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ABSTRACT

We develop models for a kind of data fusion task: Com-
bine multiple data sources under the assumption that data
set specific variation is irrelevant and only between-data
variation is relevant. We extend a recent generative model-
ing interpretation of Canonical Correlation Analysis (CCA),
a traditional linear method applicable to this task, in a way
which allows generalization to other types of models. The
generative formulation makes all standard tools of Bayesian
inference applicable. We finally introduce new dependency-
seeking clustering models that outperform standard genera-
tive clustering models in their task.

1. INTRODUCTION

We study the task of modeling dependencies between two
data sets of co-occurring or paired samples(x, y). In other
words, the task is to find what is shared by, or statistically in
common inx andy. The underlying assumption is that vari-
ation within either data set alone is more noisy, or at least
less interesting than variation that is in common. Example
tasks include translation where thex andy are sentences in
different languages, or measurement data from two differ-
ent kinds of noisy sensors such as gene expression arrays,
that measure the same system.

This task has been classically solved by Canonical Cor-
relation Analysis (CCA) [1], or more recently by other meth-
ods that maximize mutual information such as the Informa-
tion Bottleneck [2]. Mutual information measures deviation
from independence and is hence arguably a very good ob-
jective function for finding dependencies. Unfortunately it
is defined for distributions and not data sets, and hence can-
not handle well uncertainties caused by the finiteness of the
data sets. Alternative Bayes factor-based dependency mea-
sures have been proposed for the task [3], but even they do
not take all uncertainties into account.

Bayesian generative modeling of joint distributions, in
this case ofp(x, y), is a traditional well-justified framework
for modeling finite data sets. Complexity control of models
can be formulated rigorously, which makes it possible to

use flexible model structures and constrain their complexity
according to the data.

Standard flexible models will, by default, try to model
all variation within the data, and hence they would be even
too flexible for modeling of dependency between data sets.
In more focused modeling tasks it is customary to constrain
the solution space using explicit prior knowledge to make
independence assumptions between the variables, resulting
in models structured according to the specific system being
modeled.

Recently [4] it was suggested that a simple indepen-
dence assumption would be sufficient for turning a genera-
tive joint distribution model into CCA. This is striking since
dependency modeling and generative modeling of joint den-
sities had earlier been considered very different tasks. The
new finding raises the immediate questions of how general
the relationship is, and under what conditions it holds. More
generally, it would be very interesting to better understand
the the relationship between the two tasks. We will start
exploring these questions in this paper.

In summary, the main finding is that if a generative mod-
el has a very flexible model for both of the marginals (x and
y) separately, then a very constrained model for the relation-
ships will specialize in capturing dependencies between the
data sets. We will explain and justify this in more detail,
and introduce some new models which utilize this insight.

2. MODEL STRUCTURE FOR DEPENDENCY
EXPLORATION

A Bayes network or graphical model can be used to rep-
resent independence assumptions in a model: if two nodes
are not connected with an edge, there is no direct relation
between the two variables. Traditionally, the model struc-
ture is learned from data to represent the real dependencies,
but we can also use the same framework toforce the model
to use certain parameters for describing the dependencies.
This can be done by imposing independence assumptions to
suitable locations. The main goal of this paper is to assess
whether this kind of structural focusing can help in finding
dependencies.
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Fig. 1. Three model structures for dependency modeling,
all sharing the property that the observed variablesx andy

have some latent variables in common.

Here we will consider three simple structures (Figure 1)
for modeling two (usually multivariate) variables (x andy).
All models share the property that the variables interact only
through a common latent variable (or group of variables).
Some general-purpose methods can be derived already from
these simple structures, and thus they serve as a good basis
for studying the properties of modeling dependencies with
generative models.

3. CANONICAL CORRELATION ANALYSIS

Canonical correlation analysis (CCA) is a classical linear
model for finding dependencies [1]. It is formulated as find-
ing the linear transformationsWx andWy such that each di-
mension ofWxx correlates maximally with the correspond-
ing dimension ofWyy. CCA thus finds what the two data
sets have in common, and does that explicitly by maximiz-
ing the correlation. It can be effectively computed by solv-
ing a certain generalized eigenvalue problem, and the solu-
tion is a unique global optimum.

It was recently shown that, rather surprisingly, we can
find the CCA solution also as the maximum likelihood so-
lution of a certain probabilistic model [4]. This is some-
what counterintuitive, considering how traditional CCA op-
timizes a completely different criterion. We will here start
by summarizing the interpretation given in [4], and then
proceed to an extended model structure that helps to explain
why the probabilistic version of CCA could be derived.

The model structure used by [4] corresponds to that in
Figure 1 (a), and the actual model is given by

z ∼ N(0, I),

x|z ∼ N(Wxz,Ψx),

y|z ∼ N(Wyz,Ψy),

where we have assumed zero mean data for simplicity, and
do not explicitly mention the dimensionalities to keep the
notation more compact. The technical derivations revealing
the connection to CCA can be found in [4], but the main
point is that the maximum likelihood estimates for the pro-
jectionsWx andWy have a connection to the CCA projec-
tions, and, particularly, that the posterior expectationsof z

givenx andy lie on the CCA projection space.
An important observation is that the marginal covari-

ance matrix of the pair(x, y) in the above model is
(

WxWT
x + Ψx WxWT

y

WyWT
x WyWT

y + Ψy

)

, (1)

and that the connection to classical CCA is retained as long
as we have a model that has identical marginal covariance.
It is worth noticing how the different parameters affect dif-
ferent parts of the covariance. Most notably, the parameters
Ψ only affect the part related to one data set. The key to
why the above model leads to canonical directions must lie
here, but [4] offers no explanations.

We now proceed to explain the interpretation by extend-
ing the probabilistic model. We adopt the model structure in
Figure 1 (b) with separate latent variables for the marginals,
and define the following model

z, zx, zy ∼ N(0, I),

x|z, zx ∼ N(Wxz + Bxzx, σ2

xI),

y|z, zy ∼ N(Wyz + Byzy, σ2

yI).

Given the latent variables each sample is thus generated as
a signal fusion with fixed diagonal noise. Alternatively we
can think of the model for each data set as probabilistic PCA
[5, 6], becauseWxz +Bxzx could be written simply as̃Wz̃

for W̃ = [Wx, Bx] and z̃ = [zT , zT
x ]T . The novelty is in

sharing part of the latent variables between two PCAs.
The marginal covariance matrix of the model is

(

WxWT
x + BxBT

x + σ2

xI WxWT
y

WyWT
x WyWT

y + ByBT
y + σ2

yI

)

,

which is structurally identical to that in (1). We can think of
BxBT

x + σ2

xI as an approximation toΨx, and if the dimen-
sionality ofzx is high enough (equals the dimensionality of
the datax) we can directly factorizeΨx asBxBT

x , leading
to σ2

x = 0. From this it follows that given complex enough
latent variables the second model equals the first, and thus
also finds the solution of classical CCA.

While the original CCA can be solved as an eigenvalue
problem, the extended model that allows varying marginal
model complexities needs to be optimized with an iterative
method. An expectation maximization (EM) algorithm for
optimization is given in Figure 2.

3.1. Properties of the model

The above formulation for CCA has a few interesting conse-
quences, which will be discussed here. First, being a prob-
abilistic derivation it allows the use of standard techniques
of generative modeling, such as model complexity selection
and utilizing prior information, to be used in canonical cor-
relation based analysis. For this the original derivation by
[4] is already sufficient.



1. Marginalize overzx andzy to get model with co-
variance matrix of the form (1) where we have
Ψx = BxBT

x + σ2

xI andΨy = ByBT
y + σ2

yI. Up-
date the parametersW = [Wx,Wy] using the EM
step

W = ΣAT
(

M + AΣAT
)

−1

.

HereM =
(

I + WT Ψ−1W
)

−1

, A = MWT Ψ−1,
andΨ is a block-diagonal matrix that consists of
Ψx andΨy. Σ is the joint sample covariance ma-
trix.

2. Marginalize overz, and optimize the parameters
related tox. The update rule forBx is identi-
cal to the above one, butΨ = WxWT

x + σ2

xI,

M =
(

I + BT
x Ψ−1Bx

)

−1

, A = MBT
x Ψ−1, and

Σ is the sample covariance ofx. Forσ2

x we get

σ2

x =
1

dx

trace
(

Σ − ΣAT BT
x − WxWT

x

)

,

wheredx is the dimensionality ofx, andBx is the
new value just updated. Do exactly the same for
parameters related toy.

Fig. 2. EM algorithm for optimizing the extended proba-
bilistic CCA repeats the two steps until convergence. The
second step can be repeated a few times in a row to improve
the convergence of the marginal models, avoiding unneces-
sary use of parametersW to model the marginals.

The model also allows generalizing CCA-based analysis
from normal distribution to other (exponential family) dis-
tributions, already suggested in [4]. For this purpose, how-
ever, our derivation from a more complete model structure
is an important step. It illustrates how the canonical cor-
relation solution is found only when the marginal models
(that were implicit in the original derivation) are capableof
modeling any possible variation within each data set alone.
A similar observation was made in the context of discrete
variables by [7], who showed that maximizing the likeli-
hood of a co-clustering is equivalent to maximizing the mu-
tual information between the clusters if we assume that the
marginal densities given clusters are known exactly.

If marginal latent variables of lower dimensionality are
used, we lose some of the capacity required for modeling
the within-data variation, and the optimal solution usesW

for modeling individual data sets as well. While the model
may still be a reasonably good generative model, it does
not capture the dependencies correctly. This will be demon-
strated empirically in Section 5.

Another interesting observation is that modeling the mar-
ginal distributions is related to the whitening operation used

for preprocessing data. It has previously been shown that
classical CCA can be though of as whitening both data sets
separately, followed by principal component analysis (PCA)
of the concatenated whitened variables (see e.g. [8]). Here
the role of the whitening step is played by the marginal mod-
els, which suggests a probabilistic interpretation of whiten-
ing in this context, as well as a generalization of similar
preprocessing step to model families other than those con-
sisting of linear projections.

4. DEPENDENCY-SEEKING CLUSTERING

An interesting generalization of the above formulation is to
use clustering models, as several real-world data sets have
inherent cluster structure instead of linear relations. Unfor-
tunately, the requirement of being able to model all possible
variation using the marginal models is a lot more difficult to
satisfy when the data no longer comes from a single expo-
nential family distribution, such as a Gaussian. Still, we can
derive practical dependency-seeking clustering algorithms
by making simplifying assumptions.

4.1. Simple model

In the simplest case we assume that only the common ef-
fects have cluster structure, but the variation within each
cluster is still linear. The actual model with assumption of
normality is then given by

z ∼ Mult(θ), zx, zy ∼ N(0, I),

x|z, zx ∼ N(µz
x + Bxzx, σ2

xI),

y|z, zy ∼ N(µz
y + Byzy, σ2

yI),

whereµz
x denotes the mean vector for thex-space corre-

sponding to the clusterz. In principle we could have an
uninformative model forz as in the CCA case, but allow-
ing different weights makes more sense in most clustering
tasks.

We can again marginalize overzx andzy, and end up
with a model wherex ∼ N(µz

x, BxBT
x +σ2

xI). Usingzx of
full dimensionality gives equivalent parameterization inthe
form x ∼ N(µz

x,Ψx), and we can directly write the final
clustering model as

z ∼ Mult(θ),

(x, y)|z ∼ N(µz,Ψ), (2)

where

Ψ =

(

Ψx 0
0 Ψy

)

.

In summary, the model is a normal mixture model for
data where the two feature vectors have been concatenated,
with the restriction that the covariance of the clusters is



shared and has a block-diagonal structure. The intuitive
approach to clustering such data would be to use the full
covariance matrix. It would in this case lead to individual
clusters modeling also some of the dependencies, and even
though it might be better in terms of the likelihood it would
still be worse for making inference on the dependencies.
In the other extreme where the covariance matrix would be
restricted to be completely diagonal, the model would use
cluster structure to model also within-data variation, again
losing some of the dependencies.

Note that this suggests that the covariance matrix should
be restricted also in cases where the variables in both data
sets are expected to have correlation (for example, due to
being measurements of the same actual property conducted
with different measurement techniques). This is because we
specifically want to capture the real link between the two
data sets into the cluster structure, instead of the within-
cluster covariance. This is in contradiction to the traditional
approach, where all prior information naturally should be
included in the model structure as well as possible.

4.2. More structured variant

The clustering model (2) requires quite strict assumptions
for the data. Even though it will still lead to improved per-
formance in many dependency exploration tasks, it is worth-
while to study if we can do something better.

In principle we would like to build a model wherez acts
as a cluster index, and the marginal models are complex
enough to represent any meaningful structure in each data
set within one cluster. Without restricting to any special
cases, the best we could do would be to allow some general
mixture model for the marginals as well, but marginalizing
over the latent variables of such a model would be prac-
tically impossible. We thus take an alternative approach,
where we accept that the marginal models are going to be
insufficient, and try to focus on dependencies by specifying
a more complex model for the joint effects. With suitable
structure we can avoid at least part of the cases where the
clusters are used to describe marginal variation.

We replace the middle part of the model with a hierarchy
that also contains an independence assumption between two
new latent variableswx andwy (Figure 1 (c)). The actual
model is given by

z ∼ Mult(θz),

wx|z ∼ Mult(θz
wx

), wy|z ∼ Mult(θz
wy

), (3)

x|wx ∼ N(µwx

x ,Ψx), y|wy ∼ N(µwy

y ,Ψy),

where we have already marginalized overzx andzy. The
model can be optimized using an EM algorithm (details
omitted), which reminds closely the EM algorithm for the
classical Gaussian mixture.

The improvement compared to the model (2) is that the
hierarchy can be used to detect and model correctly cases
where either of the marginal distributions within a single
cluster is multimodal. The algorithm solves this kind of sit-
uation by choosing theθz

w for that cluster to have two or
more active components.

The model is formulated so that first a higher-level clus-
ter z is selected, and based on that we independently select
lower-level clusterswx andwy. Alternatively we can think
of this as a process where a pair of lower-level clusters is
chosen from a joint distribution ofwx andwy. In this in-
terpretation the priorp(wx, wy) is not independent, but not
completely free either. The model corresponds to represent-
ing the prior as a sum of independent priors.

The latter interpretation links the model to the associa-
tive clustering (AC) [3]. In AC the task is to find marginal
clusterings for two data sets so that the contingency table
formed by the sample counts is as dependent as possible.
Here the samples could be assigned to the(wx, wy) clusters
in a probabilistic way, leading to a table of “counts” with
similar interpretation. From this perspective the proposed
clustering method is a probabilistic alternative to AC that
directly maximizes a measure of dependency. Comparing
the two alternatives more thoroughly is, however, beyond
the scope of this paper.

5. EXPERIMENTS

Here we verify empirically some of the properties claimed
in the previous sections. These experiments are not a com-
prehensive study on the performance of the methods, but
aim to demonstrate the kind of effects one should anticipate,
and know how to deal with, in dependency exploration tasks
performed by probabilistic modeling.

5.1. CCA and marginal model complexity

In Section 3 we claimed that the probabilistic formulation of
CCA only holds when sufficiently complex marginal mod-
els are used. Here we demonstrate that the EM algorithm
for extended CCA indeed converges to the classical CCA
solution given full complexity, and show that this does not
hold with lower complexity.

For this purpose we use a simple generated data set that
has a subspace (three dimensions) with significant corre-
lation and the rest of the dimensions (three) in both data
spaces are more or less independent noise.1000 samples are
drawn from the distribution, and the solutions are computed
using the EM algorithm (Figure 2) for various marginal mod-
el complexities. The results are computed as averages over
100 different data sets from the same distribution.

We compare the variants by measuring squared corre-
lation (sum of squared canonical correlations when there is
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Fig. 3. The correlation of the posterior expectations in-
creases as a function of the marginal model complexity, and
moves from the PCA solution (no marginal models) to CCA
solution (full complexity). The lines present different sub-
space dimensionalities, increasing from 1 (bottom line) to5
(topmost line).

more than one dimension) between the posterior expecta-
tionsE[zx|x] andE[zy|y]. CCA is known to find the maxi-
mal value, whereas PCA for the concatenated variables has
no particular reason to find correlating projections. In Fig-
ure 3 the correlation within the subspace is illustrated for
varying marginal model complexities and dimensionalities
of the subspace, and it is evident that too low a complex-
ity leads to decreased performance in finding the canonical
directions. What is sufficient depends on the number of di-
mensions sought, and ultimately on the data in question.

5.2. Dependency-seeking clustering

Evaluating the performance of a clustering algorithm is of-
ten quite difficult task, as no definitive measures for assess-
ing the quality exist. Here even the validation data likeli-
hood cannot be used, as it is not necessarily optimal crite-
rion for dependency exploration task. A more direct mea-
sure of dependency is required, and as the clustering algo-
rithms are here extended from canonical correlation anal-
ysis, we decided to study how closely they can mimic the
solution of CCA. The algorithms are compared to the al-
ternative of using an unrestricted joint model, here a nor-
mal Gaussian mixture with full covariance matrix, to see
whether they can find the dependencies better than the naive
approach of modeling all variation.

We use the same data set used in the previous demon-
stration. Even though the data comes from a single Gaus-
sian, the independence assumption means that clusters are
required for modeling the dependent parts. As a practical
measure for the similarity of the results, we measure the
variance of the cluster centroids in the CCA subspace: the
solutions that focus on modeling directions perpendicularto
the subspace will have small variation within the subspace.

We averaged the variances of a normal mixture model
with full covariance matrix and the model (2) over100 runs.

The resulting average variance for normal mixture model
was0.09 (standard deviation0.04), and0.26 (deviation0.08)
for the block-diagonal variant, showing that the latter re-
veals clearly more (98 out of100 runs) structure in the canon-
ical subspace. The values are for6 clusters, but similar re-
sults are obtained with other complexities as well.

As a more real example, we cluster yeast genes based
on two expression measurements of different stressful treat-
ments (time-series of heat shock and diamide treatment).
The measurement data was obtained from [9], and prepro-
cessed like in [8]. The common thing between the measure-
ments should be general stress, and thus we compare the
clustering results to a list of environmental stress response
(ESR) genes by [9] (two-class problem, each gene either
is or is not an ESR). The average “classification accuracy”
(percentage of training samples from the same class in a
cluster; random assignment gives75.7%) over 10 random
data splits (half of the samples for training and half for val-
idation) was81.1% for normal mixture model, and86.0%
for model (2). The latter is significantly better (Wilcoxon
signed rank test, p< 0.002). Again the number of clus-
ters was arbitrarily fixed to6. It is worth noticing that the
normal mixture model had significantly higher likelihood
on both training and validation data due to modeling more
within-data variation, but it still tells less about yeast stress.

5.3. Multimodal marginal clusters

The advantage of the structured variant (3) over the simpler
clustering model is that it can cope with multimodalities in
marginal clusters. The ability is demonstrated on toy data
with two two-dimensional data sets. First dimensions of
both data sets are dependent, whereas the other dimensions
are independent but structured noise. A three-cluster solu-
tion by the model (3) is illustrated in Figure 4. Not only has
the algorithm ignored the dimensions containing structured
noise, but it has also assigned the two modes of one cluster
in the dependent plane to the same higher-level cluster.

As another example, we also clustered the Multiple Fea-
tures Database1 that contains several feature sets for hand-
written number recognition. We picked the Karhunen-Loeve
coefficients and the Zernike moments, and reduced both fea-
ture sets to just two dimensions using PCA to make the
problem more challenging. Furthermore, we added three
dimensions with bimodal Gaussian distribution to both data
sets to increase within-data variation. We used the same ac-
curacy measure as above, this time averaging over20 runs.
With 10-cluster solutions we got15.4% for normal mixture
model,17.5% for (2), and27.4% for (3) (using15 values
for wx andwy). All differences are significant according
to the Wilcoxon signed rank test (all p-values below0.004),
and low values are due to the high noise ratio.

1from http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Fig. 4. Analysis of two data sets,x andy, where we are only
interested in what they have in common. Both figures are
scatter-plots between two dimensions, and the samples are
marked according to their cluster index (three clusters).(a)
The model learns to ignore a noise dimension, even though
it has clear structure.(b) Multimodality in signal dimen-
sions does not affect clusters if it appears in only one of the
data sets.

6. DISCUSSION

In this paper we studied the use of generative models in
finding dependencies between two data sets. Traditionally,
dependencies have been sought by explicitly optimizing a
criterion for dependency, using methods such as canoni-
cal correlation analysis (CCA) or various clustering meth-
ods optimizing the mutual information. Recently CCA was
interpreted as a generative model, which lead us to study
whether generative models could be used for dependency
exploration tasks in other cases as well.

Based on a re-interpretation of the probabilistic CCA we
were able to show that a necessary condition for a genera-
tive model to reveal dependencies is that the model contains
flexible enough parts for both of the marginals. We then
extended the principle to clustering, and derived two clus-
tering models for seeking dependencies. Both were demon-
strated to find dependencies better than an unrestricted joint
model, and in particular the simpler model performed sur-
prisingly well in a practical application of combining two
gene expression data sets of yeast stress.

The exact relationship between explicit dependency op-
timization and generative dependency-seeking models re-
mains to be studied. The latter allows rigorous treatment
of finite data, but the first can be used also in cases where
building a sufficiently good generative model would be im-
possible. It is also worth studying whether the two alterna-
tives could be combined.

7. ACKNOWLEDGMENTS

This work was supported in part by the Academy of Fin-
land, decision numbers 79017 and 207467, and in part by
the IST Programme of the European Community, under the

PASCAL Network of Excellence, IST-2002-506778. This
publication only reflects the authors’ views. All right are
reserved because of other commitments.

8. REFERENCES

[1] H. Hotelling, “Relations between two sets of variates,”
Biometrika, vol. 28, pp. 321–377, 1936.

[2] N. Tishby, F. C. Pereira, and W. Bialek, “The informa-
tion bottleneck method,” inProceedings of The 37th
Annual Allerton Conference on Communication, Con-
trol, and Computing, Bruce Hajek and R. S. Sreenivas,
Eds., pp. 368–377. University of Illinois, Urbana, Illi-
nois, 1999.

[3] S. Kaski, J. Nikkil̈a, J. Sinkkonen, L. Lahti, J. Knuut-
tila, and C. Roos, “Associative clustering for explor-
ing dependencies between functional genomics data
sets,” IEEE/ACM Transactions on Computational Bi-
ology and Bioinformatics, Special Issue on Machine
Learning for Bioinformatics – Part 2, vol. 2, no. 3, pp.
203–216, 2005.

[4] F. R. Bach and M. I. Jordan, “A probabilistic inter-
pretation of canonical correlation analysis,” Tech. Rep.
688, Department of Statistics, University of California,
Berkeley, 2005.

[5] M. Tipping and C. Bishop, “Mixtures of probabilistic
principal component analysers,”Neural Computation,
vol. 11, pp. 443–482, 1999.

[6] S. Roweis and Z. Ghahramani, “A unifying review of
linear gaussian models,”Neural Computation, vol. 11,
pp. 305–345, 1999.

[7] I. S. Dhillon, S. Mallela, and D. S. Modha,
“Information-theoretic co-clustering,” inProceedings
of KDD’03, The Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 89–98. ACM Press, New York, NY, USA, 2003.
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