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Abstract

We introduce a mixture of probabilistic
canonical correlation analyzers model for an-
alyzing local correlations, or more gener-
ally mutual statistical dependencies, in co-
occurring data pairs. The model extends the
traditional canonical correlation analysis and
its probabilistic interpretation in three main
ways. First, a full Bayesian treatment en-
ables analysis of small samples (large p, small
n, a crucial problem in bioinformatics, for in-
stance), and rigorous estimation of the de-
gree of dependency and independency. Sec-
ondly, the mixture formulation generalizes
the method from global linearity to the more
reasonable assumption of different kinds of
dependencies for different kinds of data. As
a third novel extension the method decom-
poses the variation in the data into shared
and data set-specific components.

1. Introduction

We study the general framework of modeling or de-
tecting dependencies between two (or in general more)
data sets of co-occurring paired samples (x,y). Look-
ing for statistical dependencies or commonalities be-
tween two (or in general more) measurements can be
motivated from two different but closely related view-
points. The first stems from noise reduction. If we
have several measurements from noisy sensors that
measure different properties of the same objects, com-
bining the measurements in a suitable way reduces the
amount of noise, and already naive approaches such
as taking the average of two measurements of identi-
cal structure are often helpful. If noise is assumed to
be independent between the sources then finding the

Appearing in Proceedings of the 24" International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

dependencies is a principled way to reduce it. The sen-
sors can be either real sensors such as gene expression
arrays measuring the genome-wide expression levels,
or “artificial sensors” such as text written in a specific
language (see Li and Shawe-Taylor (2006) for such an
approach). Regardless of the more specific setting it is
often of interest to find what the measurements have
in common.

The second source of motivation comes from analyzing
what is interesting in the data. We can have measure-
ments of very different types, each conveying different
kind of information about the objects under consid-
eration. For example, in an image search application
we can have textual descriptions of images in addition
to the actual pictorial content (Farquhar et al., 2006),
or in a bioinformatics application we can have copy
number aberration and expression measurements for
the same genes (Berger et al., 2006). In such applica-
tions it is arguably a good idea to combine the differ-
ent kinds of representations, because all measurements
have been tailored to measure the same underlying
phenomenon. This suggests that what is in common
between them is really what we are interested in. De-
pending on the application we might then discard the
variation that is specific to either data alone (i.e. con-
sider it as noise, providing a direct link to the first
source of motivation) or study separately what each of
the data sets reveals in addition to the shared infor-
mation.

The traditional approach to searching for dependencies
is to assume some model family, select a dependency
measure, and then optimize the model parameters to
maximize the dependency. This leads to the classi-
cal method of canonical correlation analysis (CCA)
(Hotelling, 1936) using linear projections as the model
family and correlation as the dependency measure, and
to various more recent methods that relax the linear-
ity assumption or aim to maximize (an estimate of)
the mutual information with different kind of para-
metric models (Dhillon et al., 2003; Friedman et al.,



2001; Kaski et al., 2005; Verbeek et al., 2004). Also
several kernel-based approaches have been presented,
including kernelized CCA (see Shawe-Taylor and Cris-
tianini (2004) for a textbook account). Kernel CCA
with non-linear kernels discards the linearity assump-
tion, but the possibility to interpret the dependencies
in terms of the original dimensions is lost.

Here we take the opposite approach, and try to find de-
pendencies with probabilistic generative models. Bach
and Jordan (2005) interpreted CCA in a probabilistic
way, offering a novel view on searching for dependen-
cies. We extend the treatment to a Bayesian version
of CCA, and present additional extensions to mixture
models and simultaneously finding both the depen-
dencies and the data set-specific variation as separate
components. Using the mixture formulation we can
look for dependencies in cases where it is not feasible
to assume global linear dependency, whereas explicitly
decomposing the variation may help in interpretation.

A heuristic mixture of CCAs has previously been pre-
sented by Fern et al. (2005), relying on pre-clustering
the data points and applying traditional CCA for each
cluster, and a non-Bayesian probabilistic mixture was
briefly mentioned by Fyfe and Leen (2006). We treat
the mixture case in length, and present an algorithm
for sampling from the posterior distribution of the
model. The performance of the sampler and prop-
erties of the model are then verified on generated toy
data, and a demonstration of a practical application
in bioinformatics is presented.

2. Canonical Correlation Analysis

In this work we study the classical CCA model which
is currently receiving a lot of attention within the ma-
chine learning community (Archambeau et al., 2006;
Bach & Jordan, 2005; Fyfe & Leen, 2006; Klami &
Kaski, 2006; Leen & Fyfe, 2006). CCA is a pro-
totype method for analyzing mutual dependency be-
tween data sets; it assumes linear projections which
make it easily interpretable and keep the overfitting
problems almost manageable. We identify some key
directions of extensions, which are expected to gen-
eralize to other current extensions such as the robust
variant of Archambeau et al. (2006).

The CCA can be computed by solving the generalized
eigenvalue problem
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where the ¥ denote the covariance matrices, X, be-
ing between x and y etc. The eigenvalues p are the
canonical correlations, and the eigenvectors u contain

the canonical weights. Perhaps a bit more intuitive
way to think about CCA is to look at it just as a
method maximizing the correlation between the pro-
jections ulx and ugy7 often called canonical scores,
with suitable restrictions on the projections.

2.1. Probabilistic CCA

Much of the recent work on CCA has been based on
the probabilistic interpretation by Bach and Jordan
(2005), which is briefly summarized here. For the re-
mainder of the paper the probabilistic model is ab-
breviated as PCCA, while CCA refers to the classical
CCA method.

Denote by X = [x1,...,x,] and Y = [y1,...,yx] the
data sets of paired samples. PCCA is parameterized
by 8 = {W, ¥, ¥,  p Z} where Z = [z, ...,2,] are
latent variables, one for each sample, and the rest are
model parameters. The model can be written as

Zj ~ N(O,I),
(x5,¥5) ~ N(p+ Wz;, ¥), (1)

where W is a block-diagonal matrix that has ¥, and
W, on its diagonal. Alternatively, we could write the
likelihood for both data spaces separately, yielding
x; ~ N(p, + Wyz;, ¥,) where pu, and W, are the
parts of u and W that correspond to x, and likewise
for y. The crucial thing is that the latent variables z
are shared between the two data sets, while everything
else is independent.

Bach and Jordan (2005) showed the connection to
CCA by proving that in the maximum likelihood
solution of (1) we have W, = ..U, PY2R and
W, =3,,U,P'/2R, where the U contain the canon-
ical weights, P is a diagonal matrix containing the
canonical correlations, and R is an arbitrary rotation
matrix. Furthermore, the expectations of the latent
variables, E[z|x] and E[z|y], lie in the subspace that
the traditional CCA finds. The maximum likelihood
solution can be found by an EM algorithm, guaran-
teed to converge to the global optimum but leaving
the arbitrary rotation R undetermined. The rotational
ambiguity can be solved in a straightforward way (Ar-
chambeau et al., 2006), however, giving the individual
components.!

3. Bayesian CCA

Classical CCA is known to overfit badly to small data
sets, detecting artificially high correlations. This can

!The Appendix explaining the procedure is incorrect in
the original publication, but is corrected in an errata.



be especially harmful in exploratory data analysis aim-
ing to form hypotheses of data; spurious correlations
lead to clearly incorrect hypotheses and wasted effort
in further studies. Moreover, it is difficult in prac-
tice to identify how many canonical correlation com-
ponents there are, even though some statistical tests
have been proposed. The probabilistic interpretation
as such does not solve these problems, but it gives a
starting point for a Bayesian model which has the nec-
essary tools.

The probabilistic model in (1) is here extended to
a Bayesian generative model (BCCA) by introducing
suitable prior distributions, in particular to tackle the
issue of detecting independencies, and by providing a
method for inference. In this paper we use Gibbs sam-
pling, but variational approximation would be feasible
as well.

The likelihood and the prior for the latent variables
are exactly as in (1), and the prior distributions for
the model parameters are the following:

ﬂi ~ IG(QOa/BO)a
\I’x,‘I’y NIW(SQ,VQ), (2)

e~ N(0,0°T).

Here w; denotes the ith column of W, and IG and
IW are shorthand notations for the inverse Gamma
and inverse Wishart distributions. The priors for the
mean p and the covariance matrices ¥, and ¥, are
conventional conjugate priors, and the prior for the
projection matrices is the so-called Automatic Rele-
vance Determination (ARD) prior used for example in
Bayesian principal component analysis (Bishop, 1999).
We use values ag = 0.1, Gp = 0.1, vy = p+1, where p is
the dimensionality of x or y, Sg = I, and ¢ = 1 in all
experiments to provide reasonably vague and generally
applicable priors.

The purpose of the ARD prior here is to automati-
cally control the number of components extracted by
the model. The parameter (; controls the magnitude
of w;: If the dimensionality of the dependent sub-
space is less than the full dimensionality of W the
prior variance parameter for the remaining columns
goes towards zero, as do the actual elements of the
vectors.

A Gibbs sampler will be used to draw samples from
the posterior distribution. The conditional probabil-
ity distribution of each variable given the rest has a
form of some classic distribution and thus sampling is

straightforward. The formulas are
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The shorthand notation A in the sampling formula of
w; denotes V,w_z-,Z,\Il, and 3;. The notation z;;
refers to the element on ith row and jth column in Z
(or equivalently the ith element of z;), and negative
indices mean every column/row except the one men-
tioned. The variable V is the row-wise concatenation
of X and Y, v; means v; — i, py is the number of di-
mensions in v, and n is the number of samples. In all
formulas ¥ = [¥,,0;0, ¥,], a block-diagonal matrix
with W, and ¥, on its diagonal. The sampling for-
mula for ¥, is identical to that of ¥, but naturally
using y instead of x.

The only somewhat more complicated part is the sam-
pling of the projection matrices W. The prior for the
matrix as a whole is not conjugate, so we sample the
values component by component (i.e., one column of
W at a time). As the order of the components is arbi-
trary the columns of W (and correspondingly the rows
of Z and ) will be re-arranged after each iteration ac-
cording to their magnitude to improve convergence.

The sampler converges to the posterior distribution of
the model parameters, after which inference on model
parameters can be done using the posterior samples.
The convergence is here measured by the potential
scale reduction factor by Brooks and Gelman (1998),
applied to the total likelihood of the model given the
data {x;,y;}7_;. The parameter values could alterna-
tively be used for stricter convergence control.

4. Local Dependent Components

To make modeling of dependencies local and to get
rid of the assumption of global linear dependency we



introduce a mixture of Bayesian canonical correlation
analyzers. The model is formulated as a Dirichlet pro-
cess mixture to avoid having to choose the number of
clusters. The process is described by

d)j ~G
G ~ DP(Go, ),

where Gy is the joint prior distribution specified in (2),
¢; includes W, ¥, 8 and p for the jth sample, and DP
denotes the Dirichlet process with « as a concentration
parameter. Note that while ¢, is drawn separately for
each data point, the Dirichlet process has a cluster-
ing effect by giving identical values for several points.
Here Gy is not conjugate to the model, but only con-
ditionally conjugate in the sense that the joint prior
can be written as a product of conjugate priors. This
means that we are not able to integrate out the model
parameters, and thus cannot use the conventional ap-
proaches, such as (MacEachern, 1994), for sampling
from the Dirichlet process mixture.

We can, however, draw posterior samples using a non-
conjugate split-merge procedure (Jain & Neal, 2005).
The procedure works by suggesting to either split an
existing cluster in two, or to merge two clusters into
one. When splitting, the algorithm draws two new
components from the prior and uses restricted Gibbs
sampling to approach reasonable states for the compo-
nents. Note that since we sample from the prior, hav-
ing somewhat informative prior improves convergence.
The restricted Gibbs here means a sampler which only
considers the two components and the collection of
samples assigned to them, and thus does not vary the
number of components. After some restricted scans
a final Gibbs step is performed, and the proposal is
either accepted or rejected based on the Metropolis-
Hastings ratio. The merging proceeds similarly, also
involving restricted Gibbs sampling for an imaginary
split. The split-merge procedure is accompanied by
incremental Metropolis-Hastings updates (algorithm 5
in (Neal, 1998)) as suggested in Jain and Neal (2005).

The sampling formulas required in these algorithms
are the ones given in (3), this time always conditioned
on the samples in a given cluster, together with a new
distribution for sampling s, a latent vector indicating
the cluster membership of each sample. The restricted
Gibbs steps use

n_jr+a
— I N (v, E
T Nl )

where X = WkW{ + Wy,

sj|vj, W, ¥

and n_;j denotes the number of samples in the kth
cluster, excluding the jth sample itself. Note the

slight notational abuse as the subscript in W, p, and
WU now refers to the cluster instead of elements, and
N(v;|p,X) is the probability density of the given nor-
mal distribution at v;. The incremental Metropolis-
Hastings algorithm samples directly from the prior as

Nk
Sj—i,
n—1+a«a

together with an additional probability «/(n — 1 + «)
for creating a new component, and accepts or discards
these samples based on the normal density. We con-
sider a here as being fixed, so no update is needed for
it, and used o = 1 in all experiments.

5. Decomposition of Variation

In data analysis it may be interesting to know both
what is specific to each data set and what is shared,
instead of only searching for the shared aspects or de-
pendencies as CCA does. In the model (1) the data
set-specific variation is modeled only implicitly by the
covariance matrix parameters . To make this vari-
ation interpretable we decompose it into components
as well. This whole procedure results in a decomposi-
tion of all variation into three sets of components: The
first models the shared variation, the second variation
specific to x, and the third variation specific to y.

To achieve this we use a method that is effectively
Bayesian PCA (Bishop, 1999), implemented with sam-
pling. For given values of the BCCA model parame-
ters, it is straightforward to factorize the covariance
matrices ¥, and ¥, individually, by sampling from
the posterior of the model

x; ~ N(Byt;, 3, + 021),

where t; is latent variable for the sample x;, B, con-
tains the projection vectors, and ¥, = W, W cor-
responds to the variation already explained by the
BCCA model. The priors and sampling formulas for
B and t are similar to (2) and (3); details are omit-
ted here for brevity. For 2 an inverse Gamma prior
is used, and it is sampled with Metropolis-Hastings in
the logarithmic domain.

To obtain the factorization for all posterior samples of
BCCA without needing to run a long sampling chain
for each, we use two interleaved MCMC-chains. One
updates the parameters of the BCCA model and works
exactly as in (3), not taking the data set-specific fac-
torizations into account at all. The other chain then
samples a few samples from the factorization chains,
given the most recent BCCA sample and starting from
the sample obtained using the previous one. When we
cannot assume that two consecutive BCCA samples



are close enough, in practice after accepting a split or
merge proposal in the mixture model, the factoriza-
tion chains are sampled longer to ensure convergence
to the new BCCA model.

An alternative way to do the same would be to extend
the model to explicitly model data set-specific varia-
tion together with the dependencies as suggested in
(Klami & Kaski, 2006). However, as shown in that
paper PCCA (and consequently BCCA) works cor-
rectly only if the data set-specific variation is exactly
marginalized out, and thus directly sampling from this
kind of a model could be difficult.

6. Experiments

In this section we demonstrate and experimentally ver-
ify properties of the model. First it is shown that when
applied to data sets having small n, BCCA is able to
avoid overlearning, in contrast to classical CCA. Next,
the decomposition into shared and data set-specific
variation is demonstrated on toy data. Third, the abil-
ity of the split-merge sampler to detect local depen-
dencies is verified using a clustered data set. Finally,
we present a brief example of how the mixture model
could be applied on real biological data.

6.1. Performance on Small Data Sets

We first demonstrate that BCCA performs equally to
the classical CCA on data sets with a large number
of samples, and then show that it is considerably less
prone to overfitting when applied to smaller data sets.

We created two four-dimensional data sources having
jointly Gaussian distribution with three correlating di-
mensions (correlations 0.7, 0.3 and 0.1), and compared
the methods on large sets (n = 800) and small sets
(n = 50). For classical CCA the uncertainty in the
estimates was evaluated using non-parametric boot-
strapping.

Given a sufficiently large data set the results of
Bayesian CCA and normal CCA are effectively equal
(Figure 1). Both methods find the true correlations,
and the widths and shapes of the distribution of cor-
relations are also comparable. Traditional CCA, how-
ever, occasionally finds spurious correlations even from
a data set this large.

With smaller data sets normal CCA overfits by giving
artificially high correlations. Especially the smaller
correlations are considerably overestimated. The
Bayesian variant fares a lot better, mostly showing just
wider posterior distributions compared to the larger
data and capturing the true correlation in between the

n = 800 n =50
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Figure 1. Boxplots of the correlations extracted by

Bayesian CCA and normal CCA. The real correlations of
the four components are marked with horizontal lines, and
results for two different data set sizes are reported. On the
larger data set (left) the results of the two methods are very
similar, but for the smaller data set (right) classical CCA
overfits seriously, in particular for the smaller correlations.
For BCCA the most notable difference between the data
set sizes is in the width of the posterior distributions. The
boxes extend to the 25% and 75% quantiles and the tick
marks the median.

25% and 75% quantiles in every case.

While n = 50 may sound like a very small number of
samples, it is worth remembering that both data sets
had just p = 4 dimensions. In many biological data
sets the ratio is even worse, to the degree that we may
even have n < p if considering for example genes as
features and patients or conditions as samples.

6.2. Decomposition of Variation

Here we demonstrate how the variation can be decom-
posed into shared and data set-specific components,
on a simple jointly Gaussian data set with a manually
specified covariance matrix. The data has one com-
mon (shared) component and one component specific
to each data set. The obtained projections are com-
pared to two naive alternatives that do not aim at such
a decomposition: principal component analysis (PCA)
of each individual data set separately, and PCA of the
concatenated data [x;y]. The latter is a global linear
model of the whole data collection.

The first BCCA projection vectors (means over the
posterior samples) for shared and data set-specific
variation are presented in Figure 2. For comparison
we have included three first components of the PCA
of the concatenated data to illustrate that while a stan-
dard joint model describes the data well it makes no
distinction between what is shared and what is spe-
cific to each data source. Parts of both are included
in the same components. The data set-specific PCAs
naturally could not distinguish those in any way.
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Figure 2. Illustration of a decomposition of the variation
into shared and data set-specific components. The bot-
tom line (g-1) displays the first three projection vectors of
a PCA applied to the concatenation of x and y. This kind
of joint modeling of the whole data collection suggests that
the most dominating components (g-h) involve all dimen-
sions with relatively high weights. The BCCA reveals that
actually the joint analysis mixed two separate effects: a
shared component involving the first two dimensions of x
and the first dimension of y (a,d), and the data set-specific
variations (b,e). The third joint component (i) corresponds
to variation that is almost solely specific to x. PCA of each
data set alone (c,f) naturally cannot distinguish between
shared and data set-specific variation, and simply finds the
main source of variation in each source. The bars represent
the absolute values of the projection weights, indicating the
importance of the dimensions. The scale is from zero to one
in every subfigure.
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6.3. Local Dependent Components

The mixture variant for performing local analysis is
demonstrated on data with clear but still overlapping
clusters. This illustrates that the somewhat compli-
cated split-merge procedure works in practice, finding
the clusters and the dependencies within each.

For this purpose we generated a total of 1500 samples
from three slightly overlapping (the average distance
between centroids was twice the average standard de-
viation of dimensions) jointly Gaussian clusters having
an equal size but varying degree of manually specified
correlations. The number of detected clusters was be-
tween 3 and 7 in all posterior samples, and while the
number was usually (in 82% of samples) above 3, the
extra clusters mostly contained only a few data points.

Table 1. Correlations found by a mixture of BCCAs. The
reported ranges are the 25% and 75% quantiles of the pos-
terior distribution, and we see that in most cases the larger
correlations are well matched. The smaller ones are some-
what overestimated, in particular for the clusters 2 and 3
having only a two-dimensional dependent subspace.

Cluster 1 Cluster 2 Cluster 3
true BCCA ‘ true BCCA ‘ true  BCCA
0.7 0.68-0.71 | 0.5 0.50-0.55 | 0.9 0.85-0.86
0.3 0.280.34 | 0.2 0.19-0.25 | 0.6 0.51-0.56
0.1 0.12-0.18 0 0.03-0.07 0 0.05-0.09

0 0.01-0.05 0 0.00-0.01 0 0.00-0.02

On average 1450 of the 1500 data points were in the
three biggest clusters, demonstrating that the sampler
was able to find the true cluster structure. The poste-
rior intervals of the correlations within each true clus-
ter are reported in Table 1. These figures were col-
lected after matching, for each posterior sample, the
clusters of the model to the true clusters by majority
voting. In practical data analysis this label switch-
ing problem could be solved by an additional stan-
dard clustering step as is done in the next section or,
for instance, by computing a variational approxima-
tion. The true correlations are found relatively well,
although the method does find some weak spurious
correlations.

Note that traditional CCA (or a single BCCA) would
here provide completely different results as the pro-
jections would try to capture the clustering effect in
addition to the within-cluster dependencies.

6.4. Regulation of Heat Shock in Yeast

We next apply the mixture model to analyzing the reg-
ulation of heat shock in Saccharomyces cerevisiae, as a
demonstration of potential applications. The task is to
find groups of genes that share effective regulators and
are regulated differently from the rest of the genes in
the specified environmental conditions. The informa-
tion is extracted from two data sets, one being a time
series (8 time points) of gene expression in heat shock
(Gasch et al., 2000), and the other ChIP chip mea-
surements of how well 6 different transcription factors
bind into the promoter region of each gene in yeast
grown under heat shock (Harbison et al., 2004).

Gene regulation is typically modeled by Bayes net-
works, which have the problem that structure search
is very difficult for small data sets. In practice the set
of genes would need to be restricted, and we could in
principle first cluster the genes into smaller modules,
and then search for regulatory relationships within



each by building a bi-partite graphical model to rep-
resent the dependencies. Links between the two parts,
transcription factor binding and a time point in the
expression data, would tell about the dependencies,
whereas links within each part would explain the data
set-specific variation. The mixture of CCAs is an al-
ternative exploratory method that performs both the
clustering and extraction of the dependency structure
in one rigorous step, represents the shared and data
set-specific variation in the form of easily interpretable
latent variables (projections on linear components),
and most importantly is generally usable in other kinds
of applications as well.

We applied the split-merge sampler to a random sub-
set of 2000 genes. From the collection of the posterior
samples it is possible to compute summary statistics
about dependency either globally or locally for each
gene or transcription factor or pairs of them, or con-
struct lists of similarly regulated genes or potential
regulators. For instance, similarity of regulation of
genes can be quantified (as the likelihood of belonging
to the same mixture component), and effectiveness of
co-binding of transcription factors can be assessed.

Here we summarize main findings for one consistent
cluster. The most consistent clusters were extracted
using a complete linkage hierarchical clustering algo-
rithm on the matrix of pairwise probabilities for two
genes to belong to the same cluster. This provided
four reasonably consistent clusters, each showing dif-
ferent kinds of dependencies. Some main observations
for one of the clusters are presented in Figure 3.

7. Discussion

In this paper a Bayesian version of probabilistic canon-
ical correlation analysis and a sampling procedure for
the model were presented to address two problems of
traditional CCA: overfitting for small data sets, and
the need for assuming global linear dependency. Fur-
thermore, an extension that is able to extract also data
set-specific variation in addition to the dependencies
was presented. All of these properties were verified
on generated data, and an example application of the
method on biological data was presented.

The sampling approach used in this paper does not
require coarse approximations, but for the mixture
model it is very time-consuming and introduces a “la-
bel switching problem”: it is non-trivial to identify
clusters in several different posterior samples. While
there are approximate methods for solving the prob-
lem, and global and data point-specific statistics on
dependency are more than sufficient in many applica-
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Figure 3. Sample regulation effects found in yeast heat
shock by the Bayesian mixture of CCAs, presented for one
cluster. The histograms of the posterior samples of the
mean binding levels for two transcription factors, GAT1
and SKN7, are shown on the top row. Values above zero
indicate higher than average binding, and thus the his-
tograms show that GAT1 and SKN7 bind to the promoter
regions of the genes in this cluster during stress. The bot-
tom row displays the posterior distribution of the weights
of the first CCA projection vector corresponding to two
transcription factors, HSF1 and YAP1. The high values
indicate that the binding of these two factors correlates
with the expression of the genes. Taken together, this in-
formation suggests that HSF1 and YAP1 are important
regulators for a group of genes that are already bound
by GAT1 and SKN7. SKN7 is known to form a two-
component signaling system in oxidative stress with both
HSF1 and YAP1, providing support for the finding (see
http://www.yeastgenome.org/).

tions, it is worthwhile to complement the method by
point estimates. For example variational Bayes could
be useful for practical applications and is definitely
worth considering. A single Bayesian CCA model,
however, is effectively computable for real applications
already with the current sampling method.
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