
Inferring vertex properties from
topology in large networks

Janne Sinkkonen∗, Janne Aukia∗, and Samuel Kaski†
∗Xtract Ltd, Helsinki, Finland

†Laboratory of Computer and Information Science, Helsinki University of Technology, Finland

Abstract : Network topology not only tells about tightly-connected “communities,”
but also gives cues on more subtle properties of the vertices. We introduce a simple
probabilistic latent-variable model which finds either latent blocks or more graded
structures, depending on hyperparameters. With collapsed Gibbs sampling it can be
estimated for networks of 106 vertices or more, and the number of latent components
adapts to data through a Dirichlet process prior. Applied to the social network of
a music recommendation site (Last.fm), reasonable combinations of musical genres
appear from the network topology, as revealed by subsequent matching of the latent
structure with listening habits of the participants. The advantages of the generative
nature of the model are explicit handling of uncertainty in the sparse data, and easy
interpretability, extensibility, and adaptation to applications with incomplete data.

Introduction

Data collections representable as networks, or sets of binary relations between
vertices, appear now frequently in many fields. In this context, inferring prop-
erties of the vertices from the relations is a common data mining problem. We
introduce an algorithm for the explorative case, where no a priori defined char-
acteristics for the vertices are available and the task is to infer latent variables
of the data. Rather than being predictive of a pre-defined target, the results are
nominal or continuous-valued latent properties of the vertices that in a certain
sense explain the observed connectivity well.

As a demonstration, musical tastes of people are derived from the friendship
network of the online music servive Last.fm (www.last.fm), with over 105 ver-
tices and edges. Other application areas besides social networks are found in
biology (cellular networks) and hypertexts.

The algorithm introduced here is a simple generative probabilistic latent
mixture model, fitted with (collapsed) Gibbs sampling [5]. Due to the Dirichlet
process prior the complexity of the model is controlled by a parameter, but
the number of latent components is not fixed. Careful implementation allows
the analysis of millions of vertices with models including thousands of latent
components. The generative nature of the model makes its description relatively
explicit, including how uncertainty of data is taken into account. Extensions
for richer relational information, missing data, and known properties of vertices
are straightforward.

Methods

The generative process out of which the network is supposed to arise is the fol-
lowing; it is parameterized by (α, β)—see further below for discussion of these
parameters, and Fig. 1 for a diagram: (1.1) Initialize by generating a multino-
mial distribution θz over an infinite number of latent components z from the
Dirichlet process DP(Z|α); (1.2) to each z, assign a multinomial distribution

1



over the M vertices i by sampling the multinomial parameters mzi from the
Dirichlet distribution Dir(β)—the prior is constant over the vertices. (To clar-
ify, we have

∑
i mzi = 1 for each z, and

∑
z θz = 1.); (2) Then, repeat for each

edge l: (2.1) draw a latent component z from the multinomial θz; (2.2) generate
two vertices, i and j, independently of each other, with probabilities mz; set up
a non-directed edge between i and j.

Note that within components edges are generated independently of each
other and “randomly”; the non-random structure of the network emerges from
the tendency of components to prefer certain vertices (that is, mz). In con-
trast to many other network models (e.g., [9] and stochastic block models
[1, 4, 6, 7, 8]), latent variables operate on the edge level, not on the vertex
level. There is no explicit hierarchy level for vertices, but because vertices
typically have several edges, they are implicitly treated as mixtures over the
latent components. Finally, the model is parameterized to generate self-links
and multi-edges although they are not present in typical data sets. This allows
sparse implementations that would be impossible for an equivalent Bernoulli
model.

Although the number of potentially generated components is infinite, the
Dirichlet process gives a very uneven distribution over them. Therefore, with a
suitably small value of α, we observe much fewer components than the number of
edges is, and the model is useful. On the other hand, β describes the unevenness
of the degree distribution of the vertices within components: a high β tends to
give components spanning over all vertices, while a small β prefers mutually
exclusive, community-like components.

In the collapsed Gibbs sampling algorithm, the unknown model parameters
mzi and θz are marginalized away, and only the latent classes of the edges, zl,
are sampled one at a time. Given component assignment for all except the one
edge to be sampled, denote edge counts per component by nz, and component-
wise vertex degrees by kzi, and the endpoints of the left-out edge by (i, j). Then
the component probabilities of the left-out edge are

p(z|i, j) ∝ kzi + β

2nz + 1 + Mβ
× kzj + β

2nz + Mβ
× C(nz, α)

N + α
(1)

with C(nz, α) ≡ nz if nz 6= 0 and C(0, α) = α. In the latter case a new
component is generated. This sampling step is simply repeated iteratively for
all links, until convergence to the posterior distribution. Initialization of the
sampler is most natural by starting from an empty urn, and populating it with
edges on the first sampling round, again according to (1) but counting only the
edges so far generated.

The sampling algorithm is easiest to derive by starting from a simpler model
having a Dirichlet prior for z, then noting the structure of the collapsed sam-
pling algorithm as two nested Polya urns (like in [5]), and replacing the urn for
the components by the Blackwell-MacQueen urn [2] which corresponds to the
Dirichlet Process prior of the present model.

Given the simplicity of the sampling scheme, it is easy to make it highly effi-
cient. For example, the degree of a vertex poses an upper limit for its component
heterogeneity, so that in most real-life networks only few of the counts kzi are
simultaneously non-zero, allowing sparse implementation and a high number of
components. Edges can be sampled in parallel by locking vertices in the count

2



new wave
80s
post−punk
Alt−country
jazz
blues
ambient
electronic
electronica
experimental
post−rock
classic rock
singer−songwriter
folk
indie pop
Grunge
country
comedy
pop
Canadian
female vocalists
britpop
Soundtrack
industrial
J−rock
japanese
j−pop
punk rock
ska
hard rock
Progressive rock
heavy metal
metal
Progressive metal
christian
christian rock
piano rock
metalcore
hardcore
post−hardcore
punk
screamo
emo
pop punk
hip hop
Hip−Hop
(none)
rap
acoustic
rnb

A (r
ap

, h
ard

co
re)

B (c
hri

stia
n)

C (m
eta

l)

D (ja
pa

ne
se

, in
du

str
ial)

E (p
op

, c
ou

ntr
y)

F (in
die

 po
p, 

fol
k)

H (m
isc

)

G (e
lec

tro
nic

a, 
jaz

z) 
 

Figure 1: Left, up: The model. Left, down: Clusters, depicted by colors, found from
a protein dataset similar to that in Airoldi et al. [1]. Note uncertainty in the middle.
(Coordinates are from a directed-force layout with Prefuse.) Right: Last.fm user tastes
derived from friendship network. Latent components were afterwards correlated with
user’s listening habits; here songs are aggregated by tags given to them. Users have
mixed tastes, while tags are intuitively grouped into components. (Visualization with
heatplot of R.)

table kzi. For M vertices, L edges, C components, and I iteration rounds, mem-
ory consumption scales as O(MC + L + C), but with hash tables this can be
reduced to O(Md + L + C) where d is the average degree. Because d = L/M ,
memory consumption scales as O(L + C). After optimizing the sampling with
trees, running time can be lowered down to O(I L d log C). That is, running
time scales linearly in the number of edges and logarithmically in the number
of components—excluding the required number of iterations I.

We also experimented with an EM algorithm for the finite-component version
of the model. Althought it was faster than the MCMC method presented above,
the results were clearly worse. Apparently, the posterior has many maxima at
the borders of the parameter space, and the EM quickly converges into one of
those.

Examples

A network of 455 proteins with 558 interactions is modelled with parameters
(α=10−5, β=10−4) that prefer formation of discrete clusters. After 33,000 itera-
tion rounds, 20 samples were taken at the intervals of 50 rounds, which resulted
in 13 stable components, shown in Fig. 1, left. Clearly, the algorithm is capable
of finding tightly connected components from the network.

3



The component structure reflecting musical tastes in Fig. 1, right, resulted
from a run with 147,610 (anonymous) Last.fm users claiming to be from US, and
their 352,987 self-announced mutual friendships. The parameters of the model
(α=0.2, β=0.2) were chosen to prefer a small number of diffuse components. As
a result (10,000 iterations in just under four hours), each user gets a probabilis-
tic profile over eight latent components that seem to describe musical tastes.
The tastes emerge from the friendships, which makes the approach usable as a
customer relationship management and personalization tool.

Even larger models are feasible. Running a model of a social network with
670,000 users, about 3.5 million links and over 10,000 components into apparent
convergence took 10,000 iterations, or 8 days of CPU on a single-processor
Opteron.

Discussion

A simple generative algorithm seems to be able to capture both clusters and
more diffuse latent properties of vertices, from network topology alone. Estima-
tion with MCMC is surprising useful, replicating experiences with text models,
where marginalized Gibbs is only 4–8 times slower and produces better results
than the variational approach [3]. Obvious targets for futher work are proper
empirical comparisons with other models and extension for richer datasets.

Acknowledgements: We thank Last.fm for making the social network and music data
available, and Antti Ajanki (TKK) for preparing the protein data set. SK belongs
to Helsinki Institute of Information Technology and Adaptive Informatics Research
Centre, and is partly supported by the IST Programme of the European Community,
under the PASCAL Network of Excellence, IST-2002-506778.

References

[1] Airoldi EM, Blei DM, Fienberg SE, Xing EP (2006) Mixed-membership stochastic
block models for relational data with application to protein-protein interaction.
In Proceedings of the International Biometrics Society Annual Meeting.

[2] Blackwell D, MacQueen JB (1973) Ferguson distributions via polya urn schemes.
Annals of Statistics 1, 353–355.

[3] Buntine W (2005) Dirichlet Processes for luddites: applications to discrete com-
ponent analysis. NIPS’05, workshop on non-parametric bayesian methods.

[4] Daudin J-J, Picard F, Robin S (2007) A mixture model for random graphs. Statis-
tics for systems biology group, research report no. 4, Jouy-en-Josas, France.

[5] Griffiths TL, Steyvers M (2004) Finding scientific topics. PNAS 101 suppl. 1,
5228–5235.

[6] Handcock MS and Raftery AE (2007) Model-based clustering for social networks.
J. R. Statist. Soc. A 170, 1–22.

[7] Hoff PD, Raftery AE, Handcock MS (2002) Latent-space approaches to social-
network analysis. J. Am. Statist. Ass. 97, 33–65.

[8] Kemp C, Griffiths TL, Tenenbaum JB (2004) Discovering latent classes in rela-
tional data. MIT AI Memo 2004-019.

[9] Newman MEJ, Leicht EA (2006) Mixture models and exploratory data analysis
in networks. arXiv:physics/0611158v2 (preprint).

4


