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Abstract

A distributional clustering model for continuous data is reviewed and new methods

for optimizing and regularizing it are introduced and compared. Based on samples

of discrete-valued auxiliary data associated to samples of the continuous primary

data, the continuous data space is partitioned into Voronoi regions that are maxi-

mally homogeneous in terms of the discrete data. Then only variation in the primary

data associated to variation in the discrete data affects the clustering; the discrete

data “supervises” the clustering. Because the whole continuous space is partitioned,

new samples can be easily clustered by the continuous part of the data alone. In

experiments, the approach is shown to produce more homogeneous clusters than

alternative methods. Two regularization methods are demonstrated to further im-

prove the results: an entropy-type penalty for unequal cluster sizes, and the inclusion

of a model for the marginal density of the primary data. The latter is also inter-

pretable as special kind of joint distribution modeling with tunable emphasis for
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discrimination and the marginal density.

Key words: Discriminative clustering, information metric, learning metrics,

regularization, vector quantization

1 Introduction

Models exist for discovering components underlying co-occurrences of nom-

inal variables [4,5,14], and for the joint distribution p(c,x) of continuous

x ∈ X ⊂ R
n and discrete data c [12,13,18]. We consider the related task

of clustering the continuous primary data by conditional modelling such that

the clusters become “relevant for” or “informative of” the discrete auxiliary

data, i.e., capable of predicting p(c|x). The discriminative approach is expected

(and indeed found) to result in clusters more informative about c than those

obtained by modeling the joint distribution. The continuity of x distinguishes

the setting from that of (classic) distributional clustering [20,22,26].

The task, coined discriminative clustering (DC), is different from classification

in that the number of clusters is not constrained to be equal to the number of

classes, which for clustering purposes may be much too high or low. In DC, the

derived cluster structure of the X-space is the primary outcome, even to the

degree that the distributional parameters predicting p(c|x) within a cluster

can be integrated out.

The main application area for DC is in data exploration or mining. Alterna-
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tively, when c is interpreted as an existing probabilistic partitioning of X, DC

can be used to alter the coarseness of the partitioning.

A prototypical application would be grouping of existing customers of a com-

pany on the basis of continuous covariates (x; including, for instance, coor-

dinates of residence, age, etc.) into clusters that are informative of buying

behavior of the customers across several product categories (c). New real or

potential customers can then be clustered even before they have made their

first purchases. Other potential applications include finding prototypical gene

expression patterns to refine existing functional classifications of genes [21],

clustering of financial statements to discover different ways to descend into

bankruptcy, and partitional clustering in general when a variable c is used to

automatically guide the feature selection.

In this paper an earlier model for discriminative clustering [21] is reviewed and

extended. On-line implementation of the earlier model was simple and it had

interesting connections to neural computation, but for practical data analysis

it had a shortcoming: It was formulated for distributions of data instead of

finite data sets, which implies that it cannot take the uncertainty caused by

the finiteness of the sample rigorously into account. In this paper we formulate

discriminative clustering in Bayesian terms, which has the additional benefit

that the parameters the earlier method inclulded for modeling the auxiliary

data c can be integrated out from the cost function.

The model cannot be optimized directly by gradient-based algorithms, but we

show that complementing a conjugate gradient algorithm with a smoothing

of partitions gives comparable results to the much more time-consuming sim-

ulated annealing. To further improve performance, the model is additionally
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regularized in two alternative ways: by penalizing from unequal cluster sizes,

or alternatively by adding to the cost function a term modeling the primary

data. The latter is equivalent to generative modeling of the full joint distri-

bution p(c,x) of the primary and auxiliary data, but also interpretable as a

tunable compromise between modeling p(x) and p(c|x).

In experiments, all the proposed models outperform alternative mixture-based

models in their task, and both of the regularization methods outperform pure

DC. In most cases, the new Bayesian optimization method performs better

than the older stochastic on-line algorithm, and requires less time for opti-

mization.

2 Discriminative Clustering Model

We will start by reviewing the basic discriminative clustering model [15,21],

and by simultaneously clarifying its relationship with maximum likelihood

estimation. Although different than the original derivation, the perspective

here makes a Bayesian extension possible.

The goal of discriminative clustering is to partition the primary data space

into clusters that are (i) local in the primary space and (ii) homogeneous and

predictive in terms of auxiliary data. (The connection between homogeneity

and predictivity of the clusters is detailed below.) Locality is enforced by

defining the clusters as Voronoi regions in the primary data space: x belongs

to cluster j, x ∈ Vj, if ‖x − mj‖ ≤ ‖x − mk‖ for all k. The Voronoi regions

are uniquely determined by the parameters {mj}.

Homogeneity is enforced by assigning a distributional prototype denoted by
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ψj ≡ p(c|x,x ∈ Vj) to each Voronoi region j, and searching for partitionings

capable of predicting auxiliary data with the prototypes. The resulting model

is a piecewise-constant generative model for c conditioned on x, with the log

likelihood

L =
∑

j

∑

x∈Vj

logψj,c(x) . (1)

The probability of class i within jth Voronoi region Vj is predicted to be

ψji = p(ci|x,x ∈ Vj), and c(x) denotes the class of sample x.

In summary, the assumed data generating mechanism is simple: The primary

data x are covariates that determine the cluster membership j (the relation-

ship is deterministic given the parameters of the clusters). The auxiliary data

c is then generated by a cluster-specific multinomial having parameters ψji.

This generative mechanism is assumed throughout the paper.

Asymptotically for large data sets,

L ∝ −
∑

j

∫

Vj

DKL(p(c|x),ψj)p(x)dx + const. , (2)

where DKL is the Kullback-Leibler divergence between the prototype and the

observed distribution of auxiliary data. This is the cost function of K-means

clustering or Vector Quantization (VQ) with the distortion measured by DKL.

In this sense, maximizing the likelihood of the model therefore maximizes the

distributional homogeneity of the clusters.

It can be shown [21] that maximizing (2) is equivalent to maximizing the

mutual information between the auxiliary variable and the partitioning, which

is a connection to models that use the empirical mutual information as a

clustering criterion [2]. Asymptotically DC performs vector quantization in

Fisher metrics, with the restriction of Voronoi regions being defined in the
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original, usually Euclidean metric [15].

2.1 Optimization

When discriminative clustering was introduced (although not under its current

name), an on-line stochastic algorithm for optimizing the cost function (2) was

derived [21]. The gradient of the cost is non-zero only at the borders of the

Voronoi regions, and to overcome this difficulty, the regions are softened or

smoothed. The resulting algorithm is briefly reviewed here.

The smoothing is performed by introducing membership functions yj(x; {mj})

to (2). The values of the membership functions vary between 0 and 1, and

∑

j yj(x) = 1. The smoothed cost function is

E ′
KL =

∑

j

∫

yj(x; {mj})DKL(p(c|x),ψj) p(x) dx . (3)

One possible form for the memberships is the normalized Gaussian,

yj(x) = Z(x)−1e−
‖x−mj‖

2

2σ2 , (4)

where Z normalizes the sum to unity for each x. The value of the parameter

σ controlling the smoothness can be chosen with a validation set.

The smoothed cost is then minimized with the following algorithm. Denote the

i.i.d. data pair at the on-line step t by (x(t), c(t)) and index the (discrete) value

of c(t) by i, that is, c(t) = ci. Draw two clusters, j and l, independently with

probabilities given by the values of the membership functions {yk(x(t))}k. To

keep the distributional parameters summed up to unity, reparameterize them

by the “soft-max”, logψji = γji − log
∑

m exp(γjm). Adapt the prototypes by
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mj(t+ 1)=mj(t) − α(t) [x(t) − mj(t)] log
ψli(t)

ψji(t)
(5)

γjm(t+ 1)= γjm(t) − α(t) [ψjm(t) − δmi] , (6)

where δmi is the Kronecker delta. Due to the symmetry between j and l, it

is possible (and evidently beneficial) to adapt the parameters twice for each

t by swapping j and l in (5) and (6) for the second adaptation. Note that no

updating of the m takes place if j = l; then mj(t+1) = mj(t). During learning

the parameter α(t) decreases gradually toward zero according to a schedule

that, to guarantee convergence, must fulfill the conditions of the stochastic

approximation theory.

For finite data, the algorithm maximizes the conditional likelihood (1)—by

heuristically smoothing the clusters to get a computable gradient.

3 MAP Estimation of Clusters of DC

The earlier discriminative clustering algorithm [21] was motivated by maxi-

mization of the empirical mutual information. Asymptotically, for large amounts

of data, mutual information is a justified measure of homogeneity or depen-

dency. Maximization of mutual information was re-interpreted in the previous

section as maximum likelihood estimation, which uses smoothed cluster mem-

berships as an optimization trick. The new interpretation opens up the pos-

sibility of Bayesian extensions. For small data sets an alternative, potentially

better behaving form of discriminative clustering is obtained by marginaliz-

ing the likelihood (1), as introduced next. It turns out that the distributional

prototypes {ψj} can be analytically integrated out from the posterior distri-

bution of {mj} and {ψj} given data, to leave only the parameters {mj} of the
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Voronoi regions. This is convenient and should improve the results by taking

into account the uncertainty associated with the {ψj}. Our goal is to partition

the primary space instead of predicting the classes by the {ψj}, and hence

the predictions are not needed.

The auxiliary data are denoted by D(c), and the primary data by D(x). We

then wish to find the set of clusters {mj} which maximizes the marginalized

posterior (the integration is over all the ψj)

MAPDC = p({mj}|D(c), D(x)) =
∫

{ψj}
p({mj}, {ψj}|D(c), D(x))d{ψj} . (7)

In this paper, the improper prior p({mj}, {ψj}) ∝ p({ψj}) =
∏

j p(ψj) is

used, where the factors p(ψj) ∝ ∏

i ψ
n0

i
−1

ji are Dirichlet priors with the pa-

rameters n0
i common to all j. Dirichlet distribution is the conjugate prior for

the multinomial distribution, and is therefore convenient. By Bayes rule and

marginalization, the posterior 1 is then given by

MAPDC ∝
∫

{ψj}
p(D(c)|{mj}, {ψj}, D(x))p({ψj})d{ψj} =

∏

j

∫

ψj

p(D
(c)
j |ψj)p(ψj) dψj

∝
∏

j

∫

ψj

∏

i

ψ
n0

i
+nji−1

ji dψj =
∏

j

∏

i Γ(n0
i + nji)

Γ (N0 +Nj)
. (8)

Here nji is the number of samples of class i in cluster j, Nj =
∑

i nji, and

N0 =
∑

i n
0
i .

The final objective function (8) is thus the posterior probability of the cluster

centroids given the data. Assuming the DC task, the objective is meaningful for

comparing various alternative methods, and it can be used as an optimization

1 Actually marginalized maximum likelihood here, since the prior for {mj} is im-

proper.
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criterion by searching the maximum a posterior (MAP) estimate. In practice,

we use the logarithm of the posterior

log p({mj}|D(c), D(x)) =
∑

ij

log Γ(n0
i + nji) −

∑

j

log Γ(N0 +Nj) + const. (9)

for computational simplicity. Notice that the connection to the mutual infor-

mation is retained in the marginalization process. Maximizing the posterior

asymptotically maximizes the mutual information between clusters and aux-

iliary data (Appendix A).

3.1 Optimization

Plain marginalized DC is unsuitable for gradient-based optimization for the

same reason as the infinite-data cost (2): the gradient would be affected only

by samples at the (typically zero-probability) border of the clusters. This prob-

lem was earlier avoided by a smoothing approach, and similar smoothing is

possible also in the marginalized DC. The smoothed “number” of samples is

nji =
∑

c(x)=i yj(x), where c(x) is the class of x and yj(x) is a smoothed cluster

“membership function,” as defined in (4). In the experiments, the smoothing

is only used for optimization; no smoothing is used when evaluating the clus-

tering results. The value for the smoothing parameter σ is again selected by

validation.

The smoothed MAP objective function (9) becomes

log p({mj}|D,X) =

∑

ij

log Γ



n0
i +

∑

c(x)=i

yj(x)



−
∑

j

log Γ

(

N0 +
∑

x

yj(x)

)

+ const. (10)

For normalized Gaussian membership functions (4), the gradient of the objec-
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tive function with respect to the jth model vector is (Appendix B)

σ2 ∂

∂mj

log p({mj}|D,X) =
∑

x,l

(x − mj)yl(x)yj(x)(Lj,c(x) − Ll,c(x)) , (11)

where

Lji ≡ Ψ(nji + n0
i ) − Ψ(Nj +N0) .

Here Ψ is the digamma function, the derivative of the logarithm of Γ. Any

standard gradient-based optimization algorithm can be used to maximize (10);

we used conjugate gradients.

Alternatively, the objective function (9) can be optimized directly by simu-

lated annealing (SA). The above-described smoothed optimization method is

compared with SA in the experimental section of this paper. In each iteration

of SA, a candidate step is generated by making small random displacements

to the prototype vectors. The step is accepted if it increases the value of the

objective function. Even if it decreases the objective function it is accepted

with a probability that is a decreasing function of the change in the objective

function.

We used Gaussian displacements with the covariance matrix
√
Tσ2I. Here I

is the identity matrix and T is the temperature parameter that was decreased

linearly from 1 to 0.1. The parameter σ was chosen in preliminary experi-

ments using a validation set. A displacement step that decreases the objective

function by ∆E is accepted with the probability exp(−∆E/T ).
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4 DC Produces Optimal Contingency Tables

A large number of methods for analyzing statistical dependencies between

discrete-valued (nominal or categorical) random variables on the basis of co-

occurrence frequencies or contingency tables exist, many of which are classi-

cal (see for example [1,9–11]). An old example, due to Fisher, is to measure

whether the order of adding milk and tea affects the taste. The first variable

indicates the order of adding the ingredients, and the second whether the taste

is better or worse. In medicine one variable could indicate health status and

the other demographic groups. The resulting contingency table is tested for

dependency of the row and column variables.

Given discrete-valued auxiliary data, the result of any clustering method can

be analyzed as a contingency table: The possible values of the auxiliary vari-

able correspond to columns and the clusters to rows of a two-dimensional table.

Clustering compresses the potentially large number of multivariate continuous-

valued observations into a manageable number of categories, and the contin-

gency table can be tested for dependency. Note that the difference from the

traditional use of contingency tables is that the row categories are not fixed;

instead, the clustering method tries to find a suitable categorization. The

question here is, is discriminative clustering a good way of constructing such

contingency tables? The answer is that it is optimal in a sense introduced

below. First, however, we have to consider the problem of finite sample sizes.

For large sample sizes the sampling variation of the cell frequencies in the

table becomes negligible. Then empirical mutual information, approaching the

real mutual information as more data becomes available, would be a natural

11



measure of dependency between the margins of the contingency table.

The various ways to take into account the effects of small sample sizes and/or

small cell frequencies of contingency tables have been a subject of much re-

search. Bayesian methods cope well with small data sets; below we will derive

a connection between (a simple version of) the Bayesian approach presented

by Good [11], and our discriminative clustering method. The classical results

were derived for contingency tables with fixed margin categories, while we

optimize the categories.

A type of Bayesian test for dependency in contingency tables is based on com-

puting the Bayes factor against the hypothesis H of statistical independence

of the row and column categories [11]

P ({nji}|H̄)

P ({nji}|H)
.

Here H̄ is the negation of H, that is, it is the alternative hypothesis that

the margins are dependent. In practice the hypotheses will be formulated as

(Dirichlet) priors, either as a product of marginal priors (independency) or

over all cells (dependency).

In the special case of one fixed margin (the auxiliary data) in the contingency

table, and the prior defined in Section 3 with n0
i ≡ n0 for all i, the Bayes

factor is proportional to (8) (Appendix C). MAP estimation of discriminative

clusters is thus equivalent to constructing a dependency table that results in

a maximal Bayes factor, under the constraints of the model.
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5 Regularization

A problem with pure DC is that the categories may overfit to apparent de-

pendencies in a small data set. Two regularization methods for the marginal-

ized DC (8) are introduced in this section to reduce overfitting. The first

is a straightforward attempt to improve optimization, while the latter is in-

terpretable as joint distribution modeling. Such an explicit modeling of the

“covariates” (here x) may improve discrimination especially with small data

sets (cf. [19]).

5.1 Emphasizing Equal Cluster Sizes

In the first, rather non-parametric regularization method, equal distribution

of data into the clusters is favored, which is useful at least in avoiding “dead

clusters” after bad initialization. The “equalized” or “penalized” objective

function is

CEQ({mj}) =
∑

ij

log Γ(n0
i + nji) − (1 + λEQ)

∑

j

log Γ(N0 +Nj) , (12)

where λEQ > 0 is a parameter governing the amount of regularization. As

the number of data samples increases, (12) divided by N approaches mutual

information plus λEQ times the entropy of the clusters (plus a term that does

not depend on the parameters; see Appendix A). Hence, the larger λEQ is,

the more solutions with roughly equal numbers of samples in the clusters are

favored.

An alternative to equalization would be to use the prior n0
i also in place of

N0. The effect would be similar to that of (12) in the sense that the second
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part of the cost function would become more important. Such a prior would

be inconsistent from the viewpoint of the derivation of (8) in Section 3, but

the prior is wholly justified in the Bayes factor interpretation (Section 4).

5.2 Modeling the Marginal Density of Primary Data

Discriminative methods that model the conditional probability p(c|x) may

benefit from the regularizing effects of modeling the marginal p(x). To inves-

tigate whether this is the case with DC, we complemented it to the full joint

distribution model

p(c,x|{mj}, {ψj}) = p(c|x, {mj}, {ψj})p(x|{mj}) (13)

with a generative Gaussian mixture-type model for p(x). Note that both fac-

tors of (13) are parameterized by the same centroids {mj}. As will be made

explicit in (14) and (15), the special kind of parameterization makes it possi-

ble to interpret (13) as an adjustable compromise between modeling p(x) and

p(c|x).

Here we use a standard mixture of Gaussians to model p(x), with isotropic

Gaussians with covariances σ2
MoGI and centers {mj}.

5.2.1 MAP Estimation of Clusters of the Joint Model

With the (improper) prior p({mj}, {ψj}) ∝ p({ψj}) =
∏

j p(ψj) the posterior

(8) gets the extra factor

∏

x∈D(x)

∑

j

ρj exp(−λMoG‖x − mj‖2) ,
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where λMoG = 1
2σ2

MoG

, and ρj are the weights of the Gaussians. The parameter

λMoG is used instead of the variances of Gaussians to better illustrate the

regularizing nature of the term: λMoG = 0 means no regularization.

Correspondingly, the log posterior of the joint model becomes

log p({mj}|D(c), D(x)) ∝
∑

ij

log Γ(n0
i +nji)−

∑

j

log Γ(N0+Nj)+
∑

x∈D(x)

log
∑

j

ρj exp(−λMoG‖x−mj‖2) .

(14)

The model for p(x) can be interpreted as an additive regularization term of

the cost function. A change in the value of λMoG makes the focus of the clus-

tering shift between DC and traditional mixture-based clustering. In practice

the value of λMoG will be chosen using a validation set to maximize the un-

regularized cost (8).

5.2.2 K-means regularization

This interpretation suggests a simpler, partly heuristic regularization: replac-

ing the log-cost of mixture of Gaussians by the (negative) cost function of

Euclidean K-means clustering, that is,

EV Q =
∑

j;x∈Vj

λVQ‖x − mj‖2 .

Here λVQ has a similar role as the λMoG in the mixture of Gaussians.

While using K-means instead of a mixture of Gaussians is not probabilisti-

cally rigorous, 2 it is intuitively meaningful (we can think of it as making a

2 K-means clustering can be derived probabilistically from the so-called “classifi-
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compromise between the Kullback-Leibler divergence and the Euclidean dis-

tance) and computationally simple. The tunable compromise between DC and

K-means clustering is apparent if the cost is written as

CV Q({mj}) = MAPDC − λVQEV Q . (15)

6 Related Methods

Below, connections to some related problems and approaches of data analysis,

including feature selection and various clustering criteria, are briefly discussed.

6.1 Automatic Feature Extraction

Proper manual feature selection and extraction is an indispensable but labo-

rious first step in data analysis. Automated methods have been developed for

complementing it, especially in pattern recognition applications.

If feature extraction does not change the topology of the input space it is a less

general operation than a change of the metric, and DC can be (asymptotically)

interpreted as a change of metric [15]. Nevertheless, it may be advisable to use

automatic feature extraction methods as preprocessing for DC for two reasons:

(i) The clusters of DC are defined to be Euclidean Voronoi regions in the data

space. Their shape could, in principle at least, be tuned by transforming the

feature space. (ii) Dimensionality reduction reduces the number of parameters

cation mixture” [6] but the final log-posterior would end up having an extra term

proportional to log Z({mj}), where Z({mj}) is a sum of Gaussian integrals over

the Voronoi regions. Computing Z({mj}) is infeasible.
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and regularizes the solution. Additionally, any desired changes in the topology

by discontinuous transformations can be included as preprocessing steps before

DC.

6.2 Discriminative Clustering by Pre-Estimating Densities

A possible alternative approach to discriminative clustering would be to first

find a density estimate p̂(c|x) for the data and then apply more or less standard

clustering algorithms on a metric that is based on the estimated densities (see

[16]). The most straightforward proximity measure between two points x and

y would be DKL(p̂(c|x), p̂(c|y)). This does not keep the clusters local in the

primary data space, however. Instead, a metric locally equivalent to the KL

divergence should be generated with the help of the Fisher information matrix

for two close-by points.

The problem of the approach is that it involves two unrelated criteria: one

for density estimation and another one for clustering. It is hard to see how

the two costs could be made commensurable in a principled way. Still, the

approach works as a practical data engineering tool, and has been applied [16]

to self-organizing maps [17].

6.3 Generative Co-Occurrence Models

The term co-occurrence model refers to a model of the joint occurrences of

nominal variables. For example in document clustering, the two nominal vari-

ables could be the documents and the words, and the documents could be

clustered by comparing the occurrences of words within the documents.
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From the statistical point of view, the most straightforward method of mod-

eling co-occurrence data of x and y would be to postulate a parameterized

probabilistic model p(x, y|θ) and estimate its parameters θ by using a con-

ventional criterion such as the maximum likelihood. Based on this approach,

Hofmann [14] has introduced a class of mixture models, both for the marginals

and the joint distribution. In the field of text document analysis, he coined

the joint distribution model probabilistic latent semantic indexing (PLSI).

Conceptually, discriminative clustering can be seen as a co-occurrence model,

or more exactly, as a distributional clustering model for the conditional distri-

butions p(c|x) of the continuous margin x, with the clusters restricted to be

local. This interpretation extends the original co-occurrence or distributional

clustering paradigm by introducing a continuous variable. The concept of local

clusters or the asymptotic connection to metrics described in [15] are not even

meaningful in the discrete co-occurrence setup. In practical applications the

continuity makes parameterization of the partitions necessary, and the imple-

mentation of discriminative clustering becomes very different from the classic

co-occurrence models.

6.4 Classic Distributional Clustering and the Information Bottleneck

Distributional clustering is another term for clustering one margin of co-occur-

rence data, introduced by Pereira et al. [20]. The information bottleneck (IB)

principle [26,22] gives a deeper justification for the classic distributional clus-

tering.

Although the information bottleneck was originally introduced for categorical
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variables, the principle itself has commonalities with the theory of discrimi-

native clustering. We therefore discuss the bottleneck in some length here.

Tishby et al. [26] get their motivation from the rate distortion theory of Shan-

non and Kolmogorov (see [8] for a textbook account). In the rate distortion

theory framework, one finds an optimal representation—or conventionally,

codebook—for a set of discrete symbols when a cost in the form of a dis-

tortion function describing the effects of a transmission line is given.

In our notation, the authors consider the problem of building an optimal

representation V for a discrete random variable X. The optimality of the rep-

resentation is measured by its capability to represent another random variable

C, possibly after being distorted by a noisy transmission channel such as lossy

compression. The representation v for an input sample x could in the deter-

ministic case be given by a function v(x), but in general the relationship is

stochastic and described by the density p(v|x). The overall frequency of the

codes is described by the marginal density p(v).

In the rate distortion theory, the real-valued distortion function d(x, v) is as-

sumed to be known, and the mutual information I(X;V ) is minimized with re-

spect to the representation p(v|x), subject to the constraint EX,V {d(x, v)} < k

(this is made more intuitive below). At the optimum the conditional distribu-

tions defining the codebook are

p(vl|x) =
p(vl) exp [−βd(x, vl)]

∑

j p(vj) exp [−βd(x, vj)]
(16)

where β is a constant that depends on k. In the information bottleneck,

the negative mutual information −I(C;V ) is used as the average distortion

EX,V {d(x, v)}.
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In more intuitive terms and equivalently to the procedure above, the mutual

information I(C;V ), earlier presented as the negative distortion, is maximized,

that is, the representation V is made as informative about C as possible, given

a limited value for I(X;V ) which is now interpretable as a kind of resource

limitation on the representation V .

The functional to be minimized becomes I(X;V ) − βI(C;V ), and its varia-

tional optimization with respect to the conditional densities p(v|x) leads to

(16) with

d(x, vj) = DKL(p(c|x), p(c|vj)) . (17)

The result is self-referential through p(c|v) and therefore does not constitute

an algorithm for finding the p(v|x) and p(c|v). An explicit solution can be ob-

tained by an iterative algorithm that resembles the Blahut-Arimoto algorithm

(cf. [8]).

In order to clarify the connection to DC, consider a continuous data space X.

The bottleneck principle of defining partitions (16) can at least informally be

extended to this case: For a continuous x and the asymptotic case of a large

enough (de)regularization parameter β the bottleneck clusters in (17) become

Voronoi regions of the Kullback-Leibler distortion, were X categorical or not.

The Kullback-Leibler Voronoi regions would be non-local in the X-space. In

practice, IB for continuous data would require additional parameterization

of the clusters. In DC, clusters have been parameterized as Voronoi regions

in the X-space, giving the additional bonus of local clusters. Locality eases

interpretation and may be important in some applications.

The cost functions of information bottleneck and (asymptotical) discrimina-

tive clustering have a common term, the mutual information I(C;V ). The

20



bottleneck has an additional term for keeping the complexity of the represen-

tation low, whereas the complexity of discriminative clusters is restricted by

their number, parameterization, and in practice by regularization.

Like the original mutual information or KL-distortion cost of DC, the cost of

IB is defined for distributions instead of data sets. The straightforward way of

applying such a cost function to finite data sets is to approximate the densities

by the empirical distributions (see Section 2).

At the limit of crisp clusters, or for uniform distribution of x, IB is equivalent to

finding a maximum likelihood solution of a certain multinomial mixture model

[23]. To our knowledge, no marginalization procedures similar to marginalized

DC have been proposed.

6.5 Generative Models for the Joint Density of Mixed-Type Variables

It is popular to use finite mixture models for so-called model-based clustering.

In the models, each data sample x is generated by one of a finite number of

generators, identified with the clusters, and the whole density p(x) is a mixture

of the densities. The models can be fitted to data by, e.g., maximizing the

likelihood with the EM algorithm.

In a model for paired data it has been assumed that each generator generates

both the discrete c and the continuous x, from a multinomial and a Gaussian

distribution, respectively [13,18]. This model for the joint density p(c,x) is

called Mixture Discriminant Analysis (MDA2).

DC models only the conditional density p(c|x). While conditional densities can
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be derived from models of the joint density by the Bayes rule, it is possible

that conditional models perform better because they focus resources more

directly on the conditional density. Section 7 provides empirical support for

this hypothesis.

On the other hand, regularization by joint modeling (Section 5.2) turns DC

towards the traditional joint density models, and we believe that making a

compromise between the two extremes provides better generalization ability.

7 Experiments

The experiments are divided into three parts. First DC is demonstrated on a

simple toy data set to illustrate the discriminative properties and the effect of

regularization. Second, the new finite-data (marginalized) variant is compared

with the older stochastic algorithm using standard machine learning data sets.

The two optimization algorithms (Section 3.1) for the marginalized DC are

additionally compared. Finally, the two regularization principles (Section 5)

are tested to find out how much they help when there is little training data.

The closest alternative mixture-based methods are included for reference in

all comparisons to demonstrate that DC solves a problem not addressed by

standard clustering methods.

7.1 Toy Demonstration

The Voronoi region centers {mj} of the VQ-regularized model (15) are shown

in Figure 1 for three different values of the regularization parameter λVQ .

Data (10,000 samples) were from an isotropic 2D Gaussian with a vertically
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Fig. 1. The VQ-regularized discriminative clustering (DC) model (15) makes a com-

promise between the plain DC and ordinary K-means (VQ). From the viewpoint of

plain DC (λVQ=0; left), only the vertical dimension is relevant as the distribution

of the binary auxiliary data c was made to change monotonically and only in that

direction. A compromise representation for the data is found at λVQ=0.02 (middle).

The algorithm turns into ordinary VQ when λVQ→∞ (right). Circles denote the

Voronoi region parameters {mj} and gray shades the density p(x).

varying p(c|x). Samples come from two classes, 5,000 samples each, and p(c1|x)

increases monotonically from bottom to top. Naturally, p(c2|x) = 1 − p(c1|x)

then increases from top to bottom. For small values of λVQ , the original cost

function of discriminative clustering is minimized, and the clusters represent

only the vertical direction of the X-space, where the conditional distribution

p(c|x) changes. When λVQ increases, the clusters gradually start to represent

all variation in x, converging to the K-means solution for large λVQ . Similar

compromise would be found with the mixture of Gaussians regularization (14)

as well.
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7.2 Comparison with the Stochastic DC

The performance of the older stochastic on-line algorithm presented in Sec-

tion 2.1 and the two optimization algorithms for maximizing the marginalized

posterior given in Section 3.1 are compared here on three real-life data sets.

Two standard mixture models, a mixture of Gaussians modeling p(x) and

MDA2 modeling p(c,x) (see Section 6.5), are included for reference. Thus the

comparisons also show whether discriminative modeling outperforms ordinary

clustering methods in its task.

7.2.1 Materials and Methods

The algorithms were compared on three data sets: the Landsat satellite data

(36 dimensions, six classes, and 6435 samples) and the Letter Recognition

data (16 dimensions, 26 classes and 20,000 samples) from the UCI Machine

Learning Repository [3], and speech data from the TIMIT collection [25].

Altogether 14,994 samples were picked up from the TIMIT material, classified

into 41 groups of phones (phonetic sounds), and encoded into 12 cepstral

components.

First the best values for the smoothing parameter σ were sought in a series

of preliminary runs. The data sets were partitioned into 2, 5, and 10 clusters,

using the class indicators as the auxiliary data. For each number of clusters,

solutions were computed at 30 logarithmically spaced values of the smoothing

parameter σ of DC, and at 30 similar values of the spread of the Gaussians of

the mixture models. Another set of 30 logarithmically spaced values was tried

for the width of the jumping kernel in simulated annealing.

24



The cluster prototypes (centers) of all models were initialized to random draws

from data. A conservatively large number of iterations was chosen: 100 EM

iterations for the mixture models, and 100,000 times the number of clusters for

the stochastic iterations with the non-marginalized DC and simulated anneal-

ing with marginalized DC. The maximal number of iterations for the marginal-

ized DC optimized with conjugate gradients was set to 29, but the algorithm

converged well before that in most cases.

All the prior parameters n0
i were set to unity. The adaptation coefficient α in

(5) of the old stochastic algorithm decreased piecewise-linearly from 0.05 to

zero, and the coefficient in (6) was two times larger.

The performance of the methods is here compared using the posterior proba-

bility (9) of the cluster prototypes, computed from held-out data. Note that

the auxiliary parts of the held-out data are not used in any way in computing

the cluster identities (which are a function of the primary data alone).

The posterior probability is a justified measure for the goodness of discrimi-

native clusters, irrespective of how the clusters are generated. It is somewhat

problematic, however, that it is also the cost function of some of our own meth-

ods. Therefore, the main conclusion to be drawn from the comparisons is that

discriminative clustering does what it promises. An alternative goodness mea-

sure would be the empirical mutual information of the cluster identities and

the nominal auxiliary data labels. This produces practically identical results

(not shown).
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7.2.2 Results

The significance of the performance differences was tested with two-tailed t-

tests over 10-fold cross-validation runs (Table 1). For each combination of a

model and a cluster count, the smoothing parameter of the model was fixed

to its best value found in the preliminary phase of the experiments.

The best DC variant was always significantly better than either of the non-DC

methods. On Landsat and TIMIT data sets the marginalized MAP-variant is

the best regardless of the number of clusters. In the more interesting cases,

the five- and ten-cluster solutions, the best result is obtained with the conju-

gate gradient algorithm. On the Letter Recognition data, the old stochastic

algorithm produces the best results, but the difference to the marginalized DC

optimized with conjugate gradients is insignificant.

Three conclusions can be drawn. (i) The DC algorithms perform clearly better

in their task than standard clustering algorithms, which is expected as they

solve a problem not directly addressed by standard clustering. (ii) The new

marginalized version gives results better than (two of the three data sets) or

comparable to the old stochastic version. (iii) The two optimization algorithms

of marginalized DC are comparable, the conjugate gradient algorithm having

a clear edge on ten-cluster solutions. Because of its clearly faster computation,

it is therefore the preferred choice in most cases.
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Table 1

Average cost (negative log posterior) of the algorithms over 10-fold cross-validation

trials. Best performance for each cluster number (Nc) is shown in bold, and results

with p-value under 0.01 (pairwise t-test) have been doubly underlined. Single un-

derlining denotes p-value under 0.05. CG MAP : MAP estimation of smoothed DC

by a conjugate gradient algorithm; SA MAP : MAP estimation by simulated anneal-

ing; sDC : DC by old stochastic algorithm; MoG : mixture of Gaussians; MDA2 : a

mixture model for joint probabilities.

Data Nc CG MAP SA MAP sDC MoG MDA2

Landsat 2 833.86 828.75 953.78 913.87 918.86

Landsat 5 472.40 493.03 701.10 623.09 649.77

Landsat 10 432.81 455.07 550.52 504.74 494.64

TIMIT 2 4651.1 4537.8 4577.3 4577.8 4550.6

TIMIT 5 4514.9 4516.6 4548.4 4584.4 4579.9

TIMIT 10 4860.3 4874.9 4886.0 5085.6 4953.4

Letter 2 5904.2 5911.2 5928.3 6451.6 6126.66

Letter 5 5109.4 5050.0 5046.3 6330.4 5436.8

Letter 10 4704.8 4821.5 4632.3 6183.9 5186.0

7.3 Effect of Regularization

7.3.1 Methods

Next we compared the plain marginalized discriminative clustering model and

its regularized variants on two data sets, with the final performance of the27



models measured by the pure DC objective function (9), that is, without any

regularization. The closest alternative mixture models were again included for

reference, as was DC optimized with the stochastic on-line algorithm. To keep

the experiment set manageable, no regularization methods were applied to

the stochastic algorithm. This time also classical Euclidean vector quantization

(K-means) was included for completeness, as it is used for regularization in one

of the models. The marginalized DC models were optimized by the conjugate

gradient algorithm, based on the results of the previous section.

Since the effects of regularization were expected to be most apparent for small

data sets, the data were split into a number of smaller subsets on which a set

of independent tests were made. The Landsat data was left out, because it

had too few samples for the test setup.

The Letter Recognition data was split into five subsets. Two-fold modeling and

testing for each subset gave a total of ten repetitions of ten-cluster solutions.

The width parameter of the mixture components and smoothing, and the

regularization parameters were selected by 5-fold cross-validation within each

learning set. The parameters {mj} were initialized to a random set of training

samples. (Results with the K-means initialization appearing in Table 2 are

from experiments that will be described later in the paper.)

A larger subset (99,983 samples) of the TIMIT collection was used, and it

allowed us to use ten subsets, resulting in twenty repetitions (with parameters

within each repetition selected by 3-fold cross validation).
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7.3.2 Results

The best regularized methods were significantly better than plain marginal-

ized discriminative clustering, which in turn produced better discriminative

clusters than the reference methods. The results (columns “Letter rand” and

“TIMIT rand” in Table 2) are clear for the TIMIT data, where the old stochas-

tic algorithm is also significantly worse than the regularized marginalized DC.

On the Letter Recognition data, the old stochastic algorithm was the best,

as in the previous set of experiments (Section 7.2), but the difference to the

best marginalized DC is insignificant. Note that DC regularized with the mix-

ture of Gaussians is significantly better than plain marginalized DC also on

the Letter Recognition data, although the difference is not visible in Table 2.

Combined, these results show that regularization helps marginalized DC, but

the performance compared to the old stochastic algorithm still depends on the

data. The heuristic regularization with K-means seems to have slightly lower

performance compared to the probabilistically justified mixture of Gaussians,

but the difference is not significant.

In Figure 2, the effect of tuning the compromise between K-means and DC

in VQ-regularization is demonstrated. As expected, increasing λVQ shifts the

solution from optimizing the posterior probability (9) towards optimizing the

K-means error. The new finding is the slanted L-form: slight regularization

improves the predictive power of the clusters for the test set. Replacing K-

means with a mixture of Gaussians gives a similar curve.

Finally we studied, by repeating the ten-cluster experiments of Table 2, wheth-

er replacing the random initialization with K-means would improve results

and reduce variation between data sets. The results of almost all DC variants
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Table 2

Comparison of marginalized discriminative clustering (DC) and its regularized ver-

sions DC-VQ (15), DC-MoG (14), and DC-EQ (12) on two data sets, Letter Recog-

nition and TIMIT. The first line (sDC) comes from the old stochastic algorithm.

Mixture of Gaussians (MoG), plain K-means (VQ), and joint density model MDA2

[13] have been included for reference. The results are presented for both random

and K-means (VQ) initialization. Key: see Table 1, and note that p-values are here

computed along columns, not rows.

Method Letter rand Letter VQ TIMIT rand TIMIT VQ

sDC 4769.1 4830.8 13231 12792

DC 4961.9 4816.9 12981 12780

DC-VQ 4933.4 4779.5 12905 12767

DC-MoG 4843.0 4763.7 12876 12718

DC-EQ 4864.1 4699.8 12942 12757

MoG 6174.9 6210.8 13515 13494

VQ 6194.9 6194.9 13487 13487

MDA2 5206.4 5280.8 13012 12989

improved significantly (columns “Letter VQ” and “TIMIT VQ” in Table 2).

The only exception was the old stochastic algorithm on the Letter Recogni-

tion data; against expectation, its performance decreased. Regularized versions

were still the best, but their relative goodness varied.

The results from the regularization experiments can be summarized into three
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Fig. 2. The effect of tuning the VQ-regularization on TIMIT data. The curves

show how the two components of the cost change as the amount of regularization

is tuned. The two components are: K-means cost (EVQ) and predictive power (9;

MAPDC). Small dots on the curves: VQ-regularized DC with varying parameter

λVQ ; large dots from left to right: plain DC, MDA2, mixture of Gaussians (MoG),

plain K-means (VQ). Solid line: test set; dashed line: learning set. Results are aver-

ages over cross-validation runs, and for computational reasons the parameter σ of

the DC runs was not cross-validated but kept constant.

main points. (i) Regularization improves the performance of marginalized DC

on small data sets. (ii) The relative performance of the two regularization

principles depends on the data. (iii) Initialization by K-means significantly

improves the performance, and should be used instead of random initialization.

8 Discussion

An algorithm for distributional clustering of continuous data, interpreted as

covariates of discrete data, was reviewed and extended. With prototype distri-
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butions of the discrete variable associated to Voronoi regions of the continuous

data space, the regions are optimized to “predict” the discrete data well. In

experiments the method produced better-discriminating clusters than other

common methods.

The core DC model for p(c|x) is very close to models proposed earlier for

classification (e.g. RBF; [18]). In DC, however, the main outcome are clusters

of x, which enabled us to to marginalize out the parameters producing pre-

dictions of c. The new cost function takes into account the finite amount of

data, and its maximization is equivalent to maximizing a Bayesian measure

for statistical dependency in contingency tables.

Optimization of the new cost function leads to clustering results that are

comparable to or better than those produced by the previously presented

stochastic on-line algorithm. We also augmented the new cost function by

two regularization methods. Similar kinds of regularization approaches are

applicable also for the old infinite-data cost function.

In addition to the new cost function, this paper contains three new empirical

results. (i) The fast optimization of smoothed Voronoi regions by conjugate

gradients produces clusters comparable to those obtained by the considerably

more time-consuming simulated annealing. (ii) The two regularization meth-

ods, equalization of the cluster sizes and shifting towards a joint distribution

model, improve the results compared to plain DC. No conclusion could be

drawn of the relative goodness of the two methods, however. (iii) Initializa-

tion is important: K-means is superior to initialization by random data.

Regularization by joint distribution modeling is interpretable as the inclu-

sion of a term modeling the primary data in the cost function. The number
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of parameters in the regularized models is independent of the regularization

parameter λ, and in this sense the model complexity is fixed. A regularized

model therefore makes a compromise, tunable by λ, in representing variation

of x associated with changes in p(c|x) (the DC task), and in representing

all variation isotropically (the classical clustering task). In the experiments

with regularization, performance on learning data is not impaired while test

set performance improves significantly. For some reason, therefore, allocating

resources to modeling p(x) improves generalization with respect to p(c|x).

An adjustable combination of two mixture models was recently proposed for

joint modeling of terms and hyperlinks in text documents [7]. Here a similar

combination improved a discriminative (conditional-density) model. The joint

distribution modeling approach also makes it possible to treat primary data

samples lacking the corresponding auxiliary part as partially missing data,

along the lines of “semisupervised learning” proposed for classification tasks

[24].

Finally, the improvement obtained by K-means initialization hints at a prac-

tical optimization strategy that starts with standard clustering and tunes it

gradually towards DC.

Acknowledgments.

This work was supported in part by the Academy of Finland, grant 52123,

and by the IST Programme of the European Community, under the PASCAL

Network of Excellence, IST-2002-506778. This publication only reflects the

authors’ views. The authors would like to thank Janne Nikkilä for insights on
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A Connection of the Marginalized Likelihood to Mutual Informa-

tion

Consider the objective function of the penalized clustering algorithm,

CEQ({mj}) =
∑

ij

log Γ(n0
i + nji) − (1 + λ)

∑

j

log Γ(N0 +Nj)

which (up to a constant) reduces to (9) if λ = 0. The Stirling approximation

log Γ(s+ 1) = s log s− s + O(log s) applied to (9) yields

CEQ({mj}) =
∑

ij

(nji+kji) log(nji+kji)−(1+λ)
∑

j

(Nj+kj) log(Nj+kj)+O(logN) ,

where kji and kj are constants that depend on the prior. Note that N ≥ Nj ≥

nji.

The zeroth-order Taylor expansion log(s+ k) = log s + O
(

k
s

)

gives

CEQ({mj}) =
∑

ij

nji log nji − (1 + λ)
∑

j

Nj logNj + O(logN) .

Division by N then gives

CEQ({mj})
N

=
∑

ij

nji

N
log

nji/N

Nj/N
− λ

∑

j

Nj

N
log

Nj

N
− λ logN + O

(

logN

N

)

,

where nji/N approaches pji, that is, the probability of class i in cluster j, and

Nj/N approaches pj as the number of data samples increases. Hence,

CEQ({mj})
N

→
∑

ij

pji log
pji

pjpi

−
∑

i

pi log 1/pi + λ
∑

j

pj log 1/pj − λ logN ,

where the first term is the mutual information, the second term is a constant

(with respect to {mj}), the third term is λ times the entropy of pj, and the

last term does not depend on the parameters.
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For λ = 0 the result is equal to mutual information added by a constant.

B Gradient of the Marginalized Likelihood

Denote for brevity tji = nji + n0
i and Tj =

∑

i tji. The gradient of (10) with

respect to mj is

∂

∂mj

log p({mj}|D(c), D(x)) =
∑

il

Ψ(tli)
∑

c(x)=i

∂

∂mj

yl(x)−
∑

x,l

Ψ(Tl)
∂

∂mj

yl(x)

=
∑

x,l

[Ψ(tl,c(x)) − Ψ(Tl)]
∂

∂mj

yl(x) .

It is straightforward to show that for normalized Gaussian membership func-

tions

∂

∂mj

yl(x) =
1

σ2
(x − mj)(δlj − yl(x))yj(x) .

Substituting this to the gradient gives

σ2 ∂

∂mj

log p({mj}|D(c), D(x)) =
∑

x,l

(x−mj)(δlj−yl(x))yj(x)[Ψ(tl,c(x))−Ψ(Tl)] .

(B.1)

The final form (11) for the gradient results from applying the identity

∑

l

(δlj − yl)yjLl =
∑

l

ylyj(Lj − Ll)

to (B.1).

C Connection of Marginalized Likelihood to Contingency Tables

A connection between the posterior probability (8) and a Bayesian measure

for statistical dependency in contingency tables is derived below. Note that in
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contrast to a connection with mutual information, which could in principle be

used to measure statistical dependency, this connection is non-asymptotic.

Denote the number of samples in the ith auxiliary category, that is, the number

of entries in the ith column margin of the contingency table, by n(ci). In our

application of contingency tables only this margin is fixed—the other consists

of the discriminative clusters and therefore depends on the cluster centroids

{m}.

As explained in Section 4, evidence for dependence of the margin variables

can be quantified with the Bayes factor, implicating the relative strength of

evidence for dependence (see [11] for an advanced treatment with infinite

mixtures). For computing the Bayes factor, assumptions of dependence and

independence are encoded into the joint prior distribution of data over the

cells: Under the hypothesis H of independence between the rows and columns,

the prior probability of data in each cell is the product of margin (Dirichlet)

prior probabilities, whereas under the hypothesis of dependence, the prior is

simply one Dirichlet distribution over all the cells.

The Dirichlet distribution has a sharpness parameter which may be inter-

preted as the amount of “prior data.” For the hypothesis of dependence H̄,

the Dirichlet prior with the same amount of prior data, denoted here by n0, in

each cell of the whole contingency table has been used. Under the hypothesis

of dependence H, we need a Dirichlet prior for the columns and the rows. For

the row margin, a Dirichlet distribution with an equal amount of prior data

for each row has been used. In contrast to Good [11], we assume the same total

amount of “prior data” under both hypotheses. Then the prior sample size of

rows under H is N 0 =
∑

i n
0, the prior for H̄ marginalized. The prior for the
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column margin follows similarly from consistency (detailed below). The Bayes

factor against H, conditioned on the column margin, is then

P ({nji}|{n(ci)}, H̄)

P ({nji}|{n(ci)}, H)
. (C.1)

The denominator is

P ({nji}|H) = P ({nji}, {Nj}, {n(ci)}|H)

= P ({nji}|{Nj}, {n(ci)}, H)P ({Nj}|H)P ({n(ci)}|H) .

The first factor, the frequencies of data in the table given the margins, follows

the hypergeometric distribution, and the second factor P ({Nj}|H) is

P ({Nj}|H) =
∫

θ
P ({Nj}|θ)p(θ|H)dθ , (C.2)

where p(θ|H) is the Dirichlet prior and θ are the parameters of the multino-

mial distribution. For multinomial data Nj with K nominal values and the

Dirichlet prior with an equal amount N 0 =
∑

i n
0 of prior data for each of the

K values (formula 2.5 in [11]),

P ({Nj}|H) =
Γ(KN0)N !

∏

j Γ(Nj +N0)

Γ(N0)K Γ(N +KN0)
∏

j Nj!
. (C.3)

We get a similar expression for the third factor P ({n(ci)}|H), but as it is inde-

pendent of the cluster solution and only depends on the column margin {n(ci)}

which is fixed from the viewpoint of DC, we have omitted the derivation. (For

consistency, the columns would have the amount Kn0 of prior data.)

The numerator of (C.1) is

P ({nji}|{n(ci)}, H̄) =
P ({nji}|H̄)

P ({n(ci)}|H̄)
,

where P ({nji}|H̄) is similar to (C.3) but the products go over all cells of the
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table and the prior data is n0 for each cell. We have P ({nji}|H̄) ∝ ∏

i,j Γ(nji +

n0), with irrelevant factors omitted. The margin P ({n(ci)}|H̄), on the other

hand, is identical to P ({n(ci)}|H) and again a constant for DC.

After these considerations, the Bayes factor can be written as

P ({nji}|{n(ci)}, H̄)

P ({nji}|{n(ci)}, H)
=

∏

i,j Γ(nji + n0)
∏

j(Nj +N0)
×const. = p({mj}|D(c), D(x))×const. ,

where the constant depends on neither Nj nor nji.
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