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Summary. Discriminative clustering (DC) uses auxiliary data to define what is relevant in
the primary data. It partitions the continuous primary data space to local clusters that have
maximally homogeneous (categorical) auxiliary data. The task has several interpretations:
searching for maximally predictive clusters, clusters that maximize mutual information with
the auxiliary data, clusters for which contingency tables detect optimally dependency with the
auxiliary data, or K-means clusters in the so-called Fisher or learning metric. DC can be applied
to adjust the resolution of an existing classification, or to guide clustering with auxiliary data.

1. Introduction

The task is to cluster continuous primary data x € R” in a way that the clusters become
relevant for or informative of the discrete auxiliary data c, i.e., capable of predicting p(c|x).
Compared to modeling of the joint distribution (Hastie et al., 1995), the clusters become
more informative about c¢. Classical distributional clustering (Pereira et al., 1993) searches
for informative clusters as well, but is only applicable to discrete data. The difference from
classification is that the goal is to explore the primary data, not merely to predict the classes.

Motivation for the model comes from a central problem in clustering: After the (feature
extraction and) metric is fixed, it is not possible to distinguish between relevant and irrelevant
variation in data. Assuming a suitable dependent variable such as a class labeling is available,
however, it might be advantageous to use it to guide clustering. We have earlier suggested to
incorporate such supervision to an exploratory task by computing a supervised metric, coined
the learning metric (Kaski et al., 2001; Kaski and Sinkkonen, to appear; Sinkkonen and Kaski,
2002).

Charting companies based on financial indicators is one example application for discrimi-
native clustering (Kaski et al., 2001). The binary variable indicating whether the company went
bankrupt or not is natural auxiliary data. Others include clustering of gene activity patterns
(Sinkkonen and Kaski, 2002), where functional classes are the auxiliary data, and segmentation
of customers based on what they buy.

In this paper the DC model is reviewed briefly, and some new results are presented on
regularization and extension to continuous auxiliary data.

2. The discriminative clustering model

The goal is to partition the primary data space into clusters that (i) are local and (ii) have
homogeneous auxiliary data. Locality is enforced by defining the clusters as (Euclidean) Voronoi
regions in the primary data space: x belongs to cluster j, x € V}, if ||[x — m;|| < ||x — my]| for
all k. The Voronoi regions are uniquely determined by the parameters {m,}.

Homogeneity is enforced by assigning a distributional prototype v;, a prototype density,
to each Voronoi region j, and searching for partitionings capable of predicting auxiliary data
with the prototypes. The resulting model is a piecewise-constant generative model of p(c|x),
with the log likelihood
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where c(x) is the class of sample x. The probability of class ¢ within Voronoi region V; is
predicted to be 1;;. The motivation for this model is that asymptotically
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where Dy is the Kullback-Leibler divergence between the prototype and the observed distri-
bution of auxiliary data, and NV is the number of samples. This is the cost function of K-means
clustering or vector quantization with the Dy as distortion. In this sense, maximizing the
likelihood of the model maximizes the distributional homogeneity of the clusters.

The likelihood is to be maximized with respect to the both sets of prototypes, m; and ;.
Since the goal is to cluster the primary data, however, the prototype distributions are actually
not needed. If the (log) posterior probability is maximized instead of the likelihood, it can be
shown (Sinkkonen et al., 2002) that for suitable uninformative priors,
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Here D is the observed auxiliary and D®) the primary data set, nj; is the count of data from
(auxiliary) category i in cluster j, nj. = > . nji, N, is the number of auxiliary data classes, and
n® comes from the Dirichlet prior.

It can be shown that maximizing (2) maximizes the mutual information between the
auxiliary data and the clusters considered as a random variable (Sinkkonen and Kaski, 2002).
A connection to the so-called learning metrics is derived in (Kaski and Sinkkonen, to appear):
in the learning metric the class distribution changes isotropically, and DC is asymptotically
K-means clustering in this metric, with the constraint that the Voronoi regions are Euclidean.

The objective function (3) can be optimized by gradient methods after smoothing the
cluster assignments by normalized Gaussians. We have used the conjugate gradient algorithm.

3. Regularization

Since DC in effect is K-means in a new metric, it is expected to suffer from the “dead
unit problem” as well. The number of data in the clusters can be equalized by multiplying the
middle term in (3) by a constant 5 > 1. Asymptotically the resulting extra term is the entropy.

Another potential problem in DC is that since it models solely the conditional probability
p(c|x), it cannot explicitly take into account uncertainty in x. DC can be complemented with
a generative mixture-type model for x, to model the joint density by p(c,x|[{m;}{+,}) =
plelx, {my}, {9, })p(x|{m;}). If p(x|{m;}) comes from the so-called classification mixture, the
objective function has an interpretation as a compromise between K-means and DC,

where MAP pc is given by (3) and Ey ¢ is the cost function of K-means clustering. Alterna-
tively, Ey ¢ can be replaced by the log likelihood of a standard mixture of Gaussians. Changing
the value of A shifts the focus of the clustering between DC and K-means. This possibility for
a tunable compromise distinguishes the model from standard models of the joint density.

4. Associative clustering: Extension to continuous auxiliary data

Discriminative clustering optimizes contingency tables (Sinkkonen et al., 2002), that is,
data cross-tabulated in a matrix of clusters (rows) vs. categories of auxiliary data (columns).



Formally, DC maximizes the Bayes factor (Good, 1976) of the hypothesis of dependent vs.
independent rows in the contingency table. The column margins are fixed. In other words, DC
finds such clusters that the rows and columns of the contingency table become as dependent
as possible.

The interpretation suggests a generalization of DC to continuous auxiliary data. A set of
clusters is postulated to each of the two continuous spaces, and the clusters are optimized to
maximize the Bayes factor. The total number of data samples is fixed.

It can be shown (details omitted for brevity) that the (log) Bayes factor becomes
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where K and L are the numbers of clusters in the two spaces, and the third term is the only
difference from the objective function of DC; the function is now symmetric with respect to the
two spaces. The model can be optimized in the same way as DC.

5. Experiments

We verified that DC does what it promises by computing the empirical mutual information
of clusters and auxiliary data for two standard data sets. The basic discriminative clustering
(DC), the equalized variant (entDC), combination of DC and VQ (DC-VQ), and combination
of DC and mixture of Gaussians (DC-MoG) were compared to alternative clustering methods:
standard K-means (VQ), mixture of Gaussians (MoG), and a joint mixture model (MDA2;
Hastie et al., 1995). The mutual information was larger for DC (Table 1). The difference
between the variants of DC was usually not significant but the difference from the others was.
(Significant difference from the best, t-test over separate test sets, P < 0.01; almost significant,

P < 0.05.)

Table 1. Mutual information between clusters and auxiliary data

Data | DC | entDC | DC-VQ | DC-MoG | VQ | MoG | MDA?2
Letter | 1.89 | 1.98 | 1.91 1.97 [ 0.95 ] 0.97 | 168
TIMIT | 149 | 1.52 | 1.52 1.53 | 137 | 136 | 151

The following task would be an ideal application for associative clustering: Cluster cus-
tomers and products based on their properties, such that the customer clusters are informative
about what the customers buy, and product clusters are popular for certain types of customers.

Figure 1. Helsinki area partitioned into demographically homogeneous regions

Since such applications are typically confidential, we demonstrate the idea by associative
clustering of coordinates of small geographic squares (primary data) and a set of 146 demo-



graphic variables at the location (auxiliary data). Figure 1 shows the 70 primary data clusters
in Helsinki area, where dots denote squares with more than 10 inhabitants. Many of the clus-
ters and cluster borders have a clear interpretation; examples include the well-off Westend and
the neighboring suburb Matinkyla, and the former industrial area Sérnéinen close to downtown
and the embassy area Kulosaari.

6. Discussion

Discriminative clustering is a new step towards learning from data what is relevant or
interesting. It helps bridge the gap between unsupervised learning (descriptive modeling or
modeling of p(x)) and supervised learning (predictive modeling or modeling of p(c|x)). More
work is still needed on connections with recent works on “clustering with side data,” and on
generalizing the idea to other types of data and other kinds of models besides clustering.
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RESUME

Le groupement discriminatif (discriminative clustering, DC) utilise des données auziliaires
pour définir ce qui est important dans les données primaires. Il sépare l’espace continu de
données primaires en partitions locales de sorte qu’elles presentent une homogeneité mazximale
dans les données (catégorique) auziliaires associées. Le processus a plusieurs interprétations:
la recherche des groupements les plus prévisibles, des groupements qui mazximisent l'information
conjointe avec les données auxiliaires, des groupements pour lequels les tables de contingence
détectent, d’une facon optimale, une dépendance avec les donées auziliaires, ou encore des
groupes definis par la méthode de k-means en utilisant des métriques (de Fisher) qui apprénent.
DC peut etre utilisé pour ajuster la résolution d’une classification existante, ou bien pour guider
le groupement de données en s’appuyant sur des données auxiliaires appropriées.



