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Abstract

We introduce a probabilistic model that gen-
eralizes classical linear discriminant analy-
sis and gives an interpretation for the com-
ponents as informative or relevant compo-
nents of data. The components maximize the
predictability of class distribution which is
asymptotically equivalent to (i) maximizing
mutual information with the classes, and (ii)
finding principal components in the so-called
learning or Fisher metrics. The Fisher met-
ric measures only distances that are relevant
to the classes, that is, distances that cause
changes in the class distribution. The compo-
nents have applications in data exploration,
visualization, and dimensionality reduction.
In empirical experiments the method out-
performed a Renyi entropy-based alternative
and linear discriminant analysis.

1. Introduction

Classical Linear Discriminant Analysis (LDA; see
Timm, 2002) searches for directions or components in
multivariate continuous-valued data that discriminate
between classes. The components have traditionally
been used for classification. They construct class bor-
ders that are Bayes-optimal for that purpose (in the
two-class case), assuming the classes are normally dis-
tributed and share the same covariance matrix.

LDA has been used for visualizing multivariate data by
projecting them to planes spanned by main discrimi-
nant direction pairs. An example will be presented
on visualizing relationships in the behavior of genes of
different functional classes in a set of knock-out muta-
tion experiments. Another example could be to collect
financial indicators from a set of companies, and visu-
alize relationships of companies that will go bankrupt
after 1 year, 2 years, etc. Such visualizations may re-

veal new subclasses or outliers. Our view to why such
visualizations are useful is that discriminant analysis
finds, intuitively speaking, directions that are relevant
to or informative of the classification.

In data projection applications the classical LDA has
two problems: (i) It is not optimal unless the data ful-
fills the restrictive assumption of normal distribution
with equal covariance matrices in each class, and (ii)
even if the assumption holds, the model is only optimal
for classification, not for data projection.

Torkkola (Torkkola & Campbell, 2000; Torkkola,
2003) introduced an alternative method which relaxes
the normality assumption. The optimization criterion
is changed from discriminative power to the more flexi-
ble informativeness, measured by Renyi entropy-based
mutual information. The work utilizes elegant formu-
las in (Fisher & Principe, 1998; Principe, Fisher & Xu,
2000) . Renyi-based formalism was claimed to be more
suitable than the traditional Shannon entropy.

The Renyi-based projection has two potential weak-
nesses that we aim at removing. First, it is defined
for probability distributions instead of data sets. We
introduce a generative model for which standard prob-
abilistic inference can be applied. This should be more
justified for small data sets. The second potential
weakness stems from using the Renyi entropy instead
of Shannon’s. We show that our criterion asymptot-
ically maximizes the standard Shannon mutual infor-
mation, which implies that it is not necessary to re-
vert to Renyi entropy for computational reasons. The
relative goodness of Shannon and Renyi entropy for
projection will then be studied empirically.

The second goal of the paper, in addition to general-
izing classical discriminant analysis, is to define more
rigorously what it means for a projection to be rele-
vant to the classes. The components of the proposed
method can be asymptotically interpreted as kinds of
principal components in so-called learning or Fisher
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metrics, a framework used earlier for clustering and
self-organizing maps (Kaski, Sinkkonen & Peltonen,
2001; Kaski & Sinkkonen, in press; Sinkkonen & Kaski,
2002).

2. Theory

Let x be multivariate vectors in the vector space R™.
We seek to transform the x to smaller-dimensional vec-
tors y = f(x) = W'x € R?, where W is the or-
thogonal transformation matrix to be optimized. The
columns w; of W decompose the data, in the subspace
they span, into components WiTx. The transformation
is learned from a set of sample pairs (x,¢), where the
x are the primary data and the c are their classes.

The two key assumptions are that (i) analysis of the
primary data is of main interest, and (ii) the classes are
well-chosen such that variation in the x is relevant only
to the extent it causes changes in the c¢. The goal is
to make the transformation as informative as possible
of the classes. The columns of the estimated trans-
formation matrix W then represent the “informative”
components of the primary data.

Note that the transformation does not depend on the
classes. Once optimized, it can transform primary
data without known classification.

2.1. Objective Function

Informativeness will be measured by predictive power,
as the log-likelihood of a generative probabilistic model
of ¢ in the projection subspace. The prediction given
the projected value f(x) is denoted by p(c|f(x)). Max-
imizing the log-likelihood

L= logp(cf(x)), (1)
(<0)

is a well-defined criterion for fitting the transforma-
tion to the finite data set {(x,c)}. The function L is
to be maximized with respect to the projection matrix
W. In case parametric estimators of p are used, their
parameters need to be optimized as well. Any para-
metric or non-parametric estimator in the projection
space can be used; their relative goodness can be eval-
uated with standard methods of probabilistic model
selection. In this paper we use non-parametric Parzen
estimators.

A method for optimizing L for a reasonably general
class of estimators p is presented in Section 3.

2.2. Properties of the Method

Connection to mutual information. Asymptot-
ically, as the number of samples N increases (here
y = f(x)), the objective function (1) becomes

N N-ox

lL — Z/p(c, x) log p(c|f(x))dx

=I(C,Y) = Epy) [Drr(p(cly), Blcly))] — H(C) -

(The constant 1/N on the first line has no effect on
optimization.) The first term on the second line is the
(true) mutual information between the auxiliary vari-
able C' having the values ¢ and the projected primary
variable Y having the values y. The second term is the
average estimation error, measured by the Kullback-
Leibler divergence Dk, of the classes after the pro-
jection. The term H(C), the entropy of C, is constant.

Hence, maximization of the objective function of the
generative model (1) is asymptotically equivalent to
maximizing the mutual information and simultane-
ously minimizing the estimation error. The estimation
error vanishes asymptotically for consistent estimators
such as the Parzen estimators.

Connection to maximization of Renyi entropy.
Torkkola and Campbell (2000) have introduced a
closely related method, denoted here by MRMI for
Maximization of Renyi Mutual Information. The main
difference from our method is that instead of Shannon
entropy, Torkkola and Campbell use Renyi quadratic
entropy in defining the mutual information.

The second difference is in the estimation of the projec-
tion. We define the model for finite data as a genera-
tive (conditional) probability density model well suited
for rigorous probabilistic inference. The connection to
mutual information is asymptotic, which in our opin-
ion is natural since mutual information is defined in
terms of the (asymptotic) distributions.

By contrast, in MRMI an estimator (e.g. Parzen) of
the projected joint density of the data is constructed,
and the estimated mutual information of the projec-
tion and the class distribution is maximized. The pos-
sible theoretical problem seems to be that the objective
function used for estimating the density is not directly
related to the overall modeling goal, that is, maximiza-
tion of mutual information. For Parzen estimators this
problem is minimal, however. In Section 4 we compare
the methods empirically.

Connection to linear discriminant analysis. In
classical LDA, each class is assumed to be multinor-



mal with the same covariance matrix in each class.
For a two-class problem the direction in the data space
that maximizes within-class variance while minimizing
between-class variance is sought. The solution can be
found by estimating the within- and between-class co-
variance matrices, and it is asymptotically optimal for
classification if the assumptions hold. The solution can
be generalized to multiple classes, by still maximizing
between-class and minimizing within-class variance.

If the classes are multinormal, our method finds the
same projection as LDA, at least under two assump-
tions in addition to the normal LDA assumptions: (i)
the class centers reside within a d-dimensional sub-
space of the original space, if a d-dimensional projec-
tion is sought, and (ii) there is enough data, i.e., the
result is asymptotic.

The proof is simple with these assumptions; a sketch
is presented here. It is known (see for example Hastie
and Tibshirani, 1996) that LDA maximizes the like-
lihood of a joint density model for the data and the
classes, in the original data space. Each class is mod-
eled by a separate Gaussian density. It is then evident
that the conditional class density p(c|x) of the opti-
mal LDA model (and asymptotically of the data as
well) is constant orthogonal to the d-dimensional sub-
space containing the class centers. This can be seen by
factoring the density into two parts; the first depends
only on the important d dimensions and the second
only on the other dimensions. Our method, by com-
parison, builds a model p(c|f(x)) for the conditional
distribution that only varies within d dimensions, and
the optimal solution clearly is to pick the dimensions
where the densities really vary. The correct solution is
reached if the probability estimator p(c|f(x)) asymp-
totically finds the true distribution in the projection
space, which holds at least for the nonparametric es-
timator we have used.

Connection to learning metrics. The learning
metrics principle (Kaski, Sinkkonen & Peltonen, 2001;
Kaski & Sinkkonen, in press; Sinkkonen & Kaski,
2002) formulates the idea of metrics where differences
between data points are relevant only to the extent
they cause changes in auxiliary data ¢, here the classes.

Distances dy, in the learning metric are asymptotically
defined in terms of the conditional distributions of aux-
iliary data: local distances are Kullback-Leibler diver-
gences Dk between the distributions,

d3 (x,x + dx) = Drr(p(c|x), p(c|x + dx)) , (3)

and global distances are minimal path integrals of the
local distances.

Principal component analysis (PCA) minimizes the
average reconstruction error, the (squared) Euclidean
distance between the original data sample and its re-
construction. The proposed projection model has an
(asymptotic) interpretation as a similar component
model, but with a differently defined reconstruction
and distance measure. It can be shown (Appendix A)
that as the number of data grows, the mutual infor-
mation in (2) approaches

I(C)Y) =~ —/p(x)d%(x,r(f(x)))dx + const.

the average squared distance dy, in the learning metric
from samples x to their reconstructions r(f(x)).

For consistent estimators p the second term in (2)
asymptotically vanishes. Hence, optimizing the pro-
posed cost function (1) is asymptotically approxi-
mately equivalent to minimizing the reconstruction er-
ror in learning metrics.

The definition and computation of the reconstruction
is somewhat involved; it is not needed in practice and
presented here only to define “relevance.” The recon-
struction r(f(x)) of f(x) is defined to be the point
in the primary data space that projects to f(x), and
whose auxiliary distribution best matches that of the
projection. Best match is defined by the smallest
Kullback-Leibler divergence.

3. Optimization

To optimize the projection we need an estimator of
p(c|f(x)), the conditional probability of auxiliary data
in the projection space. The likelihood (1) can then be
optimized by standard non-linear optimization meth-
ods, here stochastic approximation. We will next
present a fairly general class of estimators and derive
update rules for the parameters of a linear projection.

3.1. Estimation of Conditional Densities

In this paper we use standard Parzen estimators with
Gaussian kernels for p(c|f(x)) but present them in a
more general form:
, G(f(x),c)
plelf(x) = =————. 4
) = 5 Gtetx, ) W
Here G(f(x),c) = 271\;1:1 Ymeg(f(x), m) is a weighted
sum of M spherical Gaussian kernels

1
g(f(x),m) = W

The number of kernels M, the width o of the Gaus-
sians, the location parameters r,,, and the weights 1,

e*||f(x)*f(rm)||2/2z72_ (5)



are parameters to be optimized. The weights must sat-
isfy 0 <¢me <land 3>, Yme=1.

Both Parzen-type estimators with Gaussian windows
and mixtures of Gaussians can be expressed with (4).
For a Parzen-type estimator the probabilities are di-
rectly based on a learning data set {(x;,c;)}Y; where
the x; are the primary data and the c¢; the classes.
Parzen estimators result from setting M = N, weights
Yme = O¢,,,c/N, where 0., . is one if ¢,, = ¢ and zero
otherwise, and for the locations r,;, = x,;,. The only
free parameter then is the width o of the Gaussians
which we will choose using a validation set.

For a mixture of Gaussians, M can be either fixed or
validated. The ,,. and the r,, are to be optimized,
and o is either optimized or validated.

We have used nonparametric Parzen, although it can
be slow for large data sets (using a subset helps). It
has two advantages: (i) it is a consistent estimator of
the conditional density that approaches the true value
as the number of data grows and o decreases, and (ii)
there is no need to re-estimate when the projection
changes. Mixtures of Gaussians would need to be re-
estimated.

3.2. Optimization of the Projection by
Stochastic Approximation

We optimize the likelihood (1) with respect to the pro-
jection f(x) by stochastic approximation. It is appli-
cable to objective functions that are averages of an-
other function. Here the average is taken of L(x,c) =
log p(c|f(x)), that is, over the discrete distribution of
the paired samples: {L(W) = 5 3, . L(x,6W).
Under certain mild assumptions (Kushner & Yin,
1997) L(W) can be optimized by iteratively moving
towards the sample-specific gradient. At step ¢ the
update is

OL(x,c; W)
oW

The step size has to fulfill the conditions Y a(t) = oo
and Y a?(t) < oo. In practice the number of steps
is finite and only an approximation to the optimum is
obtained. It can be shown that the gradient is

W(t+1) = W(t) + at)

0
8—WL(X5 [6X W)

- % (Bemieeen {(x = 1m) (£(x) — £(rm))"}
— Eg(mit(x),0{(x — o) (£(x) — £(x))"}) . (6)

This is a difference between two cross-correlation-like
matrices, one conditioned on the auxiliary data and

the other without it. The operators Eg(m r(x)) and
E¢(m|(x),c) denote weighted sums over mixture com-
ponents m, with respective weights

Zc' "pmc’ g(f(x) ) m)
§(mlf(x)) S e g (E(), F) (7)
§(m|f(x), C) ¢mc9(f(x)a m) (8)

Zk 'l/}kcg(f(x)a k) ‘
The weighted sums are functionally similar to expecta-
tions over conditional distributions of m. However, the
weights need not correspond to a maximum likelihood
probability estimate.

For Parzen-type estimation, we made a minor improve-
ment: if the stochastic sample has index m/, this index
is excluded from the sums over m in (6), (7), and (8).
This results in a kind of implicit leave-one-out valida-
tion during learning. A similar adjustment does not
affect the update of the MRMI method.

3.3. Orthogonality by Reparameterization

To keep the projection orthonormal, a straightforward
addition is to reparameterize the matrix by Givens ro-
tations. This yields (n — d)d rotation angles to op-
timize, compared to nd matrix elements. A similar
reparameterization was used by Torkkola & Campbell
(2000).

The reparameterization is given by

W = WO (H;izl (H;’L:d—i-l Gi]‘))wl, where Gi]‘
is a rotation matrix in the ij plane by an angle
Aij- The angles are initially zero, and Wy is an
initial rotation matrix whose first columns are in this
paper an orthogonalized LDA projection. The matrix
W, simply selects the first d components after the
rotations.

The (stochastic) gradient of a rotation angle is

(9 6L 8wkl

—L(x,c; W) = — , 9
6)\1']‘ ( ’ ) ; 8wkl 6/\1-]- ( )
where % is the element (k,!) of the matrix given by

(6) and g%f“j‘ can be easily calculated from the defini-
tion of the reparameterization.

3.4. The Algorithm

The stochastic approximation algorithm is finally as
follows: after initializing the projection with LDA, re-
peat the following step for a fixed number of iterations
t. At iteration t, pick a sample (x,¢) at random and
adjust the rotation angles by

Nyt 1) = is(0) +alt) g Lx, W), (10



where the gradient on the right hand side is computed
by (9). We used a piecewise linearly decreasing sched-
ule for the a(t).

4. Comparisons

In this section we compare the proposed new projec-
tion method to the two other most closely related lin-
ear projections, MRMI and LDA. PCA is also included
to provide a baseline; unlike the other methods, PCA
does not use the classes.

4.1. Data

We compared the methods on five real-world data sets.
LVQ_PAK denotes Finnish acoustic phoneme data
from LVQ-PAK (Kohonen et al., 1996), and TIMIT
denotes phoneme data from (TIMIT 1998); Landsat,
Isolet and Multiple Features (MFeat) are from UCI
Machine Learning Repository (Blake & Merz, 1998).
Dimensionality of Isolet was reduced to 30 with PCA,
and Fourier coefficient features were selected from
MFeat.

We sought 5-dimensional projections except for Land-
sat having only six classes; for it the projection was
3-dimensional. Methods for choosing the “optimal”
dimensionality will be studied later.

4.2. Quality Measure

A fair performance measure is needed to compare the
methods. It cannot of course be the objective function
of any of the methods. Since all aim to be discrimi-
native we chose the classification error, measured with
the simple non-parametric K nearest neighbor (KNN)
classifier, working in the projection space. Note that
minimization of the classification error is not the pri-
mary goal of any of the methods; hence the results give
only indirect evidence.

To be precise, results were evaluated by error rate of
KNN classification (K = 5) computed for a projected
leave-out set with the neighbors picked from the learn-
ing set. ’Ties’ yield partial error, e.g. 4/5 if the correct
class and 4 others are tied.

4.3. Experimental Set-up

The quantitative comparison required three steps.
First, value ranges were chosen for the initial learning
rate a and width ¢ of the Gaussians: the a range was
either hand-picked or expanded to find a local min-
imum of classification error on one of the data sets.
The range of o was logarithmic, roughly from the or-
der of the nearest neighbor distance to the order of the

Table 1. Difference of performance of the methods. The
figures are average classification error rates over the ten
folds, in percentages; the best result for each data set is
shown in boldface. If a result is underlined, P < 0.05
for a two-tailed paired t-test between it and the boldfaced
method, and P < 0.01 if doubly underlined.

LVQ_
METHOD LANDSAT PAK ISOLET MFEAT TIMIT
NEw 14.70 8.51 17.74 17.06 59.6
MRMI 13.34 10.25 29.44 20.89 59.6
LDA 13.62 10.51 28.79 21.08 59.6
PCA 13.96 9.60 40.15 19.60 64.1

largest pairwise distance. Second, the precise values
that gave best validation results were picked. Lastly,
the methods were compared with a cross-validation
test where the data sets were redivided into 10 folds.

In all of the experiments, both our method and MRMI
were optimized by 20,000 steps of stochastic approxi-
mation, starting from an LDA initialization.

4.4. Quantitative Comparison

The statistical significance of the difference between
our method and the best competitor was evaluated for
each data set by a t-test of the 10-fold cross-validation
results (Table 1).

Our method achieved the best average result for four
data sets. The difference from the next best method
was significant for three of the sets.

For Landsat data, all the other methods had similar
performance; ours was surprisingly bad here, possibly
because of noise in parameter validation.

5. Analysis of Gene Expression Data

In this section we demonstrate one way of using the
extracted components for exploratory analysis of yeast
gene expression.

The data set (Hughes et al., 2000) consists of mea-
surements of the expression of each yeast gene in 300
knock-out mutation experiments. After leaving out all
genes and experiments without significant expression,
and genes with no known function, the resulting data
set contained 702 genes measured in 179 experiments.
The 46 functional classes were chosen from a standard
MIPS functional classification.

It is well known that such large expression data sets



are hard to analyze because they contain lots of both
biological and measurement noise, and distortions in
the measurements. Hence, this is a kind of worst-case
case study.

The goals of the analysis are (i) to visualize mutual
similarities and substructures of the functional classes,
and (ii) to perform feature exploration to discover how
the gene expression levels differentiate between func-
tional classes of genes. Note that the goal is not to
classify; it is known that hardly any classes are sepa-
rable in such data. Instead, we want to explore prop-
erties and overlap of the classes.

To facilitate visualization on paper, we sought two
components, with the dispersion parameter of the den-
sity estimator chosen using a validation set. Genes
may belong to several classes; we treated such genes by
dividing their “probability mass” equally to each class
both in estimation and validation. In fact, almost all
genes belong to many classes, which is reflected in the
seemingly very high error rate: 205.5 of 234 validation
samples (the lowest possible is here 109.9). LDA and
PCA are still worse, with respective error rates 212.3
and 214.6, and even classification without dimensional-
ity reduction only yields 191.3. The proposed method
is significantly better (by the McNemar test) than a
simple classifier predicting the largest class, which is
already a result for this worst-case data.

Visualization of data by a scatter plot reveals
properties of the class structure, such as mutual simi-
larities between the functioning of genes. For example,
since nitrogen and sulfur metabolism and amino acid
metabolism-related genes are located relatively com-
pactly and close to each other, they behave similarly
in this set of experiments (Fig. la). Carbohydrate
metabolism completes the continuum, although being
even more widely distributed. The effect is not strong
but the classes are clearly non-randomly distributed.

In contrast, the function of some classes such as or-
ganization of cytoplasm (Fig. 1c) is hardly reflected
at all in this set of measurements. We verified with a
standard KNN classifier that there do not exist com-
ponents that could discriminate this class well: A 5-
dimensional projection decreased the error rate of this
class only marginally, from 94.4% to 92.5%, and even
using all the components improved the error rate only
to 88.1%.

Some classes have multimodal structure (Fig. 1b),
suggesting existence of subclasses. Protein synthesis-
related genes became divided into a cluster at the top,
and more scattered data towards the bottom. All
genes in the topmost cluster turned out to be mito-
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Figure 1. Two-dimensional discriminative projection of
yeast gene expression data. Each gene is represented by
a dot, and genes of different functional classes have been
highlighted in different images. (a) C-compound and car-
bohydrate metabolism (black dot), amino-acid metabolism
(circle) and nitrogen and sulfur metabolism (triangle). (b)
mitochondrial organization (black dot) and protein synthe-
sis (circle). (c) organization of cytoplasm (black dot).



chondrial ribosomal proteins. Different behavior of
these and cytoplasmic ribosomal proteins (most of the
rest) is biologically meaningful and known.

Feature exploration to characterize the classes.
If a component discriminates one class from the others,
it summarizes properties of the class. For example, the
vertical axis in Figure la seems to characterize amino
acid metabolism genes. The set of experiments (here
dimensions) “contributing” most to the vertical com-
ponent can then be listed (not shown) to summarize
the behavior of these genes.

Both axes are required to characterize the protein
synthesis class (Fig. 1b). The organization of cyto-
plasm class (Fig. le) is a different kind of example:
The sought two components cannot describe it. Pos-
sible reasons for this are that (i) the dependency is
non-linear, which would require an extension of the
method, (ii) more than two components would be re-
quired, or (iii) the class is more or less randomly dis-
tributed in this data. For the difficult gene expression
data the option (iii) is quite possible, as indicated by
the classification errors of this class reported above.

In summary the visualizations, complemented with
measuring the classification accuracy, suggest that the
broad functional classes are not strongly differentially
expressed in this knock-out data. However, although
the effects are not strong some structure and meaning-
ful overlap of classes can be found.

6. Discussion

Classical Linear Discriminant Analysis (LDA) was
generalized to a linear probabilistic model for gener-
ating the class distribution. In contrast to LDA, nor-
mality assumptions about the class distribution are
not needed. The model was shown to asymptotically
maximize mutual information with the classes.

The model is applicable to dimensionality reduction,
visualization, data exploration, and feature explo-
ration. In such applications it is questionable whether
the classification accuracy, the original goal of LDA,
is a good criterion. An alternative is to measure rele-
vance to the classes. It was argued that the proposed
predictive power is a suitable measure of relevance, be-
cause (i) of its connection to mutual information, and
(ii) the resulting components can be asymptotically in-
terpreted as kinds of principal components in so-called
learning or Fisher metrics.

In experiments, the model outperformed both the clas-
sical LDA and a Renyi entropy-based method. The

method was lastly applied to gene expression analysis
for visualizing overlap and substructures of functional
classes of genes.

Only linear components relevant to (discrete) classes
were considered. Extensions to non-linear projections
and continuous auxiliary data in place of the classes
will be studied. We suggest coining the more general
task of finding components relevant to auxiliary data
relevant component analysis.

The task is related to clustering discrete-valued data
to maximize mutual information with another dis-
crete variable by the information bottleneck principle
(Tishby, Pereira & Bialek, 1999) and its extension to
continuous-valued data (Sinkkonen & Kaski, 2002). In
this paper a continuous projection is sought instead
of the clustering. The work could in principle be ex-
tended to incorporate another random variable that
indicates non-relevant variation such as normal bio-
logical noise, and minimize relevance to that variable,
along the lines of (Chechik & Tishby, 2002).

We found out about a different kind of related work by
Zhu and Hastie (2003) too late to include comprehen-
sive comparisons here. They extend classical LDA by
maximizing the likelihood ratio between class-specific
and class-independent models. For non-parametric es-
timators the method is very close to ours. More gener-
ally, however, the difference is that we do not need an
estimator of primary data densities—the conditional
class probabilities suffice.
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Appendix A: Sketch of Proof of a
Connection to Learning Metrics

The assumptions are that local approximations to the
metrics are sufficient, and that good reconstruction
points exist (for details, see the end).

Given a projected point y, define p(c,y) = [ p(c, x)dx,
where the integration is over all points projected to y.
Define the reconstruction r(y) to be the point pro-
jected to y that minimizes Dgr,(p(cly), p(c|r(y))).

Asymptotically, omitting a few intermediate forms,

1(C,Y) = / p(y) 3" plely) log plely)dy + H(C)

= =By [Pz (p(clx)||p(clr(y)))]
+ Epy)[Drr(p(ely), plelr(y)] + H(C) - H(C|X) .

Assuming distances are local, this further equals

I(C,Y) m = Epxldi (x, x(f(x)))]
+ Ep) [Drr(p(ely), plelr(y)))] + 1(C, X)), (11)

where the last term is constant.

The divergence term (middle term in eqn 11) is zero
trivially if the distribution of auxiliary data is con-
stant in the direction orthogonal to the subspace. This
holds approximately if the data is local in the orthog-
onal direction, which is likely to hold if the projection
dimensionality is large.

If the middle term is not (nearly) constant, the pro-
posed algorithm does not minimize the reconstruction
error. If the goal is not to maximize mutual informa-
tion but to minimize the reconstruction error, it can
in principle be done by minimizing

Bp(xldi (x,r(f(x)))] & —I(C,Y)
+ Ep)[Drr(plcly), p(clr(y)))] + const.



