse for TCM. We lastly added some
Gaussian noise to the x;.2

Fig. 1 (right) shows average results for all domains. RSM maintains high per-
formance, close to the upper limit.®> TCM worsens as tasks become less clustered,
as expected. The number of clusters in TCM was set to the correct value used
when generating the data, to give some advantage to TCM. The naive methods
perform poorly. “All together” places all data together which introduces noise as
well as useful information. For single-task learning, poor performance and large
variance are due to overfitting to the small “proper” training data.
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Fig. 1. Comparing methods on domains progressively less suited for TCM. Left: con-
ceptual illustration; columns are domains and rows are tasks within a domain. Tasks
(data sets) are generated from a mixture of two logistic regression models (weight
vectors shown as lines). One subtask (line with closed ball) corresponds to the task-of-
interest and appears in all tasks. The other subtask (line with open ball) is common to
task clusters in the leftmost domain; in the rightmost domain it differs for each task.
Right: Results, averaged over 40 problems for each domain. RSM performs well; TCM
worsens progressively. The difference at right is significant (Wilcoxon signed rank test).

2 More details about all experiments can be found in [12].
3 The bound was computed by using the parameters with which the data was gener-
ated. It is approximate because noise has been added to the inputs.
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Experiment 2: When Relevant Subtask Modeling Fails. Above we showed that
when the assumptions of RSM hold better it outperforms TCM. Now we show
what happens when the assumptions of RSM go wrong. The setting is similar
to experiment 1 and is explained in Fig. 2 (left). Domains were set up so that
assumptions of TCM hold but those of RSM become progressively worse: neither
of the two logistic regression models needs to be common to all tasks.

The results are shown in Fig. 2 (middle). TCM has high performance for all
domains, as expected because the tasks always come from task clusters. RSM
starts equally good but worsens as its assumptions begin to fail; however, it
remains better than the naive methods which behave as in the first experiment.

So far the task-of-interest had less data than the others, meaning that RSM
tries to retrieve relevant tasks with little information for the “query.” When the
task-of-interest has a comparable amount of data* RSM performs well for all
domains (Fig. 2 (right)). It locates relevant tasks (ones from the same task cluster
as the task-of-interest). RSM does not overfit to the other tasks; it models them
mostly with the task-specific model. This demonstrates successful “information
retrieval” of relevant tasks.
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Fig. 2. Comparison of methods on domains progressively less suited for RSM. Left:
conceptual illustration. Tasks are always clustered; tasks in a cluster are generated with
the same model. In the leftmost domain, one subtask (equaling the task-of-interest)
is the same in all clusters. In the rightmost domain, clusters are completely different.
All domains can be learned by TCM; RSM fits the leftmost domain well but not the
rightmost one. Middle: Results for a continuum of 10 domains (10 tasks in each; results
are averages over 40 replicates); only little data in the task-of-interest. Right: Results
when the amount of data in the task-of-interest is comparable to the other tasks.

Ezxperiment 3: Predicting Document Relevance. Here we have real news from
the Reuters-21578 collection but simulated users to control the problem domain.
Each “user” classifies articles as interesting or not. The goal is to learn to pre-
dict interestingness for a “user-of-interest,” who labels news interesting if they

4 A similar increase in the data amount does not help TCM in experiment 1.
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belong to the category “acq.” The other users are interested in “acq” part of the
time, but otherwise they are interested in another category specific to each user.
The problem can be seen as combining collaborative filtering and content-based
prediction. Earlier work includes e.g. [13] (partly heuristic kernel combination)
and [14] (naive Bayes imputation followed by collaborative filtering). Note that
RSM is more general than [13] which needs samples rated by several users (to
estimate meaningful correlation kernels) whereas RSM requires none.

We used a simplistic feature extraction, including stopword removal etc.,
vector representation, selecting most “informative” words, discarding too sparse
documents, and dimensionality reduction by linear discriminant analysis; see [12]
for details. As a design parameter we varied how often the other users labeled
according to “acq” on average. The user-of-interest had less data than others;
test data were left-out documents from the user-of-interest. We repeated the
experiment 10 times to reduce variation due to initializations and small datasets.

Results are shown in Fig. 3. RSM performs best. Since there is little data for
the user-of-interest, single-task learning overfits badly. TCM?® and “all together”
perform about equally here. At the extreme where all data begins to be relevant,
performances of RSM, TCM and “all together” naturally converge.
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Fig. 3. Comparison of RSM to TCM and two naive methods on Reuters data. Average
results over 10 generated problems are shown, as a function of one design parameter,
the average probability that a sample is relevant to the task-of-interest. RSM performs
the best. Performance of single-task learning varies highly due to overlearning; the
worst results (at design parameter values 0.75 and 0.95) do not fit in the figure.

5 Conclusions

We introduced a new problem, relevant subtask learning, where multiple back-
ground tasks are used to learn one task-of-interest. We showed how a carefully

5 We used K = 6 clusters to have roughly equally many parameters in RSM and TCM.
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constructed but generally applicable graphical model solves the problem; the idea
is to model relevant parts of other tasks with a shared mixture component, and
nonrelevant parts by (at least equally) flexible models, to avoid a performance
tradeoff between the task-of-interest and the other tasks. Using logistic regres-
sion as an example, we showed that the resulting “Relevant Subtask Model”
(RSM) outperforms a comparable traditional multi-task learning model and two
naive alternatives, on toy domains and on more realistic text classification.
The method is not restricted to logistic regression or to supervised learning.
Here we used simple maximum conditional likelihood estimators, which will be
generalized to full-Bayesian treatments of more general models in the next stage.
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